nyanko7 commited on
Commit
6e97454
·
1 Parent(s): 2a05fdc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -55
app.py CHANGED
@@ -11,7 +11,11 @@ from diffusers import (
11
  DDIMScheduler,
12
  UNet2DConditionModel,
13
  )
14
- from modules.model import CrossAttnProcessor, StableDiffusionPipeline, load_lora_attn_procs
 
 
 
 
15
  from torchvision import transforms
16
  from transformers import CLIPTokenizer, CLIPTextModel
17
  from PIL import Image
@@ -20,11 +24,15 @@ from safetensors.torch import load_file
20
  import modules.safe as _
21
 
22
  models = [
23
- ("AbyssOrangeMix_Base", "OrangeMix/AbyssOrangeMix2"),
 
 
 
 
24
  ]
25
 
26
- base_name = "AbyssOrangeMix_Base"
27
- base_model = "OrangeMix/AbyssOrangeMix2"
28
 
29
  samplers_k_diffusion = [
30
  ("Euler a", "sample_euler_ancestral", {}),
@@ -36,24 +44,20 @@ samplers_k_diffusion = [
36
  ("DPM++ 2S a", "sample_dpmpp_2s_ancestral", {}),
37
  ("DPM++ 2M", "sample_dpmpp_2m", {}),
38
  ("DPM++ SDE", "sample_dpmpp_sde", {}),
39
- ("DPM fast", "sample_dpm_fast", {}),
40
- ("DPM adaptive", "sample_dpm_adaptive", {}),
41
  ("LMS Karras", "sample_lms", {"scheduler": "karras"}),
42
- (
43
- "DPM2 Karras",
44
- "sample_dpm_2",
45
- {"scheduler": "karras", "discard_next_to_last_sigma": True},
46
- ),
47
- (
48
- "DPM2 a Karras",
49
- "sample_dpm_2_ancestral",
50
- {"scheduler": "karras", "discard_next_to_last_sigma": True},
51
- ),
52
  ("DPM++ 2S a Karras", "sample_dpmpp_2s_ancestral", {"scheduler": "karras"}),
53
  ("DPM++ 2M Karras", "sample_dpmpp_2m", {"scheduler": "karras"}),
54
  ("DPM++ SDE Karras", "sample_dpmpp_sde", {"scheduler": "karras"}),
55
  ]
56
 
 
 
 
 
 
 
57
  start_time = time.time()
58
 
59
  scheduler = DDIMScheduler.from_pretrained(
@@ -62,22 +66,22 @@ scheduler = DDIMScheduler.from_pretrained(
62
  )
63
  vae = AutoencoderKL.from_pretrained(
64
  "stabilityai/sd-vae-ft-ema",
65
- torch_dtype=torch.float32
66
  )
67
  text_encoder = CLIPTextModel.from_pretrained(
68
  base_model,
69
  subfolder="text_encoder",
70
- torch_dtype=torch.float32,
71
  )
72
  tokenizer = CLIPTokenizer.from_pretrained(
73
  base_model,
74
  subfolder="tokenizer",
75
- torch_dtype=torch.float32,
76
  )
77
  unet = UNet2DConditionModel.from_pretrained(
78
  base_model,
79
  subfolder="unet",
80
- torch_dtype=torch.float32,
81
  )
82
  pipe = StableDiffusionPipeline(
83
  text_encoder=text_encoder,
@@ -88,15 +92,21 @@ pipe = StableDiffusionPipeline(
88
  )
89
 
90
  unet.set_attn_processor(CrossAttnProcessor)
 
91
  if torch.cuda.is_available():
92
  pipe = pipe.to("cuda")
93
-
94
- def get_model_list():
95
- return models
96
-
97
 
98
- unet_cache = dict()
99
 
 
 
 
 
 
 
 
 
 
 
100
 
101
  def get_model(name):
102
  keys = [k[0] for k in models]
@@ -107,15 +117,14 @@ def get_model(name):
107
  unet = UNet2DConditionModel.from_pretrained(
108
  models[keys.index(name)][1],
109
  subfolder="unet",
110
- torch_dtype=torch.float32,
111
  )
112
  unet_cache[name] = unet
113
-
114
  g_unet = unet_cache[name]
115
  g_unet.set_attn_processor(None)
116
  return g_unet
117
 
118
-
119
  def error_str(error, title="Error"):
120
  return (
121
  f"""#### {title}
@@ -132,7 +141,7 @@ def restore_all():
132
  global te_base_weight, tokenizer
133
  text_encoder.get_input_embeddings().weight.data = te_base_weight
134
  tokenizer = CLIPTokenizer.from_pretrained(
135
- "/root/workspace/storage/models/orangemix",
136
  subfolder="tokenizer",
137
  torch_dtype=torch.float16,
138
  )
@@ -163,11 +172,8 @@ def inference(
163
  global pipe, unet, tokenizer, text_encoder
164
  if seed is None or seed == 0:
165
  seed = random.randint(0, 2147483647)
166
- if torch.cuda.is_available():
167
- generator = torch.Generator("cuda").manual_seed(int(seed))
168
- else:
169
- generator = torch.Generator().manual_seed(int(seed))
170
-
171
  local_unet = get_model(model)
172
  if lora_state is not None and lora_state != "":
173
  load_lora_attn_procs(lora_state, local_unet, lora_scale)
@@ -189,15 +195,16 @@ def inference(
189
  loaded_learned_embeds = load_file(file, device="cpu")
190
  loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"]
191
  added_length = tokenizer.add_tokens(name)
192
-
193
  assert added_length == loaded_learned_embeds.shape[0]
194
  delta_weight.append(loaded_learned_embeds)
195
 
196
  delta_weight = torch.cat(delta_weight, dim=0)
197
  text_encoder.resize_token_embeddings(len(tokenizer))
198
- text_encoder.get_input_embeddings().weight.data[-delta_weight.shape[0]:] = delta_weight
 
 
199
 
200
-
201
  config = {
202
  "negative_prompt": neg_prompt,
203
  "num_inference_steps": int(steps),
@@ -275,6 +282,9 @@ def apply_new_res(w, h, state):
275
 
276
 
277
  def detect_text(text, state, width, height):
 
 
 
278
 
279
  t = text.split(",")
280
  new_state = {}
@@ -287,11 +297,13 @@ def detect_text(text, state, width, height):
287
  new_state[item] = {
288
  "map": state[item]["map"],
289
  "weight": state[item]["weight"],
 
290
  }
291
  else:
292
  new_state[item] = {
293
  "map": None,
294
  "weight": 0.5,
 
295
  }
296
  update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None)
297
  update_img = gr.update(value=create_mixed_img("", new_state, width, height))
@@ -314,28 +326,43 @@ def resize(img, w, h):
314
  def switch_canvas(entry, state, width, height):
315
  if entry == None:
316
  return None, 0.5, create_mixed_img("", state, width, height)
 
317
  return (
318
  gr.update(value=None, interactive=True),
319
- gr.update(value=state[entry]["weight"]),
 
320
  create_mixed_img(entry, state, width, height),
321
  )
322
 
323
 
324
  def apply_canvas(selected, draw, state, w, h):
325
- w, h = int(w), int(h)
326
- state[selected]["map"] = resize(draw, w, h)
 
327
  return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
328
 
329
 
330
  def apply_weight(selected, weight, state):
331
- state[selected]["weight"] = weight
 
 
 
 
 
 
 
332
  return state
333
 
334
 
335
  # sp2, radio, width, height, global_stats
336
- def apply_image(image, selected, w, h, strgength, state):
337
- if selected is not None:
338
- state[selected] = {"map": resize(image, w, h), "weight": strgength}
 
 
 
 
 
339
  return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
340
 
341
 
@@ -356,11 +383,24 @@ def add_net(files, ti_state, lora_state):
356
  else:
357
  ti_state[stripedname] = file.name
358
 
359
- return ti_state, lora_state, gr.Text.update(f"{[key for key in ti_state.keys()]}"), gr.Text.update(f"{lora_state}"), gr.Files.update(value=None)
 
 
 
 
 
 
 
360
 
361
  # [ti_state, lora_state, ti_vals, lora_vals, uploads]
362
  def clean_states(ti_state, lora_state):
363
- return dict(), None, gr.Text.update(f""), gr.Text.update(f""), gr.File.update(value=None)
 
 
 
 
 
 
364
 
365
 
366
  latent_upscale_modes = {
@@ -564,15 +604,15 @@ with gr.Blocks(css=css) as demo:
564
  with gr.Row():
565
  with gr.Column(scale=90):
566
  ti_vals = gr.Text(label="Loaded embeddings")
567
-
568
  with gr.Row():
569
  with gr.Column(scale=90):
570
  lora_vals = gr.Text(label="Loaded loras")
571
 
572
  with gr.Row():
573
-
574
  uploads = gr.Files(label="Upload new embeddings/lora")
575
-
576
  with gr.Column():
577
  lora_scale = gr.Slider(
578
  label="Lora scale",
@@ -583,12 +623,16 @@ with gr.Blocks(css=css) as demo:
583
  )
584
  btn = gr.Button(value="Upload")
585
  btn_del = gr.Button(value="Reset")
586
-
587
  btn.click(
588
- add_net, inputs=[uploads, ti_state, lora_state], outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads]
 
 
589
  )
590
  btn_del.click(
591
- clean_states, inputs=[ti_state, lora_state], outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads]
 
 
592
  )
593
 
594
  # error_output = gr.Markdown()
@@ -653,6 +697,11 @@ with gr.Blocks(css=css) as demo:
653
  interactive=False,
654
  )
655
 
 
 
 
 
 
656
  strength = gr.Slider(
657
  label="Token strength",
658
  minimum=0,
@@ -660,6 +709,7 @@ with gr.Blocks(css=css) as demo:
660
  step=0.01,
661
  value=0.5,
662
  )
 
663
 
664
  sk_update.click(
665
  detect_text,
@@ -669,7 +719,7 @@ with gr.Blocks(css=css) as demo:
669
  radio.change(
670
  switch_canvas,
671
  inputs=[radio, global_stats, width, height],
672
- outputs=[sp, strength, rendered],
673
  )
674
  sp.edit(
675
  apply_canvas,
@@ -681,6 +731,11 @@ with gr.Blocks(css=css) as demo:
681
  inputs=[radio, strength, global_stats],
682
  outputs=[global_stats],
683
  )
 
 
 
 
 
684
 
685
  with gr.Tab("UploadFile"):
686
 
@@ -689,6 +744,11 @@ with gr.Blocks(css=css) as demo:
689
  source="upload",
690
  shape=(512, 512),
691
  )
 
 
 
 
 
692
 
693
  strength2 = gr.Slider(
694
  label="Token strength",
@@ -701,7 +761,7 @@ with gr.Blocks(css=css) as demo:
701
  apply_style = gr.Button(value="Apply")
702
  apply_style.click(
703
  apply_image,
704
- inputs=[sp2, radio, width, height, strength2, global_stats],
705
  outputs=[global_stats, rendered],
706
  )
707
 
@@ -740,7 +800,7 @@ with gr.Blocks(css=css) as demo:
740
  ti_state,
741
  model,
742
  lora_state,
743
- lora_scale
744
  ]
745
  outputs = [image_out]
746
  prompt.submit(inference, inputs=inputs, outputs=outputs)
 
11
  DDIMScheduler,
12
  UNet2DConditionModel,
13
  )
14
+ from modules.model_pww import (
15
+ CrossAttnProcessor,
16
+ StableDiffusionPipeline,
17
+ load_lora_attn_procs,
18
+ )
19
  from torchvision import transforms
20
  from transformers import CLIPTokenizer, CLIPTextModel
21
  from PIL import Image
 
24
  import modules.safe as _
25
 
26
  models = [
27
+ ("AbyssOrangeMix2", "Korakoe/AbyssOrangeMix2-HF"),
28
+ ("Anything 4.0", "andite/anything-v4.0"),
29
+ ("Open Journey", "prompthero/openjourney"),
30
+ ("Basil Mix", "nuigurumi/basil_mix"),
31
+ ("ACertainModel", "JosephusCheung/ACertainModel"),
32
  ]
33
 
34
+ base_name, base_model = models[0]
35
+ clip_skip = 2
36
 
37
  samplers_k_diffusion = [
38
  ("Euler a", "sample_euler_ancestral", {}),
 
44
  ("DPM++ 2S a", "sample_dpmpp_2s_ancestral", {}),
45
  ("DPM++ 2M", "sample_dpmpp_2m", {}),
46
  ("DPM++ SDE", "sample_dpmpp_sde", {}),
 
 
47
  ("LMS Karras", "sample_lms", {"scheduler": "karras"}),
48
+ ("DPM2 Karras", "sample_dpm_2", {"scheduler": "karras", "discard_next_to_last_sigma": True}),
49
+ ("DPM2 a Karras", "sample_dpm_2_ancestral", {"scheduler": "karras", "discard_next_to_last_sigma": True}),
 
 
 
 
 
 
 
 
50
  ("DPM++ 2S a Karras", "sample_dpmpp_2s_ancestral", {"scheduler": "karras"}),
51
  ("DPM++ 2M Karras", "sample_dpmpp_2m", {"scheduler": "karras"}),
52
  ("DPM++ SDE Karras", "sample_dpmpp_sde", {"scheduler": "karras"}),
53
  ]
54
 
55
+ # samplers_diffusers = [
56
+ # ("DDIMScheduler", "diffusers.schedulers.DDIMScheduler", {})
57
+ # ("DDPMScheduler", "diffusers.schedulers.DDPMScheduler", {})
58
+ # ("DEISMultistepScheduler", "diffusers.schedulers.DEISMultistepScheduler", {})
59
+ # ]
60
+
61
  start_time = time.time()
62
 
63
  scheduler = DDIMScheduler.from_pretrained(
 
66
  )
67
  vae = AutoencoderKL.from_pretrained(
68
  "stabilityai/sd-vae-ft-ema",
69
+ torch_dtype=torch.float16
70
  )
71
  text_encoder = CLIPTextModel.from_pretrained(
72
  base_model,
73
  subfolder="text_encoder",
74
+ torch_dtype=torch.float16,
75
  )
76
  tokenizer = CLIPTokenizer.from_pretrained(
77
  base_model,
78
  subfolder="tokenizer",
79
+ torch_dtype=torch.float16,
80
  )
81
  unet = UNet2DConditionModel.from_pretrained(
82
  base_model,
83
  subfolder="unet",
84
+ torch_dtype=torch.float16,
85
  )
86
  pipe = StableDiffusionPipeline(
87
  text_encoder=text_encoder,
 
92
  )
93
 
94
  unet.set_attn_processor(CrossAttnProcessor)
95
+ pipe.set_clip_skip(clip_skip)
96
  if torch.cuda.is_available():
97
  pipe = pipe.to("cuda")
 
 
 
 
98
 
 
99
 
100
+ def get_model_list():
101
+ model_available = []
102
+ for model in models:
103
+ if Path(model[1]).is_dir():
104
+ model_available.append(model)
105
+ return model_available
106
+
107
+ unet_cache = {
108
+ base_name: unet
109
+ }
110
 
111
  def get_model(name):
112
  keys = [k[0] for k in models]
 
117
  unet = UNet2DConditionModel.from_pretrained(
118
  models[keys.index(name)][1],
119
  subfolder="unet",
120
+ torch_dtype=torch.float16,
121
  )
122
  unet_cache[name] = unet
123
+
124
  g_unet = unet_cache[name]
125
  g_unet.set_attn_processor(None)
126
  return g_unet
127
 
 
128
  def error_str(error, title="Error"):
129
  return (
130
  f"""#### {title}
 
141
  global te_base_weight, tokenizer
142
  text_encoder.get_input_embeddings().weight.data = te_base_weight
143
  tokenizer = CLIPTokenizer.from_pretrained(
144
+ base_model,
145
  subfolder="tokenizer",
146
  torch_dtype=torch.float16,
147
  )
 
172
  global pipe, unet, tokenizer, text_encoder
173
  if seed is None or seed == 0:
174
  seed = random.randint(0, 2147483647)
175
+ generator = torch.Generator("cuda").manual_seed(int(seed))
176
+
 
 
 
177
  local_unet = get_model(model)
178
  if lora_state is not None and lora_state != "":
179
  load_lora_attn_procs(lora_state, local_unet, lora_scale)
 
195
  loaded_learned_embeds = load_file(file, device="cpu")
196
  loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"]
197
  added_length = tokenizer.add_tokens(name)
198
+
199
  assert added_length == loaded_learned_embeds.shape[0]
200
  delta_weight.append(loaded_learned_embeds)
201
 
202
  delta_weight = torch.cat(delta_weight, dim=0)
203
  text_encoder.resize_token_embeddings(len(tokenizer))
204
+ text_encoder.get_input_embeddings().weight.data[
205
+ -delta_weight.shape[0] :
206
+ ] = delta_weight
207
 
 
208
  config = {
209
  "negative_prompt": neg_prompt,
210
  "num_inference_steps": int(steps),
 
282
 
283
 
284
  def detect_text(text, state, width, height):
285
+
286
+ if text is None or text == "":
287
+ return None, None, None, None
288
 
289
  t = text.split(",")
290
  new_state = {}
 
297
  new_state[item] = {
298
  "map": state[item]["map"],
299
  "weight": state[item]["weight"],
300
+ "mask_outsides": state[item]["weight"],
301
  }
302
  else:
303
  new_state[item] = {
304
  "map": None,
305
  "weight": 0.5,
306
+ "mask_outsides": False
307
  }
308
  update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None)
309
  update_img = gr.update(value=create_mixed_img("", new_state, width, height))
 
326
  def switch_canvas(entry, state, width, height):
327
  if entry == None:
328
  return None, 0.5, create_mixed_img("", state, width, height)
329
+
330
  return (
331
  gr.update(value=None, interactive=True),
332
+ gr.update(value=state[entry]["weight"] if entry in state else 0.5),
333
+ gr.update(value=state[entry]["mask_outsides"] if entry in state else False),
334
  create_mixed_img(entry, state, width, height),
335
  )
336
 
337
 
338
  def apply_canvas(selected, draw, state, w, h):
339
+ if selected in state:
340
+ w, h = int(w), int(h)
341
+ state[selected]["map"] = resize(draw, w, h)
342
  return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
343
 
344
 
345
  def apply_weight(selected, weight, state):
346
+ if selected in state:
347
+ state[selected]["weight"] = weight
348
+ return state
349
+
350
+
351
+ def apply_option(selected, mask, state):
352
+ if selected in state:
353
+ state[selected]["mask_outsides"] = mask
354
  return state
355
 
356
 
357
  # sp2, radio, width, height, global_stats
358
+ def apply_image(image, selected, w, h, strgength, mask, state):
359
+ if selected in state:
360
+ state[selected] = {
361
+ "map": resize(image, w, h),
362
+ "weight": strgength,
363
+ "mask_outsides": mask
364
+ }
365
+
366
  return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
367
 
368
 
 
383
  else:
384
  ti_state[stripedname] = file.name
385
 
386
+ return (
387
+ ti_state,
388
+ lora_state,
389
+ gr.Text.update(f"{[key for key in ti_state.keys()]}"),
390
+ gr.Text.update(f"{lora_state}"),
391
+ gr.Files.update(value=None),
392
+ )
393
+
394
 
395
  # [ti_state, lora_state, ti_vals, lora_vals, uploads]
396
  def clean_states(ti_state, lora_state):
397
+ return (
398
+ dict(),
399
+ None,
400
+ gr.Text.update(f""),
401
+ gr.Text.update(f""),
402
+ gr.File.update(value=None),
403
+ )
404
 
405
 
406
  latent_upscale_modes = {
 
604
  with gr.Row():
605
  with gr.Column(scale=90):
606
  ti_vals = gr.Text(label="Loaded embeddings")
607
+
608
  with gr.Row():
609
  with gr.Column(scale=90):
610
  lora_vals = gr.Text(label="Loaded loras")
611
 
612
  with gr.Row():
613
+
614
  uploads = gr.Files(label="Upload new embeddings/lora")
615
+
616
  with gr.Column():
617
  lora_scale = gr.Slider(
618
  label="Lora scale",
 
623
  )
624
  btn = gr.Button(value="Upload")
625
  btn_del = gr.Button(value="Reset")
626
+
627
  btn.click(
628
+ add_net,
629
+ inputs=[uploads, ti_state, lora_state],
630
+ outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads],
631
  )
632
  btn_del.click(
633
+ clean_states,
634
+ inputs=[ti_state, lora_state],
635
+ outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads],
636
  )
637
 
638
  # error_output = gr.Markdown()
 
697
  interactive=False,
698
  )
699
 
700
+ mask_outsides = gr.Checkbox(
701
+ label="Mask other areas",
702
+ value=False
703
+ )
704
+
705
  strength = gr.Slider(
706
  label="Token strength",
707
  minimum=0,
 
709
  step=0.01,
710
  value=0.5,
711
  )
712
+
713
 
714
  sk_update.click(
715
  detect_text,
 
719
  radio.change(
720
  switch_canvas,
721
  inputs=[radio, global_stats, width, height],
722
+ outputs=[sp, strength, mask_outsides, rendered],
723
  )
724
  sp.edit(
725
  apply_canvas,
 
731
  inputs=[radio, strength, global_stats],
732
  outputs=[global_stats],
733
  )
734
+ mask_outsides.change(
735
+ apply_option,
736
+ inputs=[radio, mask_outsides, global_stats],
737
+ outputs=[global_stats],
738
+ )
739
 
740
  with gr.Tab("UploadFile"):
741
 
 
744
  source="upload",
745
  shape=(512, 512),
746
  )
747
+
748
+ mask_outsides2 = gr.Checkbox(
749
+ label="Mask other areas",
750
+ value=False
751
+ )
752
 
753
  strength2 = gr.Slider(
754
  label="Token strength",
 
761
  apply_style = gr.Button(value="Apply")
762
  apply_style.click(
763
  apply_image,
764
+ inputs=[sp2, radio, width, height, strength2, mask_outsides2, global_stats],
765
  outputs=[global_stats, rendered],
766
  )
767
 
 
800
  ti_state,
801
  model,
802
  lora_state,
803
+ lora_scale,
804
  ]
805
  outputs = [image_out]
806
  prompt.submit(inference, inputs=inputs, outputs=outputs)