medcon / app.py
oMarquess's picture
Update app.py
7e0e058
raw
history blame contribute delete
772 Bytes
import gradio as gr
from transformers import pipeline
# Initialize the text generation pipeline
pipe = pipeline("text-generation", model="oMarquess/trained-2k10-v4-model-merged", trust_remote_code=True)
# Define the function to generate text based on user input
def generate_text(input_text):
generated_text = pipe(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
return generated_text
# Create the Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(label="Input Text"),
outputs=gr.Textbox(label="Generated Text"),
layout="vertical",
title="Text Generation App",
description="Generate text using a pretrained model.",
)
# Start the Gradio app
if __name__ == "__main__":
iface.launch()