index.js
CHANGED
@@ -1,79 +1,46 @@
|
|
1 |
-
import {
|
2 |
-
|
3 |
-
//
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
const
|
9 |
-
const
|
10 |
-
|
11 |
-
|
12 |
-
const
|
13 |
-
|
14 |
-
//
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
}
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
percentage: true,
|
48 |
-
});
|
49 |
-
status.textContent = '';
|
50 |
-
output.forEach(renderBox);
|
51 |
-
}
|
52 |
-
|
53 |
-
// Render a bounding box and label on the image
|
54 |
-
function renderBox({ box, label }) {
|
55 |
-
const { xmax, xmin, ymax, ymin } = box;
|
56 |
-
|
57 |
-
// Generate a random color for the box
|
58 |
-
const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
|
59 |
-
|
60 |
-
// Draw the box
|
61 |
-
const boxElement = document.createElement('div');
|
62 |
-
boxElement.className = 'bounding-box';
|
63 |
-
Object.assign(boxElement.style, {
|
64 |
-
borderColor: color,
|
65 |
-
left: 100 * xmin + '%',
|
66 |
-
top: 100 * ymin + '%',
|
67 |
-
width: 100 * (xmax - xmin) + '%',
|
68 |
-
height: 100 * (ymax - ymin) + '%',
|
69 |
-
})
|
70 |
-
|
71 |
-
// Draw label
|
72 |
-
const labelElement = document.createElement('span');
|
73 |
-
labelElement.textContent = label;
|
74 |
-
labelElement.className = 'bounding-box-label';
|
75 |
-
labelElement.style.backgroundColor = color;
|
76 |
-
|
77 |
-
boxElement.appendChild(labelElement);
|
78 |
-
imageContainer.appendChild(boxElement);
|
79 |
-
}
|
|
|
1 |
+
import { AutoProcessor, VitMatteForImageMatting, RawImage, Tensor, cat } from '@xenova/transformers';
|
2 |
+
|
3 |
+
// Load processor and model
|
4 |
+
const processor = await AutoProcessor.from_pretrained('Xenova/vitmatte-small-composition-1k');
|
5 |
+
const model = await VitMatteForImageMatting.from_pretrained('Xenova/vitmatte-small-composition-1k');
|
6 |
+
|
7 |
+
// Load image and trimap
|
8 |
+
const image = await RawImage.fromURL('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/vitmatte_image.png');
|
9 |
+
const trimap = await RawImage.fromURL('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/vitmatte_trimap.png');
|
10 |
+
|
11 |
+
// Prepare image + trimap for the model
|
12 |
+
const inputs = await processor(image, trimap);
|
13 |
+
|
14 |
+
// Predict alpha matte
|
15 |
+
const { alphas } = await model(inputs);
|
16 |
+
console.log('alpha', alphas)
|
17 |
+
// Tensor {
|
18 |
+
// dims: [ 1, 1, 640, 960 ],
|
19 |
+
// type: 'float32',
|
20 |
+
// size: 614400,
|
21 |
+
// data: Float32Array(614400) [ 0.9894027709960938, 0.9970508813858032, ... ]
|
22 |
+
// }
|
23 |
+
//
|
24 |
+
// import { Tensor, cat } from '@xenova/transformers';
|
25 |
+
|
26 |
+
// Visualize predicted alpha matte
|
27 |
+
const imageTensor = new Tensor(
|
28 |
+
'uint8',
|
29 |
+
new Uint8Array(image.data),
|
30 |
+
[image.height, image.width, image.channels]
|
31 |
+
).transpose(2, 0, 1);
|
32 |
+
|
33 |
+
// Convert float (0-1) alpha matte to uint8 (0-255)
|
34 |
+
const alphaChannel = alphas
|
35 |
+
.squeeze(0)
|
36 |
+
.mul_(255)
|
37 |
+
.clamp_(0, 255)
|
38 |
+
.round_()
|
39 |
+
.to('uint8');
|
40 |
+
|
41 |
+
// Concatenate original image with predicted alpha
|
42 |
+
const imageData = cat([imageTensor, alphaChannel], 0);
|
43 |
+
|
44 |
+
// Save output image
|
45 |
+
const outputImage = RawImage.fromTensor(imageData);
|
46 |
+
outputImage.save('output.png');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|