Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,11 @@ from diffusers import (
|
|
11 |
DDIMScheduler,
|
12 |
UNet2DConditionModel,
|
13 |
)
|
14 |
-
from modules.
|
|
|
|
|
|
|
|
|
15 |
from torchvision import transforms
|
16 |
from transformers import CLIPTokenizer, CLIPTextModel
|
17 |
from PIL import Image
|
@@ -20,11 +24,15 @@ from safetensors.torch import load_file
|
|
20 |
import modules.safe as _
|
21 |
|
22 |
models = [
|
23 |
-
("
|
|
|
|
|
|
|
|
|
24 |
]
|
25 |
|
26 |
-
base_name =
|
27 |
-
|
28 |
|
29 |
samplers_k_diffusion = [
|
30 |
("Euler a", "sample_euler_ancestral", {}),
|
@@ -36,24 +44,20 @@ samplers_k_diffusion = [
|
|
36 |
("DPM++ 2S a", "sample_dpmpp_2s_ancestral", {}),
|
37 |
("DPM++ 2M", "sample_dpmpp_2m", {}),
|
38 |
("DPM++ SDE", "sample_dpmpp_sde", {}),
|
39 |
-
("DPM fast", "sample_dpm_fast", {}),
|
40 |
-
("DPM adaptive", "sample_dpm_adaptive", {}),
|
41 |
("LMS Karras", "sample_lms", {"scheduler": "karras"}),
|
42 |
-
(
|
43 |
-
|
44 |
-
"sample_dpm_2",
|
45 |
-
{"scheduler": "karras", "discard_next_to_last_sigma": True},
|
46 |
-
),
|
47 |
-
(
|
48 |
-
"DPM2 a Karras",
|
49 |
-
"sample_dpm_2_ancestral",
|
50 |
-
{"scheduler": "karras", "discard_next_to_last_sigma": True},
|
51 |
-
),
|
52 |
("DPM++ 2S a Karras", "sample_dpmpp_2s_ancestral", {"scheduler": "karras"}),
|
53 |
("DPM++ 2M Karras", "sample_dpmpp_2m", {"scheduler": "karras"}),
|
54 |
("DPM++ SDE Karras", "sample_dpmpp_sde", {"scheduler": "karras"}),
|
55 |
]
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
start_time = time.time()
|
58 |
|
59 |
scheduler = DDIMScheduler.from_pretrained(
|
@@ -62,22 +66,22 @@ scheduler = DDIMScheduler.from_pretrained(
|
|
62 |
)
|
63 |
vae = AutoencoderKL.from_pretrained(
|
64 |
"stabilityai/sd-vae-ft-ema",
|
65 |
-
torch_dtype=torch.
|
66 |
)
|
67 |
text_encoder = CLIPTextModel.from_pretrained(
|
68 |
base_model,
|
69 |
subfolder="text_encoder",
|
70 |
-
torch_dtype=torch.
|
71 |
)
|
72 |
tokenizer = CLIPTokenizer.from_pretrained(
|
73 |
base_model,
|
74 |
subfolder="tokenizer",
|
75 |
-
torch_dtype=torch.
|
76 |
)
|
77 |
unet = UNet2DConditionModel.from_pretrained(
|
78 |
base_model,
|
79 |
subfolder="unet",
|
80 |
-
torch_dtype=torch.
|
81 |
)
|
82 |
pipe = StableDiffusionPipeline(
|
83 |
text_encoder=text_encoder,
|
@@ -88,15 +92,21 @@ pipe = StableDiffusionPipeline(
|
|
88 |
)
|
89 |
|
90 |
unet.set_attn_processor(CrossAttnProcessor)
|
|
|
91 |
if torch.cuda.is_available():
|
92 |
pipe = pipe.to("cuda")
|
93 |
-
|
94 |
-
def get_model_list():
|
95 |
-
return models
|
96 |
-
|
97 |
|
98 |
-
unet_cache = dict()
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
def get_model(name):
|
102 |
keys = [k[0] for k in models]
|
@@ -107,15 +117,14 @@ def get_model(name):
|
|
107 |
unet = UNet2DConditionModel.from_pretrained(
|
108 |
models[keys.index(name)][1],
|
109 |
subfolder="unet",
|
110 |
-
torch_dtype=torch.
|
111 |
)
|
112 |
unet_cache[name] = unet
|
113 |
-
|
114 |
g_unet = unet_cache[name]
|
115 |
g_unet.set_attn_processor(None)
|
116 |
return g_unet
|
117 |
|
118 |
-
|
119 |
def error_str(error, title="Error"):
|
120 |
return (
|
121 |
f"""#### {title}
|
@@ -132,7 +141,7 @@ def restore_all():
|
|
132 |
global te_base_weight, tokenizer
|
133 |
text_encoder.get_input_embeddings().weight.data = te_base_weight
|
134 |
tokenizer = CLIPTokenizer.from_pretrained(
|
135 |
-
|
136 |
subfolder="tokenizer",
|
137 |
torch_dtype=torch.float16,
|
138 |
)
|
@@ -163,11 +172,8 @@ def inference(
|
|
163 |
global pipe, unet, tokenizer, text_encoder
|
164 |
if seed is None or seed == 0:
|
165 |
seed = random.randint(0, 2147483647)
|
166 |
-
|
167 |
-
|
168 |
-
else:
|
169 |
-
generator = torch.Generator().manual_seed(int(seed))
|
170 |
-
|
171 |
local_unet = get_model(model)
|
172 |
if lora_state is not None and lora_state != "":
|
173 |
load_lora_attn_procs(lora_state, local_unet, lora_scale)
|
@@ -189,15 +195,16 @@ def inference(
|
|
189 |
loaded_learned_embeds = load_file(file, device="cpu")
|
190 |
loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"]
|
191 |
added_length = tokenizer.add_tokens(name)
|
192 |
-
|
193 |
assert added_length == loaded_learned_embeds.shape[0]
|
194 |
delta_weight.append(loaded_learned_embeds)
|
195 |
|
196 |
delta_weight = torch.cat(delta_weight, dim=0)
|
197 |
text_encoder.resize_token_embeddings(len(tokenizer))
|
198 |
-
text_encoder.get_input_embeddings().weight.data[
|
|
|
|
|
199 |
|
200 |
-
|
201 |
config = {
|
202 |
"negative_prompt": neg_prompt,
|
203 |
"num_inference_steps": int(steps),
|
@@ -275,6 +282,9 @@ def apply_new_res(w, h, state):
|
|
275 |
|
276 |
|
277 |
def detect_text(text, state, width, height):
|
|
|
|
|
|
|
278 |
|
279 |
t = text.split(",")
|
280 |
new_state = {}
|
@@ -287,11 +297,13 @@ def detect_text(text, state, width, height):
|
|
287 |
new_state[item] = {
|
288 |
"map": state[item]["map"],
|
289 |
"weight": state[item]["weight"],
|
|
|
290 |
}
|
291 |
else:
|
292 |
new_state[item] = {
|
293 |
"map": None,
|
294 |
"weight": 0.5,
|
|
|
295 |
}
|
296 |
update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None)
|
297 |
update_img = gr.update(value=create_mixed_img("", new_state, width, height))
|
@@ -314,28 +326,43 @@ def resize(img, w, h):
|
|
314 |
def switch_canvas(entry, state, width, height):
|
315 |
if entry == None:
|
316 |
return None, 0.5, create_mixed_img("", state, width, height)
|
|
|
317 |
return (
|
318 |
gr.update(value=None, interactive=True),
|
319 |
-
gr.update(value=state[entry]["weight"]),
|
|
|
320 |
create_mixed_img(entry, state, width, height),
|
321 |
)
|
322 |
|
323 |
|
324 |
def apply_canvas(selected, draw, state, w, h):
|
325 |
-
|
326 |
-
|
|
|
327 |
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
|
328 |
|
329 |
|
330 |
def apply_weight(selected, weight, state):
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
return state
|
333 |
|
334 |
|
335 |
# sp2, radio, width, height, global_stats
|
336 |
-
def apply_image(image, selected, w, h, strgength, state):
|
337 |
-
if selected
|
338 |
-
state[selected] = {
|
|
|
|
|
|
|
|
|
|
|
339 |
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
|
340 |
|
341 |
|
@@ -356,11 +383,24 @@ def add_net(files, ti_state, lora_state):
|
|
356 |
else:
|
357 |
ti_state[stripedname] = file.name
|
358 |
|
359 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
# [ti_state, lora_state, ti_vals, lora_vals, uploads]
|
362 |
def clean_states(ti_state, lora_state):
|
363 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
|
366 |
latent_upscale_modes = {
|
@@ -564,15 +604,15 @@ with gr.Blocks(css=css) as demo:
|
|
564 |
with gr.Row():
|
565 |
with gr.Column(scale=90):
|
566 |
ti_vals = gr.Text(label="Loaded embeddings")
|
567 |
-
|
568 |
with gr.Row():
|
569 |
with gr.Column(scale=90):
|
570 |
lora_vals = gr.Text(label="Loaded loras")
|
571 |
|
572 |
with gr.Row():
|
573 |
-
|
574 |
uploads = gr.Files(label="Upload new embeddings/lora")
|
575 |
-
|
576 |
with gr.Column():
|
577 |
lora_scale = gr.Slider(
|
578 |
label="Lora scale",
|
@@ -583,12 +623,16 @@ with gr.Blocks(css=css) as demo:
|
|
583 |
)
|
584 |
btn = gr.Button(value="Upload")
|
585 |
btn_del = gr.Button(value="Reset")
|
586 |
-
|
587 |
btn.click(
|
588 |
-
add_net,
|
|
|
|
|
589 |
)
|
590 |
btn_del.click(
|
591 |
-
clean_states,
|
|
|
|
|
592 |
)
|
593 |
|
594 |
# error_output = gr.Markdown()
|
@@ -653,6 +697,11 @@ with gr.Blocks(css=css) as demo:
|
|
653 |
interactive=False,
|
654 |
)
|
655 |
|
|
|
|
|
|
|
|
|
|
|
656 |
strength = gr.Slider(
|
657 |
label="Token strength",
|
658 |
minimum=0,
|
@@ -660,6 +709,7 @@ with gr.Blocks(css=css) as demo:
|
|
660 |
step=0.01,
|
661 |
value=0.5,
|
662 |
)
|
|
|
663 |
|
664 |
sk_update.click(
|
665 |
detect_text,
|
@@ -669,7 +719,7 @@ with gr.Blocks(css=css) as demo:
|
|
669 |
radio.change(
|
670 |
switch_canvas,
|
671 |
inputs=[radio, global_stats, width, height],
|
672 |
-
outputs=[sp, strength, rendered],
|
673 |
)
|
674 |
sp.edit(
|
675 |
apply_canvas,
|
@@ -681,6 +731,11 @@ with gr.Blocks(css=css) as demo:
|
|
681 |
inputs=[radio, strength, global_stats],
|
682 |
outputs=[global_stats],
|
683 |
)
|
|
|
|
|
|
|
|
|
|
|
684 |
|
685 |
with gr.Tab("UploadFile"):
|
686 |
|
@@ -689,6 +744,11 @@ with gr.Blocks(css=css) as demo:
|
|
689 |
source="upload",
|
690 |
shape=(512, 512),
|
691 |
)
|
|
|
|
|
|
|
|
|
|
|
692 |
|
693 |
strength2 = gr.Slider(
|
694 |
label="Token strength",
|
@@ -701,7 +761,7 @@ with gr.Blocks(css=css) as demo:
|
|
701 |
apply_style = gr.Button(value="Apply")
|
702 |
apply_style.click(
|
703 |
apply_image,
|
704 |
-
inputs=[sp2, radio, width, height, strength2, global_stats],
|
705 |
outputs=[global_stats, rendered],
|
706 |
)
|
707 |
|
@@ -740,7 +800,7 @@ with gr.Blocks(css=css) as demo:
|
|
740 |
ti_state,
|
741 |
model,
|
742 |
lora_state,
|
743 |
-
lora_scale
|
744 |
]
|
745 |
outputs = [image_out]
|
746 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
|
|
11 |
DDIMScheduler,
|
12 |
UNet2DConditionModel,
|
13 |
)
|
14 |
+
from modules.model_pww import (
|
15 |
+
CrossAttnProcessor,
|
16 |
+
StableDiffusionPipeline,
|
17 |
+
load_lora_attn_procs,
|
18 |
+
)
|
19 |
from torchvision import transforms
|
20 |
from transformers import CLIPTokenizer, CLIPTextModel
|
21 |
from PIL import Image
|
|
|
24 |
import modules.safe as _
|
25 |
|
26 |
models = [
|
27 |
+
("AbyssOrangeMix2", "Korakoe/AbyssOrangeMix2-HF"),
|
28 |
+
("Anything 4.0", "andite/anything-v4.0"),
|
29 |
+
("Open Journey", "prompthero/openjourney"),
|
30 |
+
("Basil Mix", "nuigurumi/basil_mix"),
|
31 |
+
("ACertainModel", "JosephusCheung/ACertainModel"),
|
32 |
]
|
33 |
|
34 |
+
base_name, base_model = models[0]
|
35 |
+
clip_skip = 2
|
36 |
|
37 |
samplers_k_diffusion = [
|
38 |
("Euler a", "sample_euler_ancestral", {}),
|
|
|
44 |
("DPM++ 2S a", "sample_dpmpp_2s_ancestral", {}),
|
45 |
("DPM++ 2M", "sample_dpmpp_2m", {}),
|
46 |
("DPM++ SDE", "sample_dpmpp_sde", {}),
|
|
|
|
|
47 |
("LMS Karras", "sample_lms", {"scheduler": "karras"}),
|
48 |
+
("DPM2 Karras", "sample_dpm_2", {"scheduler": "karras", "discard_next_to_last_sigma": True}),
|
49 |
+
("DPM2 a Karras", "sample_dpm_2_ancestral", {"scheduler": "karras", "discard_next_to_last_sigma": True}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
("DPM++ 2S a Karras", "sample_dpmpp_2s_ancestral", {"scheduler": "karras"}),
|
51 |
("DPM++ 2M Karras", "sample_dpmpp_2m", {"scheduler": "karras"}),
|
52 |
("DPM++ SDE Karras", "sample_dpmpp_sde", {"scheduler": "karras"}),
|
53 |
]
|
54 |
|
55 |
+
# samplers_diffusers = [
|
56 |
+
# ("DDIMScheduler", "diffusers.schedulers.DDIMScheduler", {})
|
57 |
+
# ("DDPMScheduler", "diffusers.schedulers.DDPMScheduler", {})
|
58 |
+
# ("DEISMultistepScheduler", "diffusers.schedulers.DEISMultistepScheduler", {})
|
59 |
+
# ]
|
60 |
+
|
61 |
start_time = time.time()
|
62 |
|
63 |
scheduler = DDIMScheduler.from_pretrained(
|
|
|
66 |
)
|
67 |
vae = AutoencoderKL.from_pretrained(
|
68 |
"stabilityai/sd-vae-ft-ema",
|
69 |
+
torch_dtype=torch.float16
|
70 |
)
|
71 |
text_encoder = CLIPTextModel.from_pretrained(
|
72 |
base_model,
|
73 |
subfolder="text_encoder",
|
74 |
+
torch_dtype=torch.float16,
|
75 |
)
|
76 |
tokenizer = CLIPTokenizer.from_pretrained(
|
77 |
base_model,
|
78 |
subfolder="tokenizer",
|
79 |
+
torch_dtype=torch.float16,
|
80 |
)
|
81 |
unet = UNet2DConditionModel.from_pretrained(
|
82 |
base_model,
|
83 |
subfolder="unet",
|
84 |
+
torch_dtype=torch.float16,
|
85 |
)
|
86 |
pipe = StableDiffusionPipeline(
|
87 |
text_encoder=text_encoder,
|
|
|
92 |
)
|
93 |
|
94 |
unet.set_attn_processor(CrossAttnProcessor)
|
95 |
+
pipe.set_clip_skip(clip_skip)
|
96 |
if torch.cuda.is_available():
|
97 |
pipe = pipe.to("cuda")
|
|
|
|
|
|
|
|
|
98 |
|
|
|
99 |
|
100 |
+
def get_model_list():
|
101 |
+
model_available = []
|
102 |
+
for model in models:
|
103 |
+
if Path(model[1]).is_dir():
|
104 |
+
model_available.append(model)
|
105 |
+
return model_available
|
106 |
+
|
107 |
+
unet_cache = {
|
108 |
+
base_name: unet
|
109 |
+
}
|
110 |
|
111 |
def get_model(name):
|
112 |
keys = [k[0] for k in models]
|
|
|
117 |
unet = UNet2DConditionModel.from_pretrained(
|
118 |
models[keys.index(name)][1],
|
119 |
subfolder="unet",
|
120 |
+
torch_dtype=torch.float16,
|
121 |
)
|
122 |
unet_cache[name] = unet
|
123 |
+
|
124 |
g_unet = unet_cache[name]
|
125 |
g_unet.set_attn_processor(None)
|
126 |
return g_unet
|
127 |
|
|
|
128 |
def error_str(error, title="Error"):
|
129 |
return (
|
130 |
f"""#### {title}
|
|
|
141 |
global te_base_weight, tokenizer
|
142 |
text_encoder.get_input_embeddings().weight.data = te_base_weight
|
143 |
tokenizer = CLIPTokenizer.from_pretrained(
|
144 |
+
base_model,
|
145 |
subfolder="tokenizer",
|
146 |
torch_dtype=torch.float16,
|
147 |
)
|
|
|
172 |
global pipe, unet, tokenizer, text_encoder
|
173 |
if seed is None or seed == 0:
|
174 |
seed = random.randint(0, 2147483647)
|
175 |
+
generator = torch.Generator("cuda").manual_seed(int(seed))
|
176 |
+
|
|
|
|
|
|
|
177 |
local_unet = get_model(model)
|
178 |
if lora_state is not None and lora_state != "":
|
179 |
load_lora_attn_procs(lora_state, local_unet, lora_scale)
|
|
|
195 |
loaded_learned_embeds = load_file(file, device="cpu")
|
196 |
loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"]
|
197 |
added_length = tokenizer.add_tokens(name)
|
198 |
+
|
199 |
assert added_length == loaded_learned_embeds.shape[0]
|
200 |
delta_weight.append(loaded_learned_embeds)
|
201 |
|
202 |
delta_weight = torch.cat(delta_weight, dim=0)
|
203 |
text_encoder.resize_token_embeddings(len(tokenizer))
|
204 |
+
text_encoder.get_input_embeddings().weight.data[
|
205 |
+
-delta_weight.shape[0] :
|
206 |
+
] = delta_weight
|
207 |
|
|
|
208 |
config = {
|
209 |
"negative_prompt": neg_prompt,
|
210 |
"num_inference_steps": int(steps),
|
|
|
282 |
|
283 |
|
284 |
def detect_text(text, state, width, height):
|
285 |
+
|
286 |
+
if text is None or text == "":
|
287 |
+
return None, None, None, None
|
288 |
|
289 |
t = text.split(",")
|
290 |
new_state = {}
|
|
|
297 |
new_state[item] = {
|
298 |
"map": state[item]["map"],
|
299 |
"weight": state[item]["weight"],
|
300 |
+
"mask_outsides": state[item]["weight"],
|
301 |
}
|
302 |
else:
|
303 |
new_state[item] = {
|
304 |
"map": None,
|
305 |
"weight": 0.5,
|
306 |
+
"mask_outsides": False
|
307 |
}
|
308 |
update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None)
|
309 |
update_img = gr.update(value=create_mixed_img("", new_state, width, height))
|
|
|
326 |
def switch_canvas(entry, state, width, height):
|
327 |
if entry == None:
|
328 |
return None, 0.5, create_mixed_img("", state, width, height)
|
329 |
+
|
330 |
return (
|
331 |
gr.update(value=None, interactive=True),
|
332 |
+
gr.update(value=state[entry]["weight"] if entry in state else 0.5),
|
333 |
+
gr.update(value=state[entry]["mask_outsides"] if entry in state else False),
|
334 |
create_mixed_img(entry, state, width, height),
|
335 |
)
|
336 |
|
337 |
|
338 |
def apply_canvas(selected, draw, state, w, h):
|
339 |
+
if selected in state:
|
340 |
+
w, h = int(w), int(h)
|
341 |
+
state[selected]["map"] = resize(draw, w, h)
|
342 |
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
|
343 |
|
344 |
|
345 |
def apply_weight(selected, weight, state):
|
346 |
+
if selected in state:
|
347 |
+
state[selected]["weight"] = weight
|
348 |
+
return state
|
349 |
+
|
350 |
+
|
351 |
+
def apply_option(selected, mask, state):
|
352 |
+
if selected in state:
|
353 |
+
state[selected]["mask_outsides"] = mask
|
354 |
return state
|
355 |
|
356 |
|
357 |
# sp2, radio, width, height, global_stats
|
358 |
+
def apply_image(image, selected, w, h, strgength, mask, state):
|
359 |
+
if selected in state:
|
360 |
+
state[selected] = {
|
361 |
+
"map": resize(image, w, h),
|
362 |
+
"weight": strgength,
|
363 |
+
"mask_outsides": mask
|
364 |
+
}
|
365 |
+
|
366 |
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
|
367 |
|
368 |
|
|
|
383 |
else:
|
384 |
ti_state[stripedname] = file.name
|
385 |
|
386 |
+
return (
|
387 |
+
ti_state,
|
388 |
+
lora_state,
|
389 |
+
gr.Text.update(f"{[key for key in ti_state.keys()]}"),
|
390 |
+
gr.Text.update(f"{lora_state}"),
|
391 |
+
gr.Files.update(value=None),
|
392 |
+
)
|
393 |
+
|
394 |
|
395 |
# [ti_state, lora_state, ti_vals, lora_vals, uploads]
|
396 |
def clean_states(ti_state, lora_state):
|
397 |
+
return (
|
398 |
+
dict(),
|
399 |
+
None,
|
400 |
+
gr.Text.update(f""),
|
401 |
+
gr.Text.update(f""),
|
402 |
+
gr.File.update(value=None),
|
403 |
+
)
|
404 |
|
405 |
|
406 |
latent_upscale_modes = {
|
|
|
604 |
with gr.Row():
|
605 |
with gr.Column(scale=90):
|
606 |
ti_vals = gr.Text(label="Loaded embeddings")
|
607 |
+
|
608 |
with gr.Row():
|
609 |
with gr.Column(scale=90):
|
610 |
lora_vals = gr.Text(label="Loaded loras")
|
611 |
|
612 |
with gr.Row():
|
613 |
+
|
614 |
uploads = gr.Files(label="Upload new embeddings/lora")
|
615 |
+
|
616 |
with gr.Column():
|
617 |
lora_scale = gr.Slider(
|
618 |
label="Lora scale",
|
|
|
623 |
)
|
624 |
btn = gr.Button(value="Upload")
|
625 |
btn_del = gr.Button(value="Reset")
|
626 |
+
|
627 |
btn.click(
|
628 |
+
add_net,
|
629 |
+
inputs=[uploads, ti_state, lora_state],
|
630 |
+
outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads],
|
631 |
)
|
632 |
btn_del.click(
|
633 |
+
clean_states,
|
634 |
+
inputs=[ti_state, lora_state],
|
635 |
+
outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads],
|
636 |
)
|
637 |
|
638 |
# error_output = gr.Markdown()
|
|
|
697 |
interactive=False,
|
698 |
)
|
699 |
|
700 |
+
mask_outsides = gr.Checkbox(
|
701 |
+
label="Mask other areas",
|
702 |
+
value=False
|
703 |
+
)
|
704 |
+
|
705 |
strength = gr.Slider(
|
706 |
label="Token strength",
|
707 |
minimum=0,
|
|
|
709 |
step=0.01,
|
710 |
value=0.5,
|
711 |
)
|
712 |
+
|
713 |
|
714 |
sk_update.click(
|
715 |
detect_text,
|
|
|
719 |
radio.change(
|
720 |
switch_canvas,
|
721 |
inputs=[radio, global_stats, width, height],
|
722 |
+
outputs=[sp, strength, mask_outsides, rendered],
|
723 |
)
|
724 |
sp.edit(
|
725 |
apply_canvas,
|
|
|
731 |
inputs=[radio, strength, global_stats],
|
732 |
outputs=[global_stats],
|
733 |
)
|
734 |
+
mask_outsides.change(
|
735 |
+
apply_option,
|
736 |
+
inputs=[radio, mask_outsides, global_stats],
|
737 |
+
outputs=[global_stats],
|
738 |
+
)
|
739 |
|
740 |
with gr.Tab("UploadFile"):
|
741 |
|
|
|
744 |
source="upload",
|
745 |
shape=(512, 512),
|
746 |
)
|
747 |
+
|
748 |
+
mask_outsides2 = gr.Checkbox(
|
749 |
+
label="Mask other areas",
|
750 |
+
value=False
|
751 |
+
)
|
752 |
|
753 |
strength2 = gr.Slider(
|
754 |
label="Token strength",
|
|
|
761 |
apply_style = gr.Button(value="Apply")
|
762 |
apply_style.click(
|
763 |
apply_image,
|
764 |
+
inputs=[sp2, radio, width, height, strength2, mask_outsides2, global_stats],
|
765 |
outputs=[global_stats, rendered],
|
766 |
)
|
767 |
|
|
|
800 |
ti_state,
|
801 |
model,
|
802 |
lora_state,
|
803 |
+
lora_scale,
|
804 |
]
|
805 |
outputs = [image_out]
|
806 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|