oakerx commited on
Commit
decec8e
·
verified ·
1 Parent(s): 43b96f8
Files changed (1) hide show
  1. index.js +46 -79
index.js CHANGED
@@ -1,79 +1,46 @@
1
- import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1';
2
-
3
- // Since we will download the model from the Hugging Face Hub, we can skip the local model check
4
- env.allowLocalModels = false;
5
-
6
- // Reference the elements that we will need
7
- const status = document.getElementById('status');
8
- const fileUpload = document.getElementById('upload');
9
- const imageContainer = document.getElementById('container');
10
- const example = document.getElementById('example');
11
-
12
- const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
13
-
14
- // Create a new object detection pipeline
15
- status.textContent = 'Loading model...';
16
- const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');
17
- status.textContent = 'Ready';
18
-
19
- example.addEventListener('click', (e) => {
20
- e.preventDefault();
21
- detect(EXAMPLE_URL);
22
- });
23
-
24
- fileUpload.addEventListener('change', function (e) {
25
- const file = e.target.files[0];
26
- if (!file) {
27
- return;
28
- }
29
-
30
- const reader = new FileReader();
31
-
32
- // Set up a callback when the file is loaded
33
- reader.onload = e2 => detect(e2.target.result);
34
-
35
- reader.readAsDataURL(file);
36
- });
37
-
38
-
39
- // Detect objects in the image
40
- async function detect(img) {
41
- imageContainer.innerHTML = '';
42
- imageContainer.style.backgroundImage = `url(${img})`;
43
-
44
- status.textContent = 'Analysing...';
45
- const output = await detector(img, {
46
- threshold: 0.5,
47
- percentage: true,
48
- });
49
- status.textContent = '';
50
- output.forEach(renderBox);
51
- }
52
-
53
- // Render a bounding box and label on the image
54
- function renderBox({ box, label }) {
55
- const { xmax, xmin, ymax, ymin } = box;
56
-
57
- // Generate a random color for the box
58
- const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
59
-
60
- // Draw the box
61
- const boxElement = document.createElement('div');
62
- boxElement.className = 'bounding-box';
63
- Object.assign(boxElement.style, {
64
- borderColor: color,
65
- left: 100 * xmin + '%',
66
- top: 100 * ymin + '%',
67
- width: 100 * (xmax - xmin) + '%',
68
- height: 100 * (ymax - ymin) + '%',
69
- })
70
-
71
- // Draw label
72
- const labelElement = document.createElement('span');
73
- labelElement.textContent = label;
74
- labelElement.className = 'bounding-box-label';
75
- labelElement.style.backgroundColor = color;
76
-
77
- boxElement.appendChild(labelElement);
78
- imageContainer.appendChild(boxElement);
79
- }
 
1
+ import { AutoProcessor, VitMatteForImageMatting, RawImage, Tensor, cat } from '@xenova/transformers';
2
+
3
+ // Load processor and model
4
+ const processor = await AutoProcessor.from_pretrained('Xenova/vitmatte-small-composition-1k');
5
+ const model = await VitMatteForImageMatting.from_pretrained('Xenova/vitmatte-small-composition-1k');
6
+
7
+ // Load image and trimap
8
+ const image = await RawImage.fromURL('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/vitmatte_image.png');
9
+ const trimap = await RawImage.fromURL('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/vitmatte_trimap.png');
10
+
11
+ // Prepare image + trimap for the model
12
+ const inputs = await processor(image, trimap);
13
+
14
+ // Predict alpha matte
15
+ const { alphas } = await model(inputs);
16
+ console.log('alpha', alphas)
17
+ // Tensor {
18
+ // dims: [ 1, 1, 640, 960 ],
19
+ // type: 'float32',
20
+ // size: 614400,
21
+ // data: Float32Array(614400) [ 0.9894027709960938, 0.9970508813858032, ... ]
22
+ // }
23
+ //
24
+ // import { Tensor, cat } from '@xenova/transformers';
25
+
26
+ // Visualize predicted alpha matte
27
+ const imageTensor = new Tensor(
28
+ 'uint8',
29
+ new Uint8Array(image.data),
30
+ [image.height, image.width, image.channels]
31
+ ).transpose(2, 0, 1);
32
+
33
+ // Convert float (0-1) alpha matte to uint8 (0-255)
34
+ const alphaChannel = alphas
35
+ .squeeze(0)
36
+ .mul_(255)
37
+ .clamp_(0, 255)
38
+ .round_()
39
+ .to('uint8');
40
+
41
+ // Concatenate original image with predicted alpha
42
+ const imageData = cat([imageTensor, alphaChannel], 0);
43
+
44
+ // Save output image
45
+ const outputImage = RawImage.fromTensor(imageData);
46
+ outputImage.save('output.png');