Spaces:
Runtime error
Runtime error
import os | |
import time | |
import logging | |
import gradio as gr | |
import random | |
import requests | |
import json | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
NUM_IMAGES = 1 | |
REFRESH_INTERVAL_S = 1.0 | |
MIN_IMAGE_SIZE = 768 | |
MAX_IMAGE_SIZE = 1024 | |
MAX_SEED = 100 | |
API_KEY = os.getenv('DREAMLOOK_API_KEY') | |
API_ENDPOINT = os.getenv('DREAMLOOK_API_ENDPOINT', default='https://api.dreamlook.ai') | |
DREAMLOOK_API_ENDPOINT_IMAGE_CREATE_PATH = os.getenv('DREAMLOOK_API_ENDPOINT_IMAGE_CREATE_PATH', 'image_gen') | |
DREAMLOOK_API_MODEL_CHECKPOINT = os.getenv('DREAMLOOK_API_MODEL_CHECKPOINT') | |
API_CREATE_ENDPOINT = f"{API_ENDPOINT}/{DREAMLOOK_API_ENDPOINT_IMAGE_CREATE_PATH}" | |
API_STATUS_ENDPOINT = f"{API_ENDPOINT}/jobs/image-gen/" | |
examples = [ | |
"A screen-printed poster from 1975 with bold, expressive contours features a pensive figure in red and green, set against a dark, moody background. \"Kunstmuseum Bern Sammlung im Obersteg\"", | |
"Colorful offset-printed poster from 1990 featuring animated, cartoonish characters with exaggerated expressions. Background features a gradient of blue and light orange hues. Bold, handwritten-style text. \"NOTRE ÉGLISE\" \"TOUTE UNE VIE À SOUTENIR\" \"ÉGLISE NATIONALE PROTESTANTE DE GENÈVE\"", | |
"Offset printed poster in black and white from 1983 featuring a photo of a joyful couple embracing in front of a train, with bold text above and below the image. \"J'ai un cours du soir en ville.\" \"Et chaque heure un train.\" \"Vos CFF\"", | |
"Lithographic poster from 1911, showcasing three well-dressed men in trench coats and top hats with rich, muted colors and stylized outlining, emphasizing modern men's fashion. \"PKZ\" \"Moderne Herrenbekleidung\" \"Burger & Zimmermann\" \"Luzern - Reußbrücke - Kramgasse 2\"", | |
] | |
NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, text, signature, watermark, username, blurry" | |
def infer(prompt, negative_prompt, seed, randomize_seed, guidance_scale): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
headers = { | |
"content-type": "application/json", | |
"authorization": f"Bearer {API_KEY}" | |
} | |
payload = { | |
# "base_model": "stable-diffusion-xl-v1-0" | |
"checkpoint_id": DREAMLOOK_API_MODEL_CHECKPOINT, | |
"prompt": prompt[:500], | |
"negative_prompt": NEGATIVE_PROMPT, | |
"num_samples": NUM_IMAGES, | |
"width": 704, | |
"height": 1024, | |
"num_inference_steps": 30, | |
"enable_hrf": False, | |
"scheduler_type": "dpmpp-2m-karras", | |
"seed": seed, | |
"model_type": "sdxl-v1", | |
"guidance_scale": guidance_scale, | |
} | |
logging.debug(f"Payload: {json.dumps(payload, indent=2)}") | |
response = requests.post(API_CREATE_ENDPOINT, headers=headers, data=json.dumps(payload)) | |
logging.debug(f"API response status code: {response.status_code}") | |
logging.debug(f"API response: {response.text}") | |
if response.status_code == 200: | |
job_id = response.json()['job_id'] | |
logging.info(f"Job submitted successfully. Job ID: {job_id}") | |
image_url = None | |
while True: | |
status_response = requests.get(f"{API_STATUS_ENDPOINT}{job_id}", headers=headers) | |
status_data = status_response.json() | |
state = status_data.get('state') | |
yield state, image_url | |
logging.info(f"Job state: {state}") | |
if state == 'success': | |
image_url = status_data['image_gen_results'][0]['generated_images'][0]['url'] | |
logging.info(f"Image generation succeeded. Image URL: {image_url}") | |
yield state, image_url | |
return | |
elif state == 'failed': | |
failure_reason = status_data.get('failure_reason', 'Unknown') | |
logging.error(f"Job failed with reason: {failure_reason}") | |
return f"Error: Job failed with reason: {failure_reason}" | |
time.sleep(REFRESH_INTERVAL_S) | |
else: | |
return f"Error: {response.status_code}, {response.text}" | |
with gr.Blocks() as demo: | |
gr.Markdown("# Perspectives on AI") | |
gr.Markdown( | |
"In collaboration with the Alliance Graphique Internationale [\"Perspectives on AI\"](https://agi-open.com) exhibition, [dreamlook.ai](https://dreamlook.ai) has created an image generation model trained from thousands of posters from the [Basel Poster Collection](https://www.recherche-plakatsammlungbasel.ch/objects) to enable its exploration through prompts.") | |
# gr.Markdown("Write a prompt then click on \"Generate image\"") | |
gr.Markdown("[Read more...](https://dreamlook.ai/perspectives-on-ai)") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Describe the image you want to generate, or click on a sample prompt below.", | |
placeholder="Enter your prompt", | |
max_lines=10, | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
placeholder="Enter a negative prompt (optional)", | |
visible=False | |
) | |
seed = gr.Slider( | |
label="Seed", | |
info="The random number used to create your image. Change it to explore variants.", | |
minimum=0, | |
maximum=MAX_SEED, | |
value=42, | |
visible=True | |
) | |
randomize_seed = gr.Checkbox( | |
label="Randomize Seed", | |
value=False, | |
visible=False | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
info="Defined how much your prompt is taken into account when generating the image.", | |
minimum=5.0, | |
maximum=15.0, | |
value=10.0 | |
) | |
# num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=10, maximum=30, value=20) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt], | |
label="Sample prompts", | |
) | |
run_button = gr.Button( | |
"Generate image", | |
) | |
with gr.Column(): | |
status_box = gr.Textbox(label="Status", value="", interactive=False) | |
result = gr.Image(label="Result") | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, guidance_scale], | |
outputs=[status_box, result] | |
) | |
demo.launch() | |