import os import time import logging import gradio as gr import random import requests import json logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') NUM_IMAGES = 1 REFRESH_INTERVAL_S = 1.0 MIN_IMAGE_SIZE = 768 MAX_IMAGE_SIZE = 1024 MAX_SEED = 100 API_KEY = os.getenv('DREAMLOOK_API_KEY') API_ENDPOINT = os.getenv('DREAMLOOK_API_ENDPOINT', default='https://api.dreamlook.ai') DREAMLOOK_API_ENDPOINT_IMAGE_CREATE_PATH = os.getenv('DREAMLOOK_API_ENDPOINT_IMAGE_CREATE_PATH', 'image_gen') DREAMLOOK_API_MODEL_CHECKPOINT = os.getenv('DREAMLOOK_API_MODEL_CHECKPOINT') API_CREATE_ENDPOINT = f"{API_ENDPOINT}/{DREAMLOOK_API_ENDPOINT_IMAGE_CREATE_PATH}" API_STATUS_ENDPOINT = f"{API_ENDPOINT}/jobs/image-gen/" examples = [ "A screen-printed poster from 1975 with bold, expressive contours features a pensive figure in red and green, set against a dark, moody background. \"Kunstmuseum Bern Sammlung im Obersteg\"", "Colorful offset-printed poster from 1990 featuring animated, cartoonish characters with exaggerated expressions. Background features a gradient of blue and light orange hues. Bold, handwritten-style text. \"NOTRE ÉGLISE\" \"TOUTE UNE VIE À SOUTENIR\" \"ÉGLISE NATIONALE PROTESTANTE DE GENÈVE\"", "Offset printed poster in black and white from 1983 featuring a photo of a joyful couple embracing in front of a train, with bold text above and below the image. \"J'ai un cours du soir en ville.\" \"Et chaque heure un train.\" \"Vos CFF\"", "Lithographic poster from 1911, showcasing three well-dressed men in trench coats and top hats with rich, muted colors and stylized outlining, emphasizing modern men's fashion. \"PKZ\" \"Moderne Herrenbekleidung\" \"Burger & Zimmermann\" \"Luzern - Reußbrücke - Kramgasse 2\"", ] NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, text, signature, watermark, username, blurry" def infer(prompt, negative_prompt, seed, randomize_seed, guidance_scale): if randomize_seed: seed = random.randint(0, MAX_SEED) headers = { "content-type": "application/json", "authorization": f"Bearer {API_KEY}" } payload = { # "base_model": "stable-diffusion-xl-v1-0" "checkpoint_id": DREAMLOOK_API_MODEL_CHECKPOINT, "prompt": prompt[:500], "negative_prompt": NEGATIVE_PROMPT, "num_samples": NUM_IMAGES, "width": 704, "height": 1024, "num_inference_steps": 30, "enable_hrf": False, "scheduler_type": "dpmpp-2m-karras", "seed": seed, "model_type": "sdxl-v1", "guidance_scale": guidance_scale, } logging.debug(f"Payload: {json.dumps(payload, indent=2)}") response = requests.post(API_CREATE_ENDPOINT, headers=headers, data=json.dumps(payload)) logging.debug(f"API response status code: {response.status_code}") logging.debug(f"API response: {response.text}") if response.status_code == 200: job_id = response.json()['job_id'] logging.info(f"Job submitted successfully. Job ID: {job_id}") image_url = None while True: status_response = requests.get(f"{API_STATUS_ENDPOINT}{job_id}", headers=headers) status_data = status_response.json() state = status_data.get('state') yield state, image_url logging.info(f"Job state: {state}") if state == 'success': image_url = status_data['image_gen_results'][0]['generated_images'][0]['url'] logging.info(f"Image generation succeeded. Image URL: {image_url}") yield state, image_url return elif state == 'failed': failure_reason = status_data.get('failure_reason', 'Unknown') logging.error(f"Job failed with reason: {failure_reason}") return f"Error: Job failed with reason: {failure_reason}" time.sleep(REFRESH_INTERVAL_S) else: return f"Error: {response.status_code}, {response.text}" with gr.Blocks() as demo: gr.Markdown("# Perspectives on AI") gr.Markdown( "In collaboration with the Alliance Graphique Internationale [\"Perspectives on AI\"](https://agi-open.com) exhibition, [dreamlook.ai](https://dreamlook.ai) has created an image generation model trained from thousands of posters from the [Basel Poster Collection](https://www.recherche-plakatsammlungbasel.ch/objects) to enable its exploration through prompts.") # gr.Markdown("Write a prompt then click on \"Generate image\"") gr.Markdown("[Read more...](https://dreamlook.ai/perspectives-on-ai)") with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="Prompt", info="Describe the image you want to generate, or click on a sample prompt below.", placeholder="Enter your prompt", max_lines=10, ) negative_prompt = gr.Textbox( label="Negative Prompt", placeholder="Enter a negative prompt (optional)", visible=False ) seed = gr.Slider( label="Seed", info="The random number used to create your image. Change it to explore variants.", minimum=0, maximum=MAX_SEED, value=42, visible=True ) randomize_seed = gr.Checkbox( label="Randomize Seed", value=False, visible=False ) guidance_scale = gr.Slider( label="Guidance Scale", info="Defined how much your prompt is taken into account when generating the image.", minimum=5.0, maximum=15.0, value=10.0 ) # num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=10, maximum=30, value=20) gr.Examples( examples=examples, inputs=[prompt], label="Sample prompts", ) run_button = gr.Button( "Generate image", ) with gr.Column(): status_box = gr.Textbox(label="Status", value="", interactive=False) result = gr.Image(label="Result") run_button.click( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, guidance_scale], outputs=[status_box, result] ) demo.launch()