Spaces:
Running
on
T4
Running
on
T4
fix: syntax
Browse files
app.py
CHANGED
@@ -60,7 +60,7 @@ samplers_k_diffusion = [
|
|
60 |
# ]
|
61 |
|
62 |
start_time = time.time()
|
63 |
-
timeout =
|
64 |
|
65 |
scheduler = DDIMScheduler.from_pretrained(
|
66 |
base_model,
|
@@ -130,11 +130,12 @@ def setup_model(name, lora_state=None, lora_scale=1.0):
|
|
130 |
te_cache[model] = text_encoder
|
131 |
lora_cache[model] = LoRANetwork(text_encoder, unet)
|
132 |
|
133 |
-
if current_model != model
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
138 |
current_model = model
|
139 |
|
140 |
local_te, local_unet, local_lora, = te_cache[model], unet_cache[model], lora_cache[model]
|
@@ -158,6 +159,10 @@ def setup_model(name, lora_state=None, lora_scale=1.0):
|
|
158 |
pipe.setup_text_encoder(clip_skip, local_te)
|
159 |
return pipe
|
160 |
|
|
|
|
|
|
|
|
|
161 |
def error_str(error, title="Error"):
|
162 |
return (
|
163 |
f"""#### {title}
|
|
|
60 |
# ]
|
61 |
|
62 |
start_time = time.time()
|
63 |
+
timeout = 90
|
64 |
|
65 |
scheduler = DDIMScheduler.from_pretrained(
|
66 |
base_model,
|
|
|
130 |
te_cache[model] = text_encoder
|
131 |
lora_cache[model] = LoRANetwork(text_encoder, unet)
|
132 |
|
133 |
+
if current_model != model:
|
134 |
+
if current_model not in keep_vram:
|
135 |
+
# offload current model
|
136 |
+
unet_cache[current_model].to("cpu")
|
137 |
+
te_cache[current_model].to("cpu")
|
138 |
+
lora_cache[current_model].to("cpu")
|
139 |
current_model = model
|
140 |
|
141 |
local_te, local_unet, local_lora, = te_cache[model], unet_cache[model], lora_cache[model]
|
|
|
159 |
pipe.setup_text_encoder(clip_skip, local_te)
|
160 |
return pipe
|
161 |
|
162 |
+
# precache on huggingface
|
163 |
+
for model in models:
|
164 |
+
setup_model(model[0])
|
165 |
+
|
166 |
def error_str(error, title="Error"):
|
167 |
return (
|
168 |
f"""#### {title}
|