oceansweep's picture
Upload 22 files
e15e1c7 verified
raw
history blame
28.7 kB
# Audio_Files.py
#########################################
# Audio Processing Library
# This library is used to download or load audio files from a local directory.
#
####
#
# Functions:
#
# download_audio_file(url, save_path)
# process_audio(
# process_audio_file(audio_url, audio_file, whisper_model="small.en", api_name=None, api_key=None)
#
#
#########################################
# Imports
import json
import logging
import os
import subprocess
import tempfile
import uuid
from datetime import datetime
from pathlib import Path
import requests
import yt_dlp
from App_Function_Libraries.Audio.Audio_Transcription_Lib import speech_to_text
from App_Function_Libraries.Chunk_Lib import improved_chunking_process
#
# Local Imports
from App_Function_Libraries.DB.DB_Manager import add_media_to_database, add_media_with_keywords, \
check_media_and_whisper_model
from App_Function_Libraries.Summarization.Summarization_General_Lib import save_transcription_and_summary, perform_transcription, \
perform_summarization
from App_Function_Libraries.Utils.Utils import create_download_directory, save_segments_to_json, downloaded_files, \
sanitize_filename
from App_Function_Libraries.Video_DL_Ingestion_Lib import extract_metadata
#
#######################################################################################################################
# Function Definitions
#
MAX_FILE_SIZE = 500 * 1024 * 1024
def download_audio_file(url, current_whisper_model="", use_cookies=False, cookies=None):
try:
# Check if media already exists in the database and compare whisper models
should_download, reason = check_media_and_whisper_model(
url=url,
current_whisper_model=current_whisper_model
)
if not should_download:
logging.info(f"Skipping audio download: {reason}")
return None
logging.info(f"Proceeding with audio download: {reason}")
# Set up the request headers
headers = {}
if use_cookies and cookies:
try:
cookie_dict = json.loads(cookies)
headers['Cookie'] = '; '.join([f'{k}={v}' for k, v in cookie_dict.items()])
except json.JSONDecodeError:
logging.warning("Invalid cookie format. Proceeding without cookies.")
# Make the request
response = requests.get(url, headers=headers, stream=True)
# Raise an exception for bad status codes
response.raise_for_status()
# Get the file size
file_size = int(response.headers.get('content-length', 0))
if file_size > 500 * 1024 * 1024: # 500 MB limit
raise ValueError("File size exceeds the 500MB limit.")
# Generate a unique filename
file_name = f"audio_{uuid.uuid4().hex[:8]}.mp3"
save_path = os.path.join('downloads', file_name)
# Ensure the downloads directory exists
os.makedirs('downloads', exist_ok=True)
# Download the file
with open(save_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
logging.info(f"Audio file downloaded successfully: {save_path}")
return save_path
except requests.RequestException as e:
logging.error(f"Error downloading audio file: {str(e)}")
raise
except ValueError as e:
logging.error(str(e))
raise
except Exception as e:
logging.error(f"Unexpected error downloading audio file: {str(e)}")
raise
def process_audio(
audio_file_path,
num_speakers=2,
whisper_model="small.en",
custom_prompt_input=None,
offset=0,
api_name=None,
api_key=None,
vad_filter=False,
rolling_summarization=False,
detail_level=0.01,
keywords="default,no_keyword_set",
chunk_text_by_words=False,
max_words=0,
chunk_text_by_sentences=False,
max_sentences=0,
chunk_text_by_paragraphs=False,
max_paragraphs=0,
chunk_text_by_tokens=False,
max_tokens=0
):
try:
# Perform transcription
audio_file_path, segments = perform_transcription(audio_file_path, offset, whisper_model, vad_filter)
if audio_file_path is None or segments is None:
logging.error("Process_Audio: Transcription failed or segments not available.")
return "Process_Audio: Transcription failed.", None, None, None, None, None
logging.debug(f"Process_Audio: Transcription audio_file: {audio_file_path}")
logging.debug(f"Process_Audio: Transcription segments: {segments}")
transcription_text = {'audio_file': audio_file_path, 'transcription': segments}
logging.debug(f"Process_Audio: Transcription text: {transcription_text}")
# Save segments to JSON
segments_json_path = save_segments_to_json(segments)
# Perform summarization
summary_text = None
if api_name:
if rolling_summarization is not None:
pass
# FIXME rolling summarization
# summary_text = rolling_summarize_function(
# transcription_text,
# detail=detail_level,
# api_name=api_name,
# api_key=api_key,
# custom_prompt=custom_prompt_input,
# chunk_by_words=chunk_text_by_words,
# max_words=max_words,
# chunk_by_sentences=chunk_text_by_sentences,
# max_sentences=max_sentences,
# chunk_by_paragraphs=chunk_text_by_paragraphs,
# max_paragraphs=max_paragraphs,
# chunk_by_tokens=chunk_text_by_tokens,
# max_tokens=max_tokens
# )
else:
summary_text = perform_summarization(api_name, segments_json_path, custom_prompt_input, api_key)
if summary_text is None:
logging.error("Summary text is None. Check summarization function.")
summary_file_path = None
else:
summary_text = 'Summary not available'
summary_file_path = None
# Save transcription and summary
download_path = create_download_directory("Audio_Processing")
json_file_path, summary_file_path = save_transcription_and_summary(transcription_text, summary_text,
download_path)
# Update function call to add_media_to_database so that it properly applies the title, author and file type
# Add to database
add_media_to_database(None, {'title': 'Audio File', 'author': 'Unknown'}, segments, summary_text, keywords,
custom_prompt_input, whisper_model)
return transcription_text, summary_text, json_file_path, summary_file_path, None, None
except Exception as e:
logging.error(f"Error in process_audio: {str(e)}")
return str(e), None, None, None, None, None
def process_single_audio(audio_file_path, whisper_model, api_name, api_key, keep_original,custom_keywords, source,
custom_prompt_input, chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language):
progress = []
transcription = ""
summary = ""
def update_progress(message):
progress.append(message)
return "\n".join(progress)
try:
# Check file size before processing
file_size = os.path.getsize(audio_file_path)
if file_size > MAX_FILE_SIZE:
update_progress(f"File size ({file_size / (1024 * 1024):.2f} MB) exceeds the maximum limit of {MAX_FILE_SIZE / (1024 * 1024):.2f} MB. Skipping this file.")
return "\n".join(progress), "", ""
# Perform transcription
update_progress("Starting transcription...")
segments = speech_to_text(audio_file_path, whisper_model=whisper_model)
transcription = " ".join([segment['Text'] for segment in segments])
update_progress("Audio transcribed successfully.")
# Perform summarization if API is provided
if api_name and api_key:
update_progress("Starting summarization...")
summary = perform_summarization(api_name, transcription, "Summarize the following audio transcript",
api_key)
update_progress("Audio summarized successfully.")
else:
summary = "No summary available"
# Prepare keywords
keywords = "audio,transcription"
if custom_keywords:
keywords += f",{custom_keywords}"
# Add to database
add_media_with_keywords(
url=source,
title=os.path.basename(audio_file_path),
media_type='audio',
content=transcription,
keywords=keywords,
prompt="Summarize the following audio transcript",
summary=summary,
transcription_model=whisper_model,
author="Unknown",
ingestion_date=None # This will use the current date
)
update_progress("Audio file added to database successfully.")
if not keep_original and source != "Uploaded File":
os.remove(audio_file_path)
update_progress(f"Temporary file {audio_file_path} removed.")
elif keep_original and source != "Uploaded File":
update_progress(f"Original audio file kept at: {audio_file_path}")
except Exception as e:
update_progress(f"Error processing {source}: {str(e)}")
transcription = f"Error: {str(e)}"
summary = "No summary due to error"
return "\n".join(progress), transcription, summary
def process_audio_files(audio_urls, audio_file, whisper_model, api_name, api_key, use_cookies, cookies, keep_original,
custom_keywords, custom_prompt_input, chunk_method, max_chunk_size, chunk_overlap,
use_adaptive_chunking, use_multi_level_chunking, chunk_language, diarize):
progress = []
temp_files = []
all_transcriptions = []
all_summaries = []
def update_progress(message):
progress.append(message)
return "\n".join(progress)
def cleanup_files():
for file in temp_files:
try:
if os.path.exists(file):
os.remove(file)
update_progress(f"Temporary file {file} removed.")
except Exception as e:
update_progress(f"Failed to remove temporary file {file}: {str(e)}")
def reencode_mp3(mp3_file_path):
try:
reencoded_mp3_path = mp3_file_path.replace(".mp3", "_reencoded.mp3")
subprocess.run([ffmpeg_cmd, '-i', mp3_file_path, '-codec:a', 'libmp3lame', reencoded_mp3_path], check=True)
update_progress(f"Re-encoded {mp3_file_path} to {reencoded_mp3_path}.")
return reencoded_mp3_path
except subprocess.CalledProcessError as e:
update_progress(f"Error re-encoding {mp3_file_path}: {str(e)}")
raise
def convert_mp3_to_wav(mp3_file_path):
try:
wav_file_path = mp3_file_path.replace(".mp3", ".wav")
subprocess.run([ffmpeg_cmd, '-i', mp3_file_path, wav_file_path], check=True)
update_progress(f"Converted {mp3_file_path} to {wav_file_path}.")
return wav_file_path
except subprocess.CalledProcessError as e:
update_progress(f"Error converting {mp3_file_path} to WAV: {str(e)}")
raise
try:
# Check and set the ffmpeg command
global ffmpeg_cmd
if os.name == "nt":
logging.debug("Running on Windows")
ffmpeg_cmd = os.path.join(os.getcwd(), "Bin", "ffmpeg.exe")
else:
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
# Ensure ffmpeg is accessible
if not os.path.exists(ffmpeg_cmd) and os.name == "nt":
raise FileNotFoundError(f"ffmpeg executable not found at path: {ffmpeg_cmd}")
# Define chunk options early to avoid undefined errors
chunk_options = {
'method': chunk_method,
'max_size': max_chunk_size,
'overlap': chunk_overlap,
'adaptive': use_adaptive_chunking,
'multi_level': use_multi_level_chunking,
'language': chunk_language
}
# Process multiple URLs
urls = [url.strip() for url in audio_urls.split('\n') if url.strip()]
for i, url in enumerate(urls):
update_progress(f"Processing URL {i + 1}/{len(urls)}: {url}")
# Download and process audio file
audio_file_path = download_audio_file(url, use_cookies, cookies)
if not os.path.exists(audio_file_path):
update_progress(f"Downloaded file not found: {audio_file_path}")
continue
temp_files.append(audio_file_path)
update_progress("Audio file downloaded successfully.")
# Re-encode MP3 to fix potential issues
reencoded_mp3_path = reencode_mp3(audio_file_path)
if not os.path.exists(reencoded_mp3_path):
update_progress(f"Re-encoded file not found: {reencoded_mp3_path}")
continue
temp_files.append(reencoded_mp3_path)
# Convert re-encoded MP3 to WAV
wav_file_path = convert_mp3_to_wav(reencoded_mp3_path)
if not os.path.exists(wav_file_path):
update_progress(f"Converted WAV file not found: {wav_file_path}")
continue
temp_files.append(wav_file_path)
# Initialize transcription
transcription = ""
# Transcribe audio
if diarize:
segments = speech_to_text(wav_file_path, whisper_model=whisper_model, diarize=True)
else:
segments = speech_to_text(wav_file_path, whisper_model=whisper_model)
# Handle segments nested under 'segments' key
if isinstance(segments, dict) and 'segments' in segments:
segments = segments['segments']
if isinstance(segments, list):
transcription = " ".join([segment.get('Text', '') for segment in segments])
update_progress("Audio transcribed successfully.")
else:
update_progress("Unexpected segments format received from speech_to_text.")
logging.error(f"Unexpected segments format: {segments}")
continue
if not transcription.strip():
update_progress("Transcription is empty.")
else:
# Apply chunking
chunked_text = improved_chunking_process(transcription, chunk_options)
# Summarize
if api_name:
try:
summary = perform_summarization(api_name, chunked_text, custom_prompt_input, api_key)
update_progress("Audio summarized successfully.")
except Exception as e:
logging.error(f"Error during summarization: {str(e)}")
summary = "Summary generation failed"
else:
summary = "No summary available (API not provided)"
all_transcriptions.append(transcription)
all_summaries.append(summary)
# Add to database
add_media_with_keywords(
url=url,
title=os.path.basename(wav_file_path),
media_type='audio',
content=transcription,
keywords=custom_keywords,
prompt=custom_prompt_input,
summary=summary,
transcription_model=whisper_model,
author="Unknown",
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
update_progress("Audio file processed and added to database.")
# Process uploaded file if provided
if audio_file:
if os.path.getsize(audio_file.name) > MAX_FILE_SIZE:
update_progress(
f"Uploaded file size exceeds the maximum limit of {MAX_FILE_SIZE / (1024 * 1024):.2f}MB. Skipping this file.")
else:
# Re-encode MP3 to fix potential issues
reencoded_mp3_path = reencode_mp3(audio_file.name)
if not os.path.exists(reencoded_mp3_path):
update_progress(f"Re-encoded file not found: {reencoded_mp3_path}")
return update_progress("Processing failed: Re-encoded file not found"), "", ""
temp_files.append(reencoded_mp3_path)
# Convert re-encoded MP3 to WAV
wav_file_path = convert_mp3_to_wav(reencoded_mp3_path)
if not os.path.exists(wav_file_path):
update_progress(f"Converted WAV file not found: {wav_file_path}")
return update_progress("Processing failed: Converted WAV file not found"), "", ""
temp_files.append(wav_file_path)
# Initialize transcription
transcription = ""
if diarize:
segments = speech_to_text(wav_file_path, whisper_model=whisper_model, diarize=True)
else:
segments = speech_to_text(wav_file_path, whisper_model=whisper_model)
# Handle segments nested under 'segments' key
if isinstance(segments, dict) and 'segments' in segments:
segments = segments['segments']
if isinstance(segments, list):
transcription = " ".join([segment.get('Text', '') for segment in segments])
else:
update_progress("Unexpected segments format received from speech_to_text.")
logging.error(f"Unexpected segments format: {segments}")
chunked_text = improved_chunking_process(transcription, chunk_options)
if api_name and api_key:
try:
summary = perform_summarization(api_name, chunked_text, custom_prompt_input, api_key)
update_progress("Audio summarized successfully.")
except Exception as e:
logging.error(f"Error during summarization: {str(e)}")
summary = "Summary generation failed"
else:
summary = "No summary available (API not provided)"
all_transcriptions.append(transcription)
all_summaries.append(summary)
add_media_with_keywords(
url="Uploaded File",
title=os.path.basename(wav_file_path),
media_type='audio',
content=transcription,
keywords=custom_keywords,
prompt=custom_prompt_input,
summary=summary,
transcription_model=whisper_model,
author="Unknown",
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
update_progress("Uploaded file processed and added to database.")
# Final cleanup
if not keep_original:
cleanup_files()
final_progress = update_progress("All processing complete.")
final_transcriptions = "\n\n".join(all_transcriptions)
final_summaries = "\n\n".join(all_summaries)
return final_progress, final_transcriptions, final_summaries
except Exception as e:
logging.error(f"Error processing audio files: {str(e)}")
cleanup_files()
return update_progress(f"Processing failed: {str(e)}"), "", ""
def download_youtube_audio(url):
try:
# Determine ffmpeg path based on the operating system.
ffmpeg_path = './Bin/ffmpeg.exe' if os.name == 'nt' else 'ffmpeg'
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
# Extract information about the video
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(url, download=False)
sanitized_title = sanitize_filename(info_dict['title'])
# Setup the temporary filenames
temp_video_path = Path(temp_dir) / f"{sanitized_title}_temp.mp4"
temp_audio_path = Path(temp_dir) / f"{sanitized_title}.mp3"
# Initialize yt-dlp with options for downloading
ydl_opts = {
'format': 'bestaudio[ext=m4a]/best[height<=480]', # Prefer best audio, or video up to 480p
'ffmpeg_location': ffmpeg_path,
'outtmpl': str(temp_video_path),
'noplaylist': True,
'quiet': True
}
# Execute yt-dlp to download the video/audio
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Check if the file exists
if not temp_video_path.exists():
raise FileNotFoundError(f"Expected file was not found: {temp_video_path}")
# Use ffmpeg to extract audio
ffmpeg_command = [
ffmpeg_path,
'-i', str(temp_video_path),
'-vn', # No video
'-acodec', 'libmp3lame',
'-b:a', '192k',
str(temp_audio_path)
]
subprocess.run(ffmpeg_command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
# Check if the audio file was created
if not temp_audio_path.exists():
raise FileNotFoundError(f"Expected audio file was not found: {temp_audio_path}")
# Create a persistent directory for the download if it doesn't exist
persistent_dir = Path("downloads")
persistent_dir.mkdir(exist_ok=True)
# Move the file from the temporary directory to the persistent directory
persistent_file_path = persistent_dir / f"{sanitized_title}.mp3"
os.replace(str(temp_audio_path), str(persistent_file_path))
# Add the file to the list of downloaded files
downloaded_files.append(str(persistent_file_path))
return str(persistent_file_path), f"Audio downloaded successfully: {sanitized_title}.mp3"
except Exception as e:
return None, f"Error downloading audio: {str(e)}"
def process_podcast(url, title, author, keywords, custom_prompt, api_name, api_key, whisper_model,
keep_original=False, enable_diarization=False, use_cookies=False, cookies=None,
chunk_method=None, max_chunk_size=300, chunk_overlap=0, use_adaptive_chunking=False,
use_multi_level_chunking=False, chunk_language='english'):
progress = []
error_message = ""
temp_files = []
def update_progress(message):
progress.append(message)
return "\n".join(progress)
def cleanup_files():
if not keep_original:
for file in temp_files:
try:
if os.path.exists(file):
os.remove(file)
update_progress(f"Temporary file {file} removed.")
except Exception as e:
update_progress(f"Failed to remove temporary file {file}: {str(e)}")
try:
# Download podcast
audio_file = download_audio_file(url, use_cookies, cookies)
temp_files.append(audio_file)
update_progress("Podcast downloaded successfully.")
# Extract metadata
metadata = extract_metadata(url)
title = title or metadata.get('title', 'Unknown Podcast')
author = author or metadata.get('uploader', 'Unknown Author')
# Format metadata for storage
metadata_text = f"""
Metadata:
Title: {title}
Author: {author}
Series: {metadata.get('series', 'N/A')}
Episode: {metadata.get('episode', 'N/A')}
Season: {metadata.get('season', 'N/A')}
Upload Date: {metadata.get('upload_date', 'N/A')}
Duration: {metadata.get('duration', 'N/A')} seconds
Description: {metadata.get('description', 'N/A')}
"""
# Update keywords
new_keywords = []
if metadata.get('series'):
new_keywords.append(f"series:{metadata['series']}")
if metadata.get('episode'):
new_keywords.append(f"episode:{metadata['episode']}")
if metadata.get('season'):
new_keywords.append(f"season:{metadata['season']}")
keywords = f"{keywords},{','.join(new_keywords)}" if keywords else ','.join(new_keywords)
update_progress(f"Metadata extracted - Title: {title}, Author: {author}, Keywords: {keywords}")
# Transcribe the podcast
try:
if enable_diarization:
segments = speech_to_text(audio_file, whisper_model=whisper_model, diarize=True)
else:
segments = speech_to_text(audio_file, whisper_model=whisper_model)
transcription = " ".join([segment['Text'] for segment in segments])
update_progress("Podcast transcribed successfully.")
except Exception as e:
error_message = f"Transcription failed: {str(e)}"
raise
# Apply chunking
chunk_options = {
'method': chunk_method,
'max_size': max_chunk_size,
'overlap': chunk_overlap,
'adaptive': use_adaptive_chunking,
'multi_level': use_multi_level_chunking,
'language': chunk_language
}
chunked_text = improved_chunking_process(transcription, chunk_options)
# Combine metadata and transcription
full_content = metadata_text + "\n\nTranscription:\n" + transcription
# Summarize if API is provided
summary = None
if api_name and api_key:
try:
summary = perform_summarization(api_name, chunked_text, custom_prompt, api_key)
update_progress("Podcast summarized successfully.")
except Exception as e:
error_message = f"Summarization failed: {str(e)}"
raise
# Add to database
try:
add_media_with_keywords(
url=url,
title=title,
media_type='podcast',
content=full_content,
keywords=keywords,
prompt=custom_prompt,
summary=summary or "No summary available",
transcription_model=whisper_model,
author=author,
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
update_progress("Podcast added to database successfully.")
except Exception as e:
error_message = f"Error adding podcast to database: {str(e)}"
raise
# Cleanup
cleanup_files()
return (update_progress("Processing complete."), full_content, summary or "No summary generated.",
title, author, keywords, error_message)
except Exception as e:
logging.error(f"Error processing podcast: {str(e)}")
cleanup_files()
return update_progress(f"Processing failed: {str(e)}"), "", "", "", "", "", str(e)
#
#
#######################################################################################################################