Spaces:
Running
Running
from typing import List | |
import gradio as gr | |
import pandas as pd | |
from src.leaderboard import get_leaderboard_df | |
from src.llm_perf import get_llm_perf_df | |
# from attention_implementations import get_attn_decode_fig, get_attn_prefill_fig | |
# from custom_kernels import get_kernel_decode_fig, get_kernel_prefill_fig | |
def create_control_panel( | |
machine: str, | |
backends: List[str], | |
hardware_provider: str, | |
hardware_type: str, | |
): | |
# controls | |
machine_value = gr.State(value=machine) | |
backends_value = gr.State(value=backends) | |
hardware_type_value = gr.State(value=hardware_type) | |
if hardware_provider == "ARM": | |
backends = ["llama_cpp"] | |
quantizations = ["Q8_0", "Q4_K_M", "Q4_0_4_4"] | |
else: | |
raise ValueError(f"Unknown hardware provider: {hardware_provider}") | |
with gr.Accordion("Control Panel", open=False, elem_id="control-panel"): | |
with gr.Row(): | |
with gr.Column(scale=2, variant="panel"): | |
memory_slider = gr.Slider( | |
label="Model Size (GB)", | |
info="ποΈ Slide to maximum Model Size", | |
minimum=0, | |
maximum=16, | |
value=16, | |
elem_id="memory-slider", | |
) | |
with gr.Column(scale=1, variant="panel"): | |
quantization_checkboxes = gr.CheckboxGroup( | |
label="Quantizations", | |
choices=quantizations, | |
value=quantizations, | |
info="βοΈ Select the quantization schemes", | |
elem_id="quantization-checkboxes", | |
elem_classes="boxed-option", | |
) | |
with gr.Row(): | |
filter_button = gr.Button( | |
value="Filter π", | |
elem_id="filter-button", | |
elem_classes="boxed-option", | |
) | |
return ( | |
filter_button, | |
machine_value, | |
backends_value, | |
hardware_type_value, | |
memory_slider, | |
quantization_checkboxes, | |
) | |
def filter_rows_fn( | |
machine, | |
backends, | |
hardware_type, | |
# inputs | |
memory, | |
quantizations, | |
# interactive | |
columns, | |
search, | |
): | |
llm_perf_df = get_llm_perf_df( | |
machine=machine, backends=backends, hardware_type=hardware_type | |
) | |
# print(attentions) | |
# print(llm_perf_df["Attention ποΈ"].unique()) | |
filtered_llm_perf_df = llm_perf_df[ | |
llm_perf_df["Model"].str.contains(search, case=False) | |
& llm_perf_df["Quantization"].isin(quantizations) | |
& llm_perf_df["Model Size (GB)"] <= memory | |
] | |
selected_filtered_llm_perf_df = select_columns_fn( | |
machine, backends, hardware_type, columns, search, filtered_llm_perf_df | |
) | |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df) | |
# filtered_bt_decode_fig = get_bt_decode_fig(filtered_df) | |
# filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df) | |
# filtered_fa2_decode_fig = get_fa2_decode_fig(filtered_df) | |
# filtered_quant_prefill_fig = get_quant_prefill_fig(filtered_df) | |
# filtered_quant_decode_fig = get_quant_decode_fig(filtered_df) | |
return [ | |
selected_filtered_llm_perf_df, | |
# filtered_bt_prefill_fig, | |
# filtered_bt_decode_fig, | |
# filtered_fa2_prefill_fig, | |
# filtered_fa2_decode_fig, | |
# filtered_quant_prefill_fig, | |
# filtered_quant_decode_fig, | |
] | |
def create_control_callback( | |
# button | |
filter_button, | |
# fixed | |
machine_value, | |
backends_value, | |
hardware_type_value, | |
# inputs | |
memory_slider, | |
quantization_checkboxes, | |
# interactive | |
columns_checkboxes, | |
search_bar, | |
# outputs | |
leaderboard_table, | |
# attn_prefill_plot, | |
# attn_decode_plot, | |
# fa2_prefill_plot, | |
# fa2_decode_plot, | |
# quant_prefill_plot, | |
# quant_decode_plot, | |
): | |
filter_button.click( | |
fn=filter_rows_fn, | |
inputs=[ | |
# fixed | |
machine_value, | |
backends_value, | |
hardware_type_value, | |
# inputs | |
memory_slider, | |
quantization_checkboxes, | |
# interactive | |
columns_checkboxes, | |
search_bar, | |
], | |
outputs=[ | |
leaderboard_table, | |
# attn_prefill_plot, | |
# attn_decode_plot, | |
# fa2_prefill_plot, | |
# fa2_decode_plot, | |
# quant_prefill_plot, | |
# quant_decode_plot, | |
], | |
) | |
def select_columns_fn( | |
machine, backends, hardware_type, columns, search, llm_perf_df=None | |
): | |
if llm_perf_df is None: | |
llm_perf_df = get_llm_perf_df( | |
machine=machine, | |
backends=backends, | |
hardware_type=hardware_type, | |
) | |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df) | |
selected_leaderboard_df = selected_leaderboard_df[ | |
selected_leaderboard_df["Model"].str.contains(search, case=False) | |
] | |
selected_leaderboard_df = selected_leaderboard_df[columns] | |
return selected_leaderboard_df | |
def create_select_callback( | |
# fixed | |
machine_value, | |
backends_value, | |
hardware_type_value, | |
# interactive | |
columns_checkboxes, | |
search_bar, | |
# outputs | |
leaderboard_table, | |
): | |
columns_checkboxes.change( | |
fn=select_columns_fn, | |
inputs=[ | |
machine_value, | |
backends_value, | |
hardware_type_value, | |
columns_checkboxes, | |
search_bar, | |
], | |
outputs=[leaderboard_table], | |
) | |
search_bar.change( | |
fn=select_columns_fn, | |
inputs=[ | |
machine_value, | |
backends_value, | |
hardware_type_value, | |
columns_checkboxes, | |
search_bar, | |
], | |
outputs=[leaderboard_table], | |
) | |