File size: 17,990 Bytes
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
ed28876
fa9a583
ed28876
 
fa9a583
 
ed28876
 
 
 
fa9a583
ed28876
 
 
 
 
 
 
fa9a583
 
ed28876
 
 
 
 
 
 
 
fa9a583
 
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
 
 
 
ed28876
fa9a583
 
 
 
 
 
 
ed28876
fa9a583
 
ed28876
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
ed28876
 
 
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed28876
fa9a583
 
 
ed28876
 
fa9a583
 
ed28876
 
 
 
 
 
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed28876
 
 
 
 
 
 
fa9a583
 
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
ed28876
 
 
fa9a583
 
 
 
 
 
 
 
 
 
ed28876
 
 
 
 
 
 
 
fa9a583
ed28876
 
fa9a583
ed28876
 
 
 
 
 
 
 
fa9a583
 
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
 
 
ed28876
 
 
 
 
 
fa9a583
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
 
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Local_LLM_Inference_Engine_Lib.py
#########################################
# Local LLM Inference Engine Library
# This library is used to handle downloading, configuring, and launching the Local LLM Inference Engine
#   via (llama.cpp via llamafile)
#
#
####
####################
# Function List
#
# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename)
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5)
# 3. verify_checksum(file_path, expected_checksum)
# 4. cleanup_process()
# 5. signal_handler(sig, frame)
# 6. local_llm_function()
# 7. launch_in_new_terminal_windows(executable, args)
# 8. launch_in_new_terminal_linux(executable, args)
# 9. launch_in_new_terminal_mac(executable, args)
#
####################
# Import necessary libraries
#import atexit
import re
import subprocess
import sys
import time

from App_Function_Libraries.Utils import download_file
# Import 3rd-pary Libraries
#
# Import Local
from Article_Summarization_Lib import *

#
#
#######################################################################################################################
# Function Definitions
#


# Function to download the latest llamafile from the Mozilla-Ocho/llamafile repo
def download_latest_llamafile(output_filename):
    # Check if the file already exists
    print("Checking for and downloading Llamafile it it doesn't already exist...")
    if os.path.exists(output_filename):
        print("Llamafile already exists. Skipping download.")
        logging.debug(f"{output_filename} already exists. Skipping download.")
        llamafile_exists = True
    else:
        llamafile_exists = False
    # Double check if the file exists
    if llamafile_exists:
        pass
    else:
        # Establish variables for Llamafile download
        repo = "Mozilla-Ocho/llamafile"
        asset_name_prefix = "llamafile-"
        # Get the latest release information
        latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest"
        response = requests.get(latest_release_url)
        if response.status_code != 200:
            raise Exception(f"Failed to fetch latest release info: {response.status_code}")

        latest_release_data = response.json()
        tag_name = latest_release_data['tag_name']

        # Get the release details using the tag name
        release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}"
        response = requests.get(release_details_url)
        if response.status_code != 200:
            raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}")

        release_data = response.json()
        assets = release_data.get('assets', [])

        # Find the asset with the specified prefix
        asset_url = None
        for asset in assets:
            if re.match(f"{asset_name_prefix}.*", asset['name']):
                asset_url = asset['browser_download_url']
                break

        if not asset_url:
            raise Exception(f"No asset found with prefix {asset_name_prefix}")

        # Download the asset
        response = requests.get(asset_url)
        if response.status_code != 200:
            raise Exception(f"Failed to download asset: {response.status_code}")

        print("Llamafile downloaded successfully.")
        logging.debug("Main: Llamafile downloaded successfully.")

        # Save the file
        with open(output_filename, 'wb') as file:
            file.write(response.content)

        logging.debug(f"Downloaded {output_filename} from {asset_url}")
        print(f"Downloaded {output_filename} from {asset_url}")
    return output_filename


def download_llm_model(model_name, model_url, model_filename, model_hash):
    print("Checking available LLM models:")
    available_models = []
    missing_models = []

    for key, model in llm_models.items():
        if os.path.exists(model['filename']):
            print(f"{key}. {model['name']} (Available)")
            available_models.append(key)
        else:
            print(f"{key}. {model['name']} (Not downloaded)")
            missing_models.append(key)

    if not available_models:
        print("No models are currently downloaded.")
    else:
        print(f"\n{len(available_models)} model(s) are available for use.")

    action = input("Do you want to (u)se an available model, (d)ownload a new model, or (q)uit? ").lower()

    if action == 'u':
        if not available_models:
            print("No models are available. Please download a model first.")
            return None
        while True:
            choice = input(f"Enter the number of the model you want to use ({', '.join(available_models)}): ")
            if choice in available_models:
                print(f"Selected model: {llm_models[choice]['name']}")
                return llm_models[choice]['filename']
            else:
                print("Invalid choice. Please try again.")

    elif action == 'd':
        if not missing_models:
            print("All models are already downloaded. You can use an available model.")
            return None
        print("\nThe following models can be downloaded:")
        for key in missing_models:
            print(f"{key}. {llm_models[key]['name']}")
        while True:
            choice = input(f"Enter the number of the model you want to download ({', '.join(missing_models)}): ")
            if choice in missing_models:
                model = llm_models[choice]
                print(f"Downloading {model['name']}...")
                download_file(model['url'], model['filename'], expected_checksum=model['hash'])
                print(f"{model['filename']} has been downloaded successfully.")
                return model['filename']
            else:
                print("Invalid choice. Please try again.")

    elif action == 'q':
        print("Exiting model selection.")
        return None

    else:
        print("Invalid action. Exiting model selection.")
        return None






#
#
########################################
#
# LLM models information


llm_models = {
    "1": {
        "name": "Mistral-7B-Instruct-v0.2-Q8.llamafile",
        "url": "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true",
        "filename": "mistral-7b-instruct-v0.2.Q8_0.llamafile",
        "hash": "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6"
    },
    "2": {
        "name": "Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf",
        "url": "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true",
        "filename": "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf",
        "hash": "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4"
    },
    "3": {
        "name": "Phi-3-mini-128k-instruct-Q8_0.gguf",
        "url": "https://huggingface.co/gaianet/Phi-3-mini-128k-instruct-GGUF/resolve/main/Phi-3-mini-128k-instruct-Q8_0.gguf?download=true",
        "filename": "Phi-3-mini-128k-instruct-Q8_0.gguf",
        "hash": "6817b66d1c3c59ab06822e9732f0e594eea44e64cae2110906eac9d17f75d193"
    },
    "4": {
        "name": "Meta-Llama-3-8B-Instruct.Q8_0.llamafile",
        "url": "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true",
        "filename": "Meta-Llama-3-8B-Instruct.Q8_0.llamafile",
        "hash": "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37"
    }
}


process = None
# Function to close out llamafile process on script exit.
def cleanup_process():
    global process
    if process is not None:
        # FIXME - process.kill()
        #process.kill()
        logging.debug("Main: Terminated the external process")


def signal_handler(sig, frame):
    logging.info('Signal handler called with signal: %s', sig)
    cleanup_process()
    sys.exit(0)


# FIXME - Add callout to gradio UI
def local_llm_function():
    global process
    useros = os.name
    if useros == "nt":
        output_filename = "llamafile.exe"
    else:
        output_filename = "llamafile"
    print(
        "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while")
    print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...")
    print("WARNING - Hope you're comfy. Or it's already downloaded.")
    time.sleep(6)
    logging.debug("Main: Checking and downloading Llamafile from Github if needed...")
    llamafile_path = download_latest_llamafile(output_filename)
    logging.debug("Main: Llamafile downloaded successfully.")

    # FIXME - llm_choice
    input("What model do you want to use? (Press Enter to continue)")
    print("1. Mistral-7B-Instruct-v0.2-Q8.llamafile")
    print("2. Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf")
    print("3. Phi-3-mini-128k-instruct-Q8_0.gguf")
    print("4. Meta-Llama-3-8B-Instruct.Q8_0.llamafile")
    llm_choice = int(input("Enter the number of the model you want to use: "))
    if llm_choice not in [1, 2, 3, 4]:
        print("Invalid choice. Exiting.")
        return
    arguments = []
    # Launch the llamafile in an external process with the specified argument
    if llm_choice == 1:
        arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"]
    elif llm_choice == 2:
        arguments = ["--ctx-size", "8192 ", " -m", "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"]
    elif llm_choice == 3:
        arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"]
    elif llm_choice == 4:
        arguments = ["--ctx-size", "8192 ", " -m", "Meta-Llama-3-8B-Instruct.Q8_0.llamafile"] # FIXME

    try:
        logging.info("local_llm_function: Launching the LLM (llamafile) in an external terminal window...")
        if useros == "nt":
            launch_in_new_terminal_windows(llamafile_path, arguments)
        elif useros == "posix":
            launch_in_new_terminal_linux(llamafile_path, arguments)
        else:
            launch_in_new_terminal_mac(llamafile_path, arguments)
        # FIXME - pid doesn't exist in this context
        #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}")
        # Ha like this shit works
        #atexit.register(cleanup_process, process)
    except Exception as e:
        logging.error(f"Failed to launch the process: {e}")
        print(f"Failed to launch the process: {e}")


# This function is used to dl a llamafile binary + the Samantha Mistral Finetune model.
# It should only be called when the user is using the GUI to set up and interact with Llamafile.
def local_llm_gui_function(am_noob, verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value,

                 model_checked, model_value, hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value,

                 ctx_size_checked, ctx_size_value, ngl_checked, ngl_value, host_checked, host_value, port_checked,

                 port_value):
    # Identify running OS
    useros = os.name
    if useros == "nt":
        output_filename = "llamafile.exe"
    else:
        output_filename = "llamafile"

    # Build up the commands for llamafile
    built_up_args = []

    # Identify if the user wants us to do everything for them
    if am_noob:
        print("You're a noob. (lol j/k; they're good settings)")

        # Setup variables for Model download from HF
        repo = "Mozilla-Ocho/llamafile"
        asset_name_prefix = "llamafile-"
        print(
            "WARNING - Checking for existence of llamafile or HuggingFace model (GGUF type), downloading if needed...This could be a while")
        print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...")
        print("WARNING - Hope you're comfy. Or it's already downloaded.")
        time.sleep(6)
        logging.debug("Main: Checking for Llamafile and downloading  from Github if needed...\n\tAlso checking for a "
                      "local LLM model...\n\tDownloading if needed...\n\tThis could take a while...\n\tWill be the "
                      "'samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf' model...")
        llamafile_path = download_latest_llamafile(output_filename)
        logging.debug("Main: Llamafile downloaded successfully.")

        arguments = []
        # FIXME - llm_choice
        # This is the gui, we can add this as options later
        llm_choice = 2
        # Launch the llamafile in an external process with the specified argument
        if llm_choice == 1:
            arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"]
        elif llm_choice == 2:
            arguments = """--ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"""
        elif llm_choice == 3:
            arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"]
        elif llm_choice == 4:
            arguments = ["--ctx-size", "8192 ", " -m", "Meta-Llama-3-8B-Instruct.Q8_0.llamafile"]

        try:
            logging.info("Main(Local-LLM-GUI-noob): Launching the LLM (llamafile) in an external terminal window...")

            if useros == "nt":
                command = 'start cmd /k "llamafile.exe --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"'
                subprocess.Popen(command, shell=True)
            elif useros == "posix":
                command = "llamafile --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"
                subprocess.Popen(command, shell=True)
            else:
                command = "llamafile.exe --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"
                subprocess.Popen(command, shell=True)
            # FIXME - pid doesn't exist in this context
            #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}")
            # FIXME - Shit just don't work
            # atexit.register(cleanup_process, process)
        except Exception as e:
            logging.error(f"Failed to launch the process: {e}")
            print(f"Failed to launch the process: {e}")

    else:
        print("You're not a noob.")
        llamafile_path = download_latest_llamafile(output_filename)
        if verbose_checked == True:
            print("Verbose mode enabled.")
            built_up_args.append("--verbose")
        if threads_checked == True:
            print(f"Threads enabled with value: {threads_value}")
            built_up_args.append(f"--threads {threads_value}")
        if http_threads_checked == True:
            print(f"HTTP Threads enabled with value: {http_threads_value}")
            built_up_args.append(f"--http-threads {http_threads_value}")
        if model_checked == True:
            print(f"Model enabled with value: {model_value}")
            built_up_args.append(f"--model {model_value}")
        if hf_repo_checked == True:
            print(f"Huggingface repo enabled with value: {hf_repo_value}")
            built_up_args.append(f"--hf-repo {hf_repo_value}")
        if hf_file_checked == True:
            print(f"Huggingface file enabled with value: {hf_file_value}")
            built_up_args.append(f"--hf-file {hf_file_value}")
        if ctx_size_checked == True:
            print(f"Context size enabled with value: {ctx_size_value}")
            built_up_args.append(f"--ctx-size {ctx_size_value}")
        if ngl_checked == True:
            print(f"NGL enabled with value: {ngl_value}")
            built_up_args.append(f"--ngl {ngl_value}")
        if host_checked == True:
            print(f"Host enabled with value: {host_value}")
            built_up_args.append(f"--host {host_value}")
        if port_checked == True:
            print(f"Port enabled with value: {port_value}")
            built_up_args.append(f"--port {port_value}")

        # Lets go ahead and finally launch the bastard...
        try:
            logging.info("Main(Local-LLM-GUI-Main): Launching the LLM (llamafile) in an external terminal window...")
            if useros == "nt":
                launch_in_new_terminal_windows(llamafile_path, built_up_args)
            elif useros == "posix":
                launch_in_new_terminal_linux(llamafile_path, built_up_args)
            else:
                launch_in_new_terminal_mac(llamafile_path, built_up_args)
            # FIXME - pid doesn't exist in this context
            #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}")
            # FIXME
            #atexit.register(cleanup_process, process)
        except Exception as e:
            logging.error(f"Failed to launch the process: {e}")
            print(f"Failed to launch the process: {e}")


# Launch the executable in a new terminal window # FIXME - really should figure out a cleaner way of doing this...
def launch_in_new_terminal_windows(executable, args):
    command = f'start cmd /k "{executable} {" ".join(args)}"'
    subprocess.Popen(command, shell=True)


# FIXME
def launch_in_new_terminal_linux(executable, args):
    command = f'gnome-terminal -- {executable} {" ".join(args)}'
    subprocess.Popen(command, shell=True)


# FIXME
def launch_in_new_terminal_mac(executable, args):
    command = f'open -a Terminal.app {executable} {" ".join(args)}'
    subprocess.Popen(command, shell=True)