Spaces:
Sleeping
Sleeping
File size: 77,136 Bytes
05bf4dc e15e1c7 05bf4dc e15e1c7 05bf4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 |
# Summarization_General_Lib.py
#########################################
# General Summarization Library
# This library is used to perform summarization.
#
####
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg)
# 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg)
#
#
####################
# Import necessary libraries
import json
import logging
import os
import time
from typing import Optional
import requests
from requests import RequestException
from App_Function_Libraries.Audio.Audio_Transcription_Lib import convert_to_wav, speech_to_text
from App_Function_Libraries.Chunk_Lib import semantic_chunking, rolling_summarize, recursive_summarize_chunks, \
improved_chunking_process
from App_Function_Libraries.Audio.Diarization_Lib import combine_transcription_and_diarization
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm
from App_Function_Libraries.DB.DB_Manager import add_media_to_database
# Import Local
from App_Function_Libraries.Utils.Utils import load_and_log_configs, load_comprehensive_config, sanitize_filename, \
clean_youtube_url, create_download_directory, is_valid_url
from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info
#
#######################################################################################################################
# Function Definitions
#
config = load_comprehensive_config()
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
def summarize(
input_data: str,
custom_prompt_arg: Optional[str],
api_name: str,
api_key: Optional[str],
temp: Optional[float],
system_message: Optional[str]
) -> str:
try:
logging.debug(f"api_name type: {type(api_name)}, value: {api_name}")
if api_name.lower() == "openai":
return summarize_with_openai(api_key, input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "anthropic":
return summarize_with_anthropic(api_key, input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "cohere":
return summarize_with_cohere(api_key, input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "groq":
return summarize_with_groq(api_key, input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "huggingface":
return summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp)
elif api_name.lower() == "openrouter":
return summarize_with_openrouter(api_key, input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "deepseek":
return summarize_with_deepseek(api_key, input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "mistral":
return summarize_with_mistral(api_key, input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "llama.cpp":
return summarize_with_llama(input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "kobold":
return summarize_with_kobold(input_data, api_key, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "ooba":
return summarize_with_oobabooga(input_data, api_key, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "tabbyapi":
return summarize_with_tabbyapi(input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "vllm":
return summarize_with_vllm(input_data, custom_prompt_arg, None, system_message)
elif api_name.lower() == "local-llm":
return summarize_with_local_llm(input_data, custom_prompt_arg, temp, system_message)
elif api_name.lower() == "huggingface":
return summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp, )#system_message)
else:
return f"Error: Invalid API Name {api_name}"
except Exception as e:
logging.error(f"Error in summarize function: {str(e)}", exc_info=True)
return f"Error: {str(e)}"
def extract_text_from_segments(segments):
logging.debug(f"Segments received: {segments}")
logging.debug(f"Type of segments: {type(segments)}")
text = ""
if isinstance(segments, list):
for segment in segments:
logging.debug(f"Current segment: {segment}")
logging.debug(f"Type of segment: {type(segment)}")
if 'Text' in segment:
text += segment['Text'] + " "
else:
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
else:
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
return text.strip()
def summarize_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if not api_key or api_key.strip() == "":
logging.info("OpenAI: #1 API key not provided as parameter")
logging.info("OpenAI: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['openai']
if not api_key or api_key.strip() == "":
logging.error("OpenAI: #2 API key not found or is empty")
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
openai_api_key = api_key
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
# Input data handling
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
if isinstance(input_data, str):
if input_data.strip().startswith('{'):
# It's likely a JSON string
logging.debug("OpenAI: Parsing provided JSON string data for summarization")
try:
data = json.loads(input_data)
except json.JSONDecodeError as e:
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
return f"OpenAI: Error parsing JSON input: {str(e)}"
elif os.path.isfile(input_data):
logging.debug("OpenAI: Loading JSON data from file for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("OpenAI: Using provided string data for summarization")
data = input_data
else:
data = input_data
logging.debug(f"OpenAI: Processed data type: {type(data)}")
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")
# Text extraction
if isinstance(data, dict):
if 'summary' in data:
logging.debug("OpenAI: Summary already exists in the loaded data")
return data['summary']
elif 'segments' in data:
text = extract_text_from_segments(data['segments'])
else:
text = json.dumps(data) # Convert dict to string if no specific format
elif isinstance(data, list):
text = extract_text_from_segments(data)
elif isinstance(data, str):
text = data
else:
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
logging.debug(f"OpenAI: Using model: {openai_model}")
headers = {
'Authorization': f'Bearer {openai_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
logging.debug("openai: Preparing data + prompt for submittal")
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
if temp is None:
temp = 0.7
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
temp = float(temp)
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openai_prompt}
],
"max_tokens": 4096,
"temperature": temp
}
logging.debug("OpenAI: Posting request")
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("OpenAI: Summarization successful")
logging.debug(f"OpenAI: Summary (first 500 chars): {summary[:500]}...")
return summary
else:
logging.warning("OpenAI: Summary not found in the response data")
return "OpenAI: Summary not available"
else:
logging.error(f"OpenAI: Summarization failed with status code {response.status_code}")
logging.error(f"OpenAI: Error response: {response.text}")
return f"OpenAI: Failed to process summary. Status code: {response.status_code}"
except json.JSONDecodeError as e:
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
return f"OpenAI: Error decoding JSON input: {str(e)}"
except requests.RequestException as e:
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
return f"OpenAI: Error making API request: {str(e)}"
except Exception as e:
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
return f"OpenAI: Unexpected error occurred: {str(e)}"
def summarize_with_anthropic(api_key, input_data, custom_prompt_arg, temp=None, system_message=None, max_retries=3, retry_delay=5):
logging.debug("Anthropic: Summarization process starting...")
try:
logging.debug("Anthropic: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
anthropic_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
anthropic_api_key = api_key
logging.info("Anthropic: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
anthropic_api_key = loaded_config_data['api_keys'].get('anthropic')
if anthropic_api_key:
logging.info("Anthropic: Using API key from config file")
else:
logging.warning("Anthropic: No API key found in config file")
# Final check to ensure we have a valid API key
if not anthropic_api_key or not anthropic_api_key.strip():
logging.error("Anthropic: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
#FIXME
# For example: raise ValueError("No valid Anthropic API key available")
logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("AnthropicAI: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("AnthropicAI: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"AnthropicAI: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"AnthropicAI: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Anthropic: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Anthropic: Invalid input data format")
if temp is None:
temp = 0.1
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'x-api-key': anthropic_api_key,
'anthropic-version': '2023-06-01',
'Content-Type': 'application/json'
}
anthropic_prompt = custom_prompt_arg
logging.debug(f"Anthropic: Prompt is {anthropic_prompt}")
user_message = {
"role": "user",
"content": f"{text} \n\n\n\n{anthropic_prompt}"
}
model = loaded_config_data['models']['anthropic']
data = {
"model": model,
"max_tokens": 4096, # max _possible_ tokens to return
"messages": [user_message],
"stop_sequences": ["\n\nHuman:"],
"temperature": temp,
"top_k": 0,
"top_p": 1.0,
"metadata": {
"user_id": "example_user_id",
},
"stream": False,
"system": system_message
}
for attempt in range(max_retries):
try:
logging.debug("anthropic: Posting request to API")
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
# Check if the status code indicates success
if response.status_code == 200:
logging.debug("anthropic: Post submittal successful")
response_data = response.json()
try:
summary = response_data['content'][0]['text'].strip()
logging.debug("anthropic: Summarization successful")
print("Summary processed successfully.")
return summary
except (IndexError, KeyError) as e:
logging.debug("anthropic: Unexpected data in response")
print("Unexpected response format from Anthropic API:", response.text)
return None
elif response.status_code == 500: # Handle internal server error specifically
logging.debug("anthropic: Internal server error")
print("Internal server error from API. Retrying may be necessary.")
time.sleep(retry_delay)
else:
logging.debug(
f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}")
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
return None
except RequestException as e:
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
if attempt < max_retries - 1:
time.sleep(retry_delay)
else:
return f"anthropic: Network error: {str(e)}"
except FileNotFoundError as e:
logging.error(f"anthropic: File not found: {input_data}")
return f"anthropic: File not found: {input_data}"
except json.JSONDecodeError as e:
logging.error(f"anthropic: Invalid JSON format in file: {input_data}")
return f"anthropic: Invalid JSON format in file: {input_data}"
except Exception as e:
logging.error(f"anthropic: Error in processing: {str(e)}")
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
# Summarize with Cohere
def summarize_with_cohere(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Cohere: Summarization process starting...")
try:
logging.debug("Cohere: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
cohere_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
cohere_api_key = api_key
logging.info("Cohere: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
cohere_api_key = loaded_config_data['api_keys'].get('cohere')
if cohere_api_key:
logging.info("Cohere: Using API key from config file")
else:
logging.warning("Cohere: No API key found in config file")
# Final check to ensure we have a valid API key
if not cohere_api_key or not cohere_api_key.strip():
logging.error("Cohere: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# FIXME
# For example: raise ValueError("No valid Anthropic API key available")
if custom_prompt_arg is None:
custom_prompt_arg = ""
if system_message is None:
system_message = ""
logging.debug(f"Cohere: Using API Key: {cohere_api_key[:5]}...{cohere_api_key[-5:]}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Cohere: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Cohere: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"Cohere: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"Cohere: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Cohere: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
cohere_model = loaded_config_data['models']['cohere']
if temp is None:
temp = 0.3
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'accept': 'application/json',
'content-type': 'application/json',
'Authorization': f'Bearer {cohere_api_key}'
}
cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
logging.debug(f"cohere: Prompt being sent is {cohere_prompt}")
data = {
"preamble": system_message,
"message": cohere_prompt,
"model": cohere_model,
# "connectors": [{"id": "web-search"}],
"temperature": temp
}
logging.debug("cohere: Submitting request to API endpoint")
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'text' in response_data:
summary = response_data['text'].strip()
logging.debug("cohere: Summarization successful")
print("Summary processed successfully.")
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}")
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
return f"cohere: API request failed: {response.text}"
except Exception as e:
logging.error("cohere: Error in processing: %s", str(e))
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
# https://console.groq.com/docs/quickstart
def summarize_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Groq: Summarization process starting...")
try:
logging.debug("Groq: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
groq_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
groq_api_key = api_key
logging.info("Groq: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
groq_api_key = loaded_config_data['api_keys'].get('groq')
if groq_api_key:
logging.info("Groq: Using API key from config file")
else:
logging.warning("Groq: No API key found in config file")
# Final check to ensure we have a valid API key
if not groq_api_key or not groq_api_key.strip():
logging.error("Anthropic: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# FIXME
# For example: raise ValueError("No valid Anthropic API key available")
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")
# Transcript data handling & Validation
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Groq: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Groq: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"Groq: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Groq: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Groq: Invalid input data format")
# Set the model to be used
groq_model = loaded_config_data['models']['groq']
if temp is None:
temp = 0.2
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {groq_api_key}',
'Content-Type': 'application/json'
}
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
logging.debug("groq: Prompt being sent is {groq_prompt}")
data = {
"messages": [
{
"role": "system",
"content": system_message,
},
{
"role": "user",
"content": groq_prompt,
}
],
"model": groq_model,
"temperature": temp
}
logging.debug("groq: Submitting request to API endpoint")
print("groq: Submitting request to API endpoint")
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("groq: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
return f"groq: API request failed: {response.text}"
except Exception as e:
logging.error("groq: Error in processing: %s", str(e))
return f"groq: Error occurred while processing summary with groq: {str(e)}"
def summarize_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
import requests
import json
global openrouter_model, openrouter_api_key
try:
logging.debug("OpenRouter: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
openrouter_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
openrouter_api_key = api_key
logging.info("OpenRouter: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
if openrouter_api_key:
logging.info("OpenRouter: Using API key from config file")
else:
logging.warning("OpenRouter: No API key found in config file")
# Model Selection validation
logging.debug("OpenRouter: Validating model selection")
loaded_config_data = load_and_log_configs()
openrouter_model = loaded_config_data['models']['openrouter']
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")
# Final check to ensure we have a valid API key
if not openrouter_api_key or not openrouter_api_key.strip():
logging.error("OpenRouter: No valid API key available")
raise ValueError("No valid Anthropic API key available")
except Exception as e:
logging.error("OpenRouter: Error in processing: %s", str(e))
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")
logging.debug(f"OpenRouter: Using Model: {openrouter_model}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("OpenRouter: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("OpenRouter: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"OpenRouter: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("OpenRouter: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("OpenRouter: Invalid input data format")
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
if temp is None:
temp = 0.1
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
try:
logging.debug("OpenRouter: Submitting request to API endpoint")
print("OpenRouter: Submitting request to API endpoint")
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_api_key}",
},
data=json.dumps({
"model": openrouter_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openrouter_prompt}
],
"temperature": temp
})
)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("openrouter: Summarization successful")
print("openrouter: Summarization successful.")
return summary
else:
logging.error("openrouter: Expected data not found in API response.")
return "openrouter: Expected data not found in API response."
else:
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
return f"openrouter: API request failed: {response.text}"
except Exception as e:
logging.error("openrouter: Error in processing: %s", str(e))
return f"openrouter: Error occurred while processing summary with openrouter: {str(e)}"
def summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp=None):
loaded_config_data = load_and_log_configs()
global huggingface_api_key
logging.debug("HuggingFace: Summarization process starting...")
try:
logging.debug("HuggingFace: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
huggingface_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
huggingface_api_key = api_key
logging.info("HuggingFace: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
huggingface_api_key = loaded_config_data['api_keys'].get('huggingface')
if huggingface_api_key:
logging.info("HuggingFace: Using API key from config file")
else:
logging.warning("HuggingFace: No API key found in config file")
# Final check to ensure we have a valid API key
if not huggingface_api_key or not huggingface_api_key.strip():
logging.error("HuggingFace: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# FIXME
# For example: raise ValueError("No valid Anthropic API key available")
logging.debug(f"HuggingFace: Using API Key: {huggingface_api_key[:5]}...{huggingface_api_key[-5:]}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("HuggingFace: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("HuggingFace: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"HuggingFace: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"HuggingFace: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("HuggingFace: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("HuggingFace: Invalid input data format")
headers = {
"Authorization": f"Bearer {huggingface_api_key}"
}
huggingface_model = loaded_config_data['models']['huggingface']
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}"
if temp is None:
temp = 0.1
temp = float(temp)
huggingface_prompt = f"{text}\n\n\n\n{custom_prompt_arg}"
logging.debug("huggingface: Prompt being sent is {huggingface_prompt}")
data = {
"inputs": text,
"parameters": {"max_length": 512, "min_length": 100} # You can adjust max_length and min_length as needed
}
logging.debug("huggingface: Submitting request...")
response = requests.post(API_URL, headers=headers, json=data)
if response.status_code == 200:
summary = response.json()[0]['generated_text'].strip()
logging.debug("huggingface: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}")
return f"Failed to process summary, status code {response.status_code}: {response.text}"
except Exception as e:
logging.error("huggingface: Error in processing: %s", str(e))
print(f"Error occurred while processing summary with huggingface: {str(e)}")
return None
def summarize_with_deepseek(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("DeepSeek: Summarization process starting...")
try:
logging.debug("DeepSeek: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
deepseek_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
deepseek_api_key = api_key
logging.info("DeepSeek: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
if deepseek_api_key:
logging.info("DeepSeek: Using API key from config file")
else:
logging.warning("DeepSeek: No API key found in config file")
# Final check to ensure we have a valid API key
if not deepseek_api_key or not deepseek_api_key.strip():
logging.error("DeepSeek: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# FIXME
# For example: raise ValueError("No valid deepseek API key available")
logging.debug(f"DeepSeek: Using API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:]}")
# Input data handling
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("DeepSeek: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("DeepSeek: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"DeepSeek: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"DeepSeek: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("DeepSeek: Summary already exists in the loaded data")
return data['summary']
# Text extraction
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("DeepSeek: Invalid input data format")
deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat"
if temp is None:
temp = 0.1
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}")
logging.debug("openai: Preparing data + prompt for submittal")
deepseek_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
data = {
"model": deepseek_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": deepseek_prompt}
],
"stream": False,
"temperature": temp
}
logging.debug("DeepSeek: Posting request")
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("DeepSeek: Summarization successful")
return summary
else:
logging.warning("DeepSeek: Summary not found in the response data")
return "DeepSeek: Summary not available"
else:
logging.error(f"DeepSeek: Summarization failed with status code {response.status_code}")
logging.error(f"DeepSeek: Error response: {response.text}")
return f"DeepSeek: Failed to process summary. Status code: {response.status_code}"
except Exception as e:
logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True)
return f"DeepSeek: Error occurred while processing summary: {str(e)}"
def summarize_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Mistral: Summarization process starting...")
try:
logging.debug("Mistral: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
mistral_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
mistral_api_key = api_key
logging.info("Mistral: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
mistral_api_key = loaded_config_data['api_keys'].get('mistral')
if mistral_api_key:
logging.info("Mistral: Using API key from config file")
else:
logging.warning("Mistral: No API key found in config file")
# Final check to ensure we have a valid API key
if not mistral_api_key or not mistral_api_key.strip():
logging.error("Mistral: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# FIXME
# For example: raise ValueError("No valid deepseek API key available")
logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")
# Input data handling
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Mistral: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Mistral: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"Mistral: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"Mistral: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Mistral: Summary already exists in the loaded data")
return data['summary']
# Text extraction
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Mistral: Invalid input data format")
mistral_model = loaded_config_data['models']['mistral'] or "mistral-large-latest"
if temp is None:
temp = 0.2
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {mistral_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
logging.debug("Mistral: Preparing data + prompt for submittal")
mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
data = {
"model": mistral_model,
"messages": [
{"role": "system",
"content": system_message},
{"role": "user",
"content": mistral_prompt}
],
"temperature": temp,
"top_p": 1,
"max_tokens": 4096,
"stream": "false",
"safe_prompt": "false"
}
logging.debug("Mistral: Posting request")
response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("Mistral: Summarization successful")
return summary
else:
logging.warning("Mistral: Summary not found in the response data")
return "Mistral: Summary not available"
else:
logging.error(f"Mistral: Summarization failed with status code {response.status_code}")
logging.error(f"Mistral: Error response: {response.text}")
return f"Mistral: Failed to process summary. Status code: {response.status_code}"
except Exception as e:
logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
return f"Mistral: Error occurred while processing summary: {str(e)}"
#
#
#######################################################################################################################
#
#
# Gradio File Processing
# Handle multiple videos as input
def process_video_urls(url_list, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter,
download_video_flag, download_audio, rolling_summarization, detail_level, question_box,
keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences,
chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens, chunk_by_semantic,
semantic_chunk_size, semantic_chunk_overlap, recursive_summarization):
global current_progress
progress = [] # This must always be a list
status = [] # This must always be a list
if custom_prompt_input is None:
custom_prompt_input = """
You are a bulleted notes specialist. ```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.
**Bulleted Note Creation Guidelines**
**Headings**:
- Based on referenced topics, not categories like quotes or terms
- Surrounded by **bold** formatting
- Not listed as bullet points
- No space between headings and list items underneath
**Emphasis**:
- **Important terms** set in bold font
- **Text ending in a colon**: also bolded
**Review**:
- Ensure adherence to specified format
- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]"""
def update_progress(index, url, message):
progress.append(f"Processing {index + 1}/{len(url_list)}: {url}") # Append to list
status.append(message) # Append to list
return "\n".join(progress), "\n".join(status) # Return strings for display
for index, url in enumerate(url_list):
try:
logging.info(f"Starting to process video {index + 1}/{len(url_list)}: {url}")
transcription, summary, json_file_path, summary_file_path, _, _ = process_url(url=url,
num_speakers=num_speakers,
whisper_model=whisper_model,
custom_prompt_input=custom_prompt_input,
offset=offset,
api_name=api_name,
api_key=api_key,
vad_filter=vad_filter,
download_video_flag=download_video_flag,
download_audio=download_audio,
rolling_summarization=rolling_summarization,
detail_level=detail_level,
question_box=question_box,
keywords=keywords,
chunk_text_by_words=chunk_text_by_words,
max_words=max_words,
chunk_text_by_sentences=chunk_text_by_sentences,
max_sentences=max_sentences,
chunk_text_by_paragraphs=chunk_text_by_paragraphs,
max_paragraphs=max_paragraphs,
chunk_text_by_tokens=chunk_text_by_tokens,
max_tokens=max_tokens,
chunk_by_semantic=chunk_by_semantic,
semantic_chunk_size=semantic_chunk_size,
semantic_chunk_overlap=semantic_chunk_overlap,
recursive_summarization=recursive_summarization)
# Update progress and transcription properly
current_progress, current_status = update_progress(index, url, "Video processed and ingested into the database.")
logging.info(f"Successfully processed video {index + 1}/{len(url_list)}: {url}")
time.sleep(1)
except Exception as e:
logging.error(f"Error processing video {index + 1}/{len(url_list)}: {url}")
logging.error(f"Error details: {str(e)}")
current_progress, current_status = update_progress(index, url, f"Error: {str(e)}")
yield current_progress, current_status, None, None, None, None
success_message = "All videos have been transcribed, summarized, and ingested into the database successfully."
return current_progress, success_message, None, None, None, None
def perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=False):
global segments_json_path
audio_file_path = convert_to_wav(video_path, offset)
segments_json_path = audio_file_path.replace('.wav', '.segments.json')
if diarize:
diarized_json_path = audio_file_path.replace('.wav', '.diarized.json')
# Check if diarized JSON already exists
if os.path.exists(diarized_json_path):
logging.info(f"Diarized file already exists: {diarized_json_path}")
try:
with open(diarized_json_path, 'r') as file:
diarized_segments = json.load(file)
if not diarized_segments:
logging.warning(f"Diarized JSON file is empty, re-generating: {diarized_json_path}")
raise ValueError("Empty diarized JSON file")
logging.debug(f"Loaded diarized segments from {diarized_json_path}")
return audio_file_path, diarized_segments
except (json.JSONDecodeError, ValueError) as e:
logging.error(f"Failed to read or parse the diarized JSON file: {e}")
os.remove(diarized_json_path)
# If diarized file doesn't exist or was corrupted, generate new diarized transcription
logging.info(f"Generating diarized transcription for {audio_file_path}")
diarized_segments = combine_transcription_and_diarization(audio_file_path)
# Save diarized segments
with open(diarized_json_path, 'w') as file:
json.dump(diarized_segments, file, indent=2)
return audio_file_path, diarized_segments
# Non-diarized transcription (existing functionality)
if os.path.exists(segments_json_path):
logging.info(f"Segments file already exists: {segments_json_path}")
try:
with open(segments_json_path, 'r') as file:
segments = json.load(file)
if not segments:
logging.warning(f"Segments JSON file is empty, re-generating: {segments_json_path}")
raise ValueError("Empty segments JSON file")
logging.debug(f"Loaded segments from {segments_json_path}")
except (json.JSONDecodeError, ValueError) as e:
logging.error(f"Failed to read or parse the segments JSON file: {e}")
os.remove(segments_json_path)
logging.info(f"Re-generating transcription for {audio_file_path}")
audio_file, segments = re_generate_transcription(audio_file_path, whisper_model, vad_filter)
if segments is None:
return None, None
else:
audio_file, segments = re_generate_transcription(audio_file_path, whisper_model, vad_filter)
return audio_file_path, segments
def re_generate_transcription(audio_file_path, whisper_model, vad_filter):
try:
segments = speech_to_text(audio_file_path, whisper_model=whisper_model, vad_filter=vad_filter)
# Save segments to JSON
with open(segments_json_path, 'w') as file:
json.dump(segments, file, indent=2)
logging.debug(f"Transcription segments saved to {segments_json_path}")
return audio_file_path, segments
except Exception as e:
logging.error(f"Error in re-generating transcription: {str(e)}")
return None, None
def save_transcription_and_summary(transcription_text, summary_text, download_path, info_dict):
try:
video_title = sanitize_filename(info_dict.get('title', 'Untitled'))
# Save transcription
transcription_file_path = os.path.join(download_path, f"{video_title}_transcription.txt")
with open(transcription_file_path, 'w', encoding='utf-8') as f:
f.write(transcription_text)
# Save summary if available
summary_file_path = None
if summary_text:
summary_file_path = os.path.join(download_path, f"{video_title}_summary.txt")
with open(summary_file_path, 'w', encoding='utf-8') as f:
f.write(summary_text)
return transcription_file_path, summary_file_path
except Exception as e:
logging.error(f"Error in save_transcription_and_summary: {str(e)}", exc_info=True)
return None, None
def summarize_chunk(api_name, text, custom_prompt_input, api_key, temp=None, system_message=None):
logging.debug("Entered 'summarize_chunk' function")
try:
result = summarize(text, custom_prompt_input, api_name, api_key, temp, system_message)
if result is None or result.startswith("Error:"):
logging.warning(f"Summarization with {api_name} failed: {result}")
return None
logging.info(f"Summarization with {api_name} successful")
return result
except Exception as e:
logging.error(f"Error in summarize_chunk with {api_name}: {str(e)}", exc_info=True)
return None
def extract_metadata_and_content(input_data):
metadata = {}
content = ""
if isinstance(input_data, str):
if os.path.exists(input_data):
with open(input_data, 'r', encoding='utf-8') as file:
data = json.load(file)
else:
try:
data = json.loads(input_data)
except json.JSONDecodeError:
return {}, input_data
elif isinstance(input_data, dict):
data = input_data
else:
return {}, str(input_data)
# Extract metadata
metadata['title'] = data.get('title', 'No title available')
metadata['author'] = data.get('author', 'Unknown author')
# Extract content
if 'transcription' in data:
content = extract_text_from_segments(data['transcription'])
elif 'segments' in data:
content = extract_text_from_segments(data['segments'])
elif 'content' in data:
content = data['content']
else:
content = json.dumps(data)
return metadata, content
def format_input_with_metadata(metadata, content):
formatted_input = f"Title: {metadata.get('title', 'No title available')}\n"
formatted_input += f"Author: {metadata.get('author', 'Unknown author')}\n\n"
formatted_input += content
return formatted_input
def perform_summarization(api_name, input_data, custom_prompt_input, api_key, recursive_summarization=False, temp=None, system_message=None):
loaded_config_data = load_and_log_configs()
logging.info("Starting summarization process...")
if system_message is None:
system_message = """
You are a bulleted notes specialist. ```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.
**Bulleted Note Creation Guidelines**
**Headings**:
- Based on referenced topics, not categories like quotes or terms
- Surrounded by **bold** formatting
- Not listed as bullet points
- No space between headings and list items underneath
**Emphasis**:
- **Important terms** set in bold font
- **Text ending in a colon**: also bolded
**Review**:
- Ensure adherence to specified format
- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]"""
try:
logging.debug(f"Input data type: {type(input_data)}")
logging.debug(f"Input data (first 500 chars): {str(input_data)[:500]}...")
# Extract metadata and content
metadata, content = extract_metadata_and_content(input_data)
logging.debug(f"Extracted metadata: {metadata}")
logging.debug(f"Extracted content (first 500 chars): {content[:500]}...")
# Prepare a structured input for summarization
structured_input = format_input_with_metadata(metadata, content)
# Perform summarization on the structured input
if recursive_summarization:
chunk_options = {
'method': 'words', # or 'sentences', 'paragraphs', 'tokens' based on your preference
'max_size': 1000, # adjust as needed
'overlap': 100, # adjust as needed
'adaptive': False,
'multi_level': False,
'language': 'english'
}
chunks = improved_chunking_process(structured_input, chunk_options)
logging.debug(f"Chunking process completed. Number of chunks: {len(chunks)}")
logging.debug("Now performing recursive summarization on each chunk...")
logging.debug("summary = recursive_summarize_chunks")
summary = recursive_summarize_chunks([chunk['text'] for chunk in chunks],
lambda x: summarize_chunk(api_name, x, custom_prompt_input, api_key),
custom_prompt_input, temp, system_message)
else:
logging.debug("summary = summarize_chunk")
summary = summarize_chunk(api_name, structured_input, custom_prompt_input, api_key, temp, system_message)
# add some actual validation logic
if summary is not None:
logging.info(f"Summary generated using {api_name} API")
if isinstance(input_data, str) and os.path.exists(input_data):
summary_file_path = input_data.replace('.json', '_summary.txt')
with open(summary_file_path, 'w', encoding='utf-8') as file:
file.write(summary)
else:
logging.warning(f"Failed to generate summary using {api_name} API")
logging.info("Summarization completed successfully.")
return summary
except requests.exceptions.ConnectionError:
logging.error("Connection error while summarizing")
except Exception as e:
logging.error(f"Error summarizing with {api_name}: {str(e)}", exc_info=True)
return f"An error occurred during summarization: {str(e)}"
return None
def extract_text_from_input(input_data):
if isinstance(input_data, str):
try:
# Try to parse as JSON
data = json.loads(input_data)
except json.JSONDecodeError:
# If not valid JSON, treat as plain text
return input_data
elif isinstance(input_data, dict):
data = input_data
else:
return str(input_data)
# Extract relevant fields from the JSON object
text_parts = []
if 'title' in data:
text_parts.append(f"Title: {data['title']}")
if 'description' in data:
text_parts.append(f"Description: {data['description']}")
if 'transcription' in data:
if isinstance(data['transcription'], list):
transcription_text = ' '.join([segment.get('Text', '') for segment in data['transcription']])
elif isinstance(data['transcription'], str):
transcription_text = data['transcription']
else:
transcription_text = str(data['transcription'])
text_parts.append(f"Transcription: {transcription_text}")
elif 'segments' in data:
segments_text = extract_text_from_segments(data['segments'])
text_parts.append(f"Segments: {segments_text}")
return '\n\n'.join(text_parts)
def process_url(
url,
num_speakers,
whisper_model,
custom_prompt_input,
offset,
api_name,
api_key,
vad_filter,
download_video_flag,
download_audio,
rolling_summarization,
detail_level,
# It's for the asking a question about a returned prompt - needs to be removed #FIXME
question_box,
keywords,
chunk_text_by_words,
max_words,
chunk_text_by_sentences,
max_sentences,
chunk_text_by_paragraphs,
max_paragraphs,
chunk_text_by_tokens,
max_tokens,
chunk_by_semantic,
semantic_chunk_size,
semantic_chunk_overlap,
local_file_path=None,
diarize=False,
recursive_summarization=False,
temp=None,
system_message=None):
# Handle the chunk summarization options
set_chunk_txt_by_words = chunk_text_by_words
set_max_txt_chunk_words = max_words
set_chunk_txt_by_sentences = chunk_text_by_sentences
set_max_txt_chunk_sentences = max_sentences
set_chunk_txt_by_paragraphs = chunk_text_by_paragraphs
set_max_txt_chunk_paragraphs = max_paragraphs
set_chunk_txt_by_tokens = chunk_text_by_tokens
set_max_txt_chunk_tokens = max_tokens
set_chunk_txt_by_semantic = chunk_by_semantic
set_semantic_chunk_size = semantic_chunk_size
set_semantic_chunk_overlap = semantic_chunk_overlap
progress = []
success_message = "All videos processed successfully. Transcriptions and summaries have been ingested into the database."
# Validate input
if not url and not local_file_path:
return "Process_URL: No URL provided.", "No URL provided.", None, None, None, None, None, None
if isinstance(url, str):
urls = url.strip().split('\n')
if len(urls) > 1:
return process_video_urls(urls, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter,
download_video_flag, download_audio, rolling_summarization, detail_level, question_box,
keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences,
chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens, chunk_by_semantic, semantic_chunk_size, semantic_chunk_overlap, recursive_summarization)
else:
urls = [url]
if url and not is_valid_url(url):
return "Process_URL: Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None
if url:
# Clean the URL to remove playlist parameters if any
url = clean_youtube_url(url)
logging.info(f"Process_URL: Processing URL: {url}")
if api_name:
print("Process_URL: API Name received:", api_name) # Debugging line
video_file_path = None
global info_dict
# If URL/Local video file is provided
try:
info_dict, title = extract_video_info(url)
download_path = create_download_directory(title)
current_whsiper_model = whisper_model
video_path = download_video(url, download_path, info_dict, download_video_flag, current_whsiper_model)
global segments
audio_file_path, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
if diarize:
transcription_text = combine_transcription_and_diarization(audio_file_path)
else:
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
transcription_text = {'audio_file': audio_file, 'transcription': segments}
if audio_file_path is None or segments is None:
logging.error("Process_URL: Transcription failed or segments not available.")
return "Process_URL: Transcription failed.", "Transcription failed.", None, None, None, None
logging.debug(f"Process_URL: Transcription audio_file: {audio_file_path}")
logging.debug(f"Process_URL: Transcription segments: {segments}")
logging.debug(f"Process_URL: Transcription text: {transcription_text}")
# FIXME - Implement chunking calls here
# Implement chunking calls here
chunked_transcriptions = []
if chunk_text_by_words:
chunked_transcriptions = chunk_text_by_words(transcription_text['transcription'], max_words)
elif chunk_text_by_sentences:
chunked_transcriptions = chunk_text_by_sentences(transcription_text['transcription'], max_sentences)
elif chunk_text_by_paragraphs:
chunked_transcriptions = chunk_text_by_paragraphs(transcription_text['transcription'], max_paragraphs)
elif chunk_text_by_tokens:
chunked_transcriptions = chunk_text_by_tokens(transcription_text['transcription'], max_tokens)
elif chunk_by_semantic:
chunked_transcriptions = semantic_chunking(transcription_text['transcription'], semantic_chunk_size, 'tokens')
# If we did chunking, we now have the chunked transcripts in 'chunked_transcriptions'
elif rolling_summarization:
# FIXME - rolling summarization
# text = extract_text_from_segments(segments)
# summary_text = rolling_summarize_function(
# transcription_text,
# detail=detail_level,
# api_name=api_name,
# api_key=api_key,
# custom_prompt_input=custom_prompt_input,
# chunk_by_words=chunk_text_by_words,
# max_words=max_words,
# chunk_by_sentences=chunk_text_by_sentences,
# max_sentences=max_sentences,
# chunk_by_paragraphs=chunk_text_by_paragraphs,
# max_paragraphs=max_paragraphs,
# chunk_by_tokens=chunk_text_by_tokens,
# max_tokens=max_tokens
# )
pass
else:
pass
summarized_chunk_transcriptions = []
if chunk_text_by_words or chunk_text_by_sentences or chunk_text_by_paragraphs or chunk_text_by_tokens or chunk_by_semantic and api_name:
# Perform summarization based on chunks
for chunk in chunked_transcriptions:
summarized_chunks = []
if api_name == "anthropic":
summary = summarize_with_anthropic(api_key, chunk, custom_prompt_input)
elif api_name == "cohere":
summary = summarize_with_cohere(api_key, chunk, custom_prompt_input, temp, system_message)
elif api_name == "openai":
summary = summarize_with_openai(api_key, chunk, custom_prompt_input, temp, system_message)
elif api_name == "Groq":
summary = summarize_with_groq(api_key, chunk, custom_prompt_input, temp, system_message)
elif api_name == "DeepSeek":
summary = summarize_with_deepseek(api_key, chunk, custom_prompt_input, temp, system_message)
elif api_name == "OpenRouter":
summary = summarize_with_openrouter(api_key, chunk, custom_prompt_input, temp, system_message)
elif api_name == "Llama.cpp":
summary = summarize_with_llama(chunk, custom_prompt_input, temp, system_message)
elif api_name == "Kobold":
summary = summarize_with_kobold(chunk, custom_prompt_input, temp, system_message)
elif api_name == "Ooba":
summary = summarize_with_oobabooga(chunk, custom_prompt_input, temp, system_message)
elif api_name == "Tabbyapi":
summary = summarize_with_tabbyapi(chunk, custom_prompt_input, temp, system_message)
elif api_name == "VLLM":
summary = summarize_with_vllm(chunk, custom_prompt_input, temp, system_message)
summarized_chunk_transcriptions.append(summary)
# Combine chunked transcriptions into a single file
combined_transcription_text = '\n\n'.join(chunked_transcriptions)
combined_transcription_file_path = os.path.join(download_path, 'combined_transcription.txt')
with open(combined_transcription_file_path, 'w') as f:
f.write(combined_transcription_text)
# Combine summarized chunk transcriptions into a single file
combined_summary_text = '\n\n'.join(summarized_chunk_transcriptions)
combined_summary_file_path = os.path.join(download_path, 'combined_summary.txt')
with open(combined_summary_file_path, 'w') as f:
f.write(combined_summary_text)
# Handle rolling summarization
if rolling_summarization:
summary_text = rolling_summarize(
text=extract_text_from_segments(segments),
detail=detail_level,
model='gpt-4-turbo',
additional_instructions=custom_prompt_input,
summarize_recursively=recursive_summarization
)
elif api_name:
summary_text = perform_summarization(api_name, segments_json_path, custom_prompt_input, api_key,
recursive_summarization, temp=None)
else:
summary_text = 'Summary not available'
# Check to see if chunking was performed, and if so, return that instead
if chunk_text_by_words or chunk_text_by_sentences or chunk_text_by_paragraphs or chunk_text_by_tokens or chunk_by_semantic:
# Combine chunked transcriptions into a single file
# FIXME - validate this works....
json_file_path, summary_file_path = save_transcription_and_summary(combined_transcription_file_path, combined_summary_file_path, download_path, info_dict)
add_media_to_database(url, info_dict, segments, summary_text, keywords, custom_prompt_input, whisper_model)
return transcription_text, summary_text, json_file_path, summary_file_path, None, None
else:
json_file_path, summary_file_path = save_transcription_and_summary(transcription_text, summary_text, download_path, info_dict)
add_media_to_database(url, info_dict, segments, summary_text, keywords, custom_prompt_input, whisper_model)
return transcription_text, summary_text, json_file_path, summary_file_path, None, None
except Exception as e:
logging.error(f": {e}")
return str(e), 'process_url: Error processing the request.', None, None, None, None
#
#
############################################################################################################################################
|