oceansweep commited on
Commit
4e1f4a3
1 Parent(s): e15e1c7

Upload 13 files

Browse files
App_Function_Libraries/Gradio_UI/Audio_ingestion_tab.py CHANGED
@@ -7,7 +7,7 @@
7
  import gradio as gr
8
  #
9
  # Local Imports
10
- from App_Function_Libraries.Audio_Files import process_audio_files
11
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
12
  from App_Function_Libraries.Gradio_UI.Chat_ui import update_user_prompt
13
  from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models
 
7
  import gradio as gr
8
  #
9
  # Local Imports
10
+ from App_Function_Libraries.Audio.Audio_Files import process_audio_files
11
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
12
  from App_Function_Libraries.Gradio_UI.Chat_ui import update_user_prompt
13
  from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models
App_Function_Libraries/Gradio_UI/Character_Interaction_tab.py ADDED
@@ -0,0 +1,797 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Character_Interaction_tab.py
2
+ # Description: This file contains the functions that are used for Character Interactions in the Gradio UI.
3
+ #
4
+ # Imports
5
+ import base64
6
+ import io
7
+ from datetime import datetime as datetime
8
+ import logging
9
+ import json
10
+ import os
11
+ from typing import List, Dict, Tuple, Union
12
+
13
+ #
14
+ # External Imports
15
+ import gradio as gr
16
+ from PIL import Image
17
+ #
18
+ # Local Imports
19
+ from App_Function_Libraries.Chat import chat, load_characters
20
+ from App_Function_Libraries.Gradio_UI.Chat_ui import chat_wrapper
21
+ from App_Function_Libraries.Gradio_UI.Writing_tab import generate_writing_feedback
22
+ #
23
+ ########################################################################################################################
24
+ #
25
+ # Single-Character chat Functions:
26
+
27
+
28
+ def chat_with_character(user_message, history, char_data, api_name_input, api_key):
29
+ if char_data is None:
30
+ return history, "Please import a character card first."
31
+
32
+ bot_message = generate_writing_feedback(user_message, char_data['name'], "Overall", api_name_input,
33
+ api_key)
34
+ history.append((user_message, bot_message))
35
+ return history, ""
36
+
37
+
38
+ def import_character_card(file):
39
+ if file is None:
40
+ logging.warning("No file provided for character card import")
41
+ return None
42
+ try:
43
+ if file.name.lower().endswith(('.png', '.webp')):
44
+ logging.info(f"Attempting to import character card from image: {file.name}")
45
+ json_data = extract_json_from_image(file)
46
+ if json_data:
47
+ logging.info("JSON data extracted from image, attempting to parse")
48
+ card_data = import_character_card_json(json_data)
49
+ if card_data:
50
+ # Save the image data
51
+ with Image.open(file) as img:
52
+ img_byte_arr = io.BytesIO()
53
+ img.save(img_byte_arr, format='PNG')
54
+ card_data['image'] = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
55
+ return card_data
56
+ else:
57
+ logging.warning("No JSON data found in the image")
58
+ else:
59
+ logging.info(f"Attempting to import character card from JSON file: {file.name}")
60
+ content = file.read().decode('utf-8')
61
+ return import_character_card_json(content)
62
+ except Exception as e:
63
+ logging.error(f"Error importing character card: {e}")
64
+ return None
65
+
66
+
67
+ def import_character_card_json(json_content):
68
+ try:
69
+ # Remove any leading/trailing whitespace
70
+ json_content = json_content.strip()
71
+
72
+ # Log the first 100 characters of the content
73
+ logging.debug(f"JSON content (first 100 chars): {json_content[:100]}...")
74
+
75
+ card_data = json.loads(json_content)
76
+ logging.debug(f"Parsed JSON data keys: {list(card_data.keys())}")
77
+ if 'spec' in card_data and card_data['spec'] == 'chara_card_v2':
78
+ logging.info("Detected V2 character card")
79
+ return card_data['data']
80
+ else:
81
+ logging.info("Assuming V1 character card")
82
+ return card_data
83
+ except json.JSONDecodeError as e:
84
+ logging.error(f"JSON decode error: {e}")
85
+ logging.error(f"Problematic JSON content: {json_content[:500]}...")
86
+ except Exception as e:
87
+ logging.error(f"Unexpected error parsing JSON: {e}")
88
+ return None
89
+
90
+
91
+ def extract_json_from_image(image_file):
92
+ logging.debug(f"Attempting to extract JSON from image: {image_file.name}")
93
+ try:
94
+ with Image.open(image_file) as img:
95
+ logging.debug("Image opened successfully")
96
+ metadata = img.info
97
+ if 'chara' in metadata:
98
+ logging.debug("Found 'chara' in image metadata")
99
+ chara_content = metadata['chara']
100
+ logging.debug(f"Content of 'chara' metadata (first 100 chars): {chara_content[:100]}...")
101
+ try:
102
+ decoded_content = base64.b64decode(chara_content).decode('utf-8')
103
+ logging.debug(f"Decoded content (first 100 chars): {decoded_content[:100]}...")
104
+ return decoded_content
105
+ except Exception as e:
106
+ logging.error(f"Error decoding base64 content: {e}")
107
+
108
+ logging.debug("'chara' not found in metadata, checking for base64 encoded data")
109
+ raw_data = img.tobytes()
110
+ possible_json = raw_data.split(b'{', 1)[-1].rsplit(b'}', 1)[0]
111
+ if possible_json:
112
+ try:
113
+ decoded = base64.b64decode(possible_json).decode('utf-8')
114
+ if decoded.startswith('{') and decoded.endswith('}'):
115
+ logging.debug("Found and decoded base64 JSON data")
116
+ return '{' + decoded + '}'
117
+ except Exception as e:
118
+ logging.error(f"Error decoding base64 data: {e}")
119
+
120
+ logging.warning("No JSON data found in the image")
121
+ except Exception as e:
122
+ logging.error(f"Error extracting JSON from image: {e}")
123
+ return None
124
+
125
+
126
+ def load_chat_history(file):
127
+ try:
128
+ content = file.read().decode('utf-8')
129
+ chat_data = json.loads(content)
130
+ return chat_data['history'], chat_data['character']
131
+ except Exception as e:
132
+ logging.error(f"Error loading chat history: {e}")
133
+ return None, None
134
+
135
+
136
+ def create_character_card_interaction_tab():
137
+ with gr.TabItem("Chat with a Character Card"):
138
+ gr.Markdown("# Chat with a Character Card")
139
+ with gr.Row():
140
+ with gr.Column(scale=1):
141
+ character_image = gr.Image(label="Character Image", type="filepath")
142
+ character_card_upload = gr.File(label="Upload Character Card")
143
+ import_card_button = gr.Button("Import Character Card")
144
+ load_characters_button = gr.Button("Load Existing Characters")
145
+ from App_Function_Libraries.Chat import get_character_names
146
+ character_dropdown = gr.Dropdown(label="Select Character", choices=get_character_names())
147
+ user_name_input = gr.Textbox(label="Your Name", placeholder="Enter your name here")
148
+ api_name_input = gr.Dropdown(
149
+ choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
150
+ "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace",
151
+ "Custom-OpenAI-API"],
152
+ value=None,
153
+ # FIXME - make it so the user cant' click `Send Message` without first setting an API + Chatbot
154
+ label="API for Interaction(Mandatory)"
155
+ )
156
+ api_key_input = gr.Textbox(label="API Key (if not set in Config_Files/config.txt)",
157
+ placeholder="Enter your API key here", type="password")
158
+ temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="Temperature")
159
+ import_chat_button = gr.Button("Import Chat History")
160
+ chat_file_upload = gr.File(label="Upload Chat History JSON", visible=False)
161
+
162
+ with gr.Column(scale=2):
163
+ chat_history = gr.Chatbot(label="Conversation", height=800)
164
+ user_input = gr.Textbox(label="Your message")
165
+ send_message_button = gr.Button("Send Message")
166
+ regenerate_button = gr.Button("Regenerate Last Message")
167
+ clear_chat_button = gr.Button("Clear Chat")
168
+ save_chat_button = gr.Button("Save This Chat")
169
+ save_status = gr.Textbox(label="Save Status", interactive=False)
170
+
171
+ character_data = gr.State(None)
172
+ user_name = gr.State("")
173
+
174
+ def import_chat_history(file, current_history, char_data):
175
+ loaded_history, char_name = load_chat_history(file)
176
+ if loaded_history is None:
177
+ return current_history, char_data, "Failed to load chat history."
178
+
179
+ # Check if the loaded chat is for the current character
180
+ if char_data and char_data.get('name') != char_name:
181
+ return current_history, char_data, f"Warning: Loaded chat is for character '{char_name}', but current character is '{char_data.get('name')}'. Chat not imported."
182
+
183
+ # If no character is selected, try to load the character from the chat
184
+ if not char_data:
185
+ new_char_data = load_character(char_name)[0]
186
+ if new_char_data:
187
+ char_data = new_char_data
188
+ else:
189
+ return current_history, char_data, f"Warning: Character '{char_name}' not found. Please select the character manually."
190
+
191
+ return loaded_history, char_data, f"Chat history for '{char_name}' imported successfully."
192
+
193
+ def import_character(file):
194
+ card_data = import_character_card(file)
195
+ if card_data:
196
+ from App_Function_Libraries.Chat import save_character
197
+ save_character(card_data)
198
+ return card_data, gr.update(choices=get_character_names())
199
+ else:
200
+ return None, gr.update()
201
+
202
+ def load_character(name):
203
+ from App_Function_Libraries.Chat import load_characters
204
+ characters = load_characters()
205
+ char_data = characters.get(name)
206
+ if char_data:
207
+ first_message = char_data.get('first_mes', "Hello! I'm ready to chat.")
208
+ return char_data, [(None, first_message)] if first_message else [], None
209
+ return None, [], None
210
+
211
+ def load_character_image(name):
212
+ from App_Function_Libraries.Chat import load_characters
213
+ characters = load_characters()
214
+ char_data = characters.get(name)
215
+ if char_data and 'image_path' in char_data:
216
+ image_path = char_data['image_path']
217
+ if os.path.exists(image_path):
218
+ return image_path
219
+ else:
220
+ logging.warning(f"Image file not found: {image_path}")
221
+ return None
222
+
223
+ def load_character_and_image(name):
224
+ char_data, chat_history, _ = load_character(name)
225
+ image_path = load_character_image(name)
226
+ logging.debug(f"Character: {name}")
227
+ logging.debug(f"Character data: {char_data}")
228
+ logging.debug(f"Image path: {image_path}")
229
+ return char_data, chat_history, image_path
230
+
231
+ def character_chat_wrapper(message, history, char_data, api_endpoint, api_key, temperature, user_name):
232
+ logging.debug("Entered character_chat_wrapper")
233
+ if char_data is None:
234
+ return "Please select a character first.", history
235
+
236
+ if not user_name:
237
+ user_name = "User"
238
+
239
+ char_name = char_data.get('name', 'AI Assistant')
240
+
241
+ # Prepare the character's background information
242
+ char_background = f"""
243
+ Name: {char_name}
244
+ Description: {char_data.get('description', 'N/A')}
245
+ Personality: {char_data.get('personality', 'N/A')}
246
+ Scenario: {char_data.get('scenario', 'N/A')}
247
+ """
248
+
249
+ # Prepare the system prompt for character impersonation
250
+ system_message = f"""You are roleplaying as {char_name}, the character described below. Respond to the user's messages in character, maintaining the personality and background provided. Do not break character or refer to yourself as an AI. Always refer to yourself as "{char_name}" and refer to the user as "{user_name}".
251
+
252
+ {char_background}
253
+
254
+ Additional instructions: {char_data.get('post_history_instructions', '')}
255
+ """
256
+
257
+ # Prepare media_content and selected_parts
258
+ media_content = {
259
+ 'id': char_name,
260
+ 'title': char_name,
261
+ 'content': char_background,
262
+ 'description': char_data.get('description', ''),
263
+ 'personality': char_data.get('personality', ''),
264
+ 'scenario': char_data.get('scenario', '')
265
+ }
266
+ selected_parts = ['description', 'personality', 'scenario']
267
+
268
+ prompt = char_data.get('post_history_instructions', '')
269
+
270
+ # Prepare the input for the chat function
271
+ if not history:
272
+ full_message = f"{prompt}\n\n{user_name}: {message}" if prompt else f"{user_name}: {message}"
273
+ else:
274
+ full_message = f"{user_name}: {message}"
275
+
276
+ # Call the chat function
277
+ bot_message = chat(
278
+ full_message,
279
+ history,
280
+ media_content,
281
+ selected_parts,
282
+ api_endpoint,
283
+ api_key,
284
+ prompt,
285
+ temperature,
286
+ system_message
287
+ )
288
+
289
+ # Update history
290
+ history.append((message, bot_message))
291
+ return history
292
+
293
+ def save_chat_history(history, character_name):
294
+ # Create the Saved_Chats folder if it doesn't exist
295
+ save_directory = "Saved_Chats"
296
+ os.makedirs(save_directory, exist_ok=True)
297
+
298
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
299
+ filename = f"chat_history_{character_name}_{timestamp}.json"
300
+ filepath = os.path.join(save_directory, filename)
301
+
302
+ chat_data = {
303
+ "character": character_name,
304
+ "timestamp": timestamp,
305
+ "history": history
306
+ }
307
+
308
+ try:
309
+ with open(filepath, 'w', encoding='utf-8') as f:
310
+ json.dump(chat_data, f, ensure_ascii=False, indent=2)
311
+ return filepath
312
+ except Exception as e:
313
+ return f"Error saving chat: {str(e)}"
314
+
315
+ def save_current_chat(history, char_data):
316
+ if not char_data or not history:
317
+ return "No chat to save or character not selected."
318
+
319
+ character_name = char_data.get('name', 'Unknown')
320
+ result = save_chat_history(history, character_name)
321
+ if result.startswith("Error"):
322
+ return result
323
+ return f"Chat saved successfully as {result}"
324
+
325
+ def regenerate_last_message(history, char_data, api_name, api_key, temperature, user_name):
326
+ if not history:
327
+ return history
328
+
329
+ last_user_message = history[-1][0]
330
+ new_history = history[:-1]
331
+
332
+ return character_chat_wrapper(last_user_message, new_history, char_data, api_name, api_key, temperature,
333
+ user_name)
334
+
335
+ import_chat_button.click(
336
+ fn=lambda: gr.update(visible=True),
337
+ outputs=chat_file_upload
338
+ )
339
+
340
+ chat_file_upload.change(
341
+ fn=import_chat_history,
342
+ inputs=[chat_file_upload, chat_history, character_data],
343
+ outputs=[chat_history, character_data, save_status]
344
+ )
345
+
346
+ def update_character_info(name):
347
+ from App_Function_Libraries.Chat import load_characters
348
+ characters = load_characters()
349
+ char_data = characters.get(name)
350
+
351
+ image_path = char_data.get('image_path') if char_data else None
352
+
353
+ logging.debug(f"Character: {name}")
354
+ logging.debug(f"Character data: {char_data}")
355
+ logging.debug(f"Image path: {image_path}")
356
+
357
+ if image_path:
358
+ if os.path.exists(image_path):
359
+ logging.debug(f"Image file exists at {image_path}")
360
+ if os.access(image_path, os.R_OK):
361
+ logging.debug(f"Image file is readable")
362
+ else:
363
+ logging.warning(f"Image file is not readable: {image_path}")
364
+ image_path = None
365
+ else:
366
+ logging.warning(f"Image file does not exist: {image_path}")
367
+ image_path = None
368
+ else:
369
+ logging.warning("No image path provided for the character")
370
+
371
+ return char_data, None, image_path # Return None for chat_history
372
+
373
+ def on_character_select(name):
374
+ logging.debug(f"Character selected: {name}")
375
+ return update_character_info_with_error_handling(name)
376
+
377
+ def clear_chat_history():
378
+ return [], None # Return empty list for chat_history and None for character_data
379
+
380
+ def update_character_info_with_error_handling(name):
381
+ logging.debug(f"Entering update_character_info_with_error_handling for character: {name}")
382
+ try:
383
+ char_data, _, image_path = update_character_info(name)
384
+ logging.debug(f"Retrieved data: char_data={bool(char_data)}, image_path={image_path}")
385
+
386
+ if char_data:
387
+ first_message = char_data.get('first_mes', "Hello! I'm ready to chat.")
388
+ chat_history = [(None, first_message)] if first_message else []
389
+ else:
390
+ chat_history = []
391
+
392
+ logging.debug(f"Created chat_history with length: {len(chat_history)}")
393
+
394
+ if image_path and os.path.exists(image_path):
395
+ logging.debug(f"Image file exists at {image_path}")
396
+ return char_data, chat_history, image_path
397
+ else:
398
+ logging.warning(f"Image not found or invalid path: {image_path}")
399
+ return char_data, chat_history, None
400
+ except Exception as e:
401
+ logging.error(f"Error updating character info: {str(e)}", exc_info=True)
402
+ return None, [], None
403
+ finally:
404
+ logging.debug("Exiting update_character_info_with_error_handling")
405
+
406
+ import_card_button.click(
407
+ fn=import_character,
408
+ inputs=[character_card_upload],
409
+ outputs=[character_data, character_dropdown]
410
+ )
411
+
412
+ load_characters_button.click(
413
+ fn=lambda: gr.update(choices=get_character_names()),
414
+ outputs=character_dropdown
415
+ )
416
+
417
+ clear_chat_button.click(
418
+ fn=clear_chat_history,
419
+ inputs=[],
420
+ outputs=[chat_history, character_data]
421
+ )
422
+
423
+ character_dropdown.change(
424
+ fn=on_character_select,
425
+ inputs=[character_dropdown],
426
+ outputs=[character_data, chat_history, character_image]
427
+ )
428
+
429
+ send_message_button.click(
430
+ fn=character_chat_wrapper,
431
+ inputs=[user_input, chat_history, character_data, api_name_input, api_key_input, temperature_slider,
432
+ user_name_input],
433
+ outputs=[chat_history]
434
+ ).then(lambda: "", outputs=user_input)
435
+
436
+ regenerate_button.click(
437
+ fn=regenerate_last_message,
438
+ inputs=[chat_history, character_data, api_name_input, api_key_input, temperature_slider, user_name_input],
439
+ outputs=[chat_history]
440
+ )
441
+
442
+ user_name_input.change(
443
+ fn=lambda name: name,
444
+ inputs=[user_name_input],
445
+ outputs=[user_name]
446
+ )
447
+
448
+ save_chat_button.click(
449
+ fn=save_current_chat,
450
+ inputs=[chat_history, character_data],
451
+ outputs=[save_status]
452
+ )
453
+
454
+ return character_data, chat_history, user_input, user_name, character_image
455
+
456
+
457
+ #
458
+ # End of Character chat tab
459
+ ######################################################################################################################
460
+ #
461
+ # Multi-Character Chat Interface
462
+
463
+ def character_interaction_setup():
464
+ characters = load_characters()
465
+ return characters, [], None, None
466
+
467
+
468
+ def extract_character_response(response: Union[str, Tuple]) -> str:
469
+ if isinstance(response, tuple):
470
+ # If it's a tuple, try to extract the first string element
471
+ for item in response:
472
+ if isinstance(item, str):
473
+ return item.strip()
474
+ # If no string found, return a default message
475
+ return "I'm not sure how to respond."
476
+ elif isinstance(response, str):
477
+ # If it's already a string, just return it
478
+ return response.strip()
479
+ else:
480
+ # For any other type, return a default message
481
+ return "I'm having trouble forming a response."
482
+
483
+ # def process_character_response(response: str) -> str:
484
+ # # Remove any leading explanatory text before the first '---'
485
+ # parts = response.split('---')
486
+ # if len(parts) > 1:
487
+ # return '---' + '---'.join(parts[1:])
488
+ # return response.strip()
489
+ def process_character_response(response: Union[str, Tuple]) -> str:
490
+ if isinstance(response, tuple):
491
+ response = ' '.join(str(item) for item in response if isinstance(item, str))
492
+
493
+ if isinstance(response, str):
494
+ # Remove any leading explanatory text before the first '---'
495
+ parts = response.split('---')
496
+ if len(parts) > 1:
497
+ return '---' + '---'.join(parts[1:])
498
+ return response.strip()
499
+ else:
500
+ return "I'm having trouble forming a response."
501
+
502
+ def character_turn(characters: Dict, conversation: List[Tuple[str, str]],
503
+ current_character: str, other_characters: List[str],
504
+ api_endpoint: str, api_key: str, temperature: float,
505
+ scenario: str = "") -> Tuple[List[Tuple[str, str]], str]:
506
+ if not current_character or current_character not in characters:
507
+ return conversation, current_character
508
+
509
+ if not conversation and scenario:
510
+ conversation.append(("Scenario", scenario))
511
+
512
+ current_char = characters[current_character]
513
+ other_chars = [characters[char] for char in other_characters if char in characters and char != current_character]
514
+
515
+ prompt = f"{current_char['name']}'s personality: {current_char['personality']}\n"
516
+ for char in other_chars:
517
+ prompt += f"{char['name']}'s personality: {char['personality']}\n"
518
+ prompt += "Conversation so far:\n" + "\n".join([f"{sender}: {message}" for sender, message in conversation])
519
+ prompt += f"\n\nHow would {current_char['name']} respond?"
520
+
521
+ try:
522
+ response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "")
523
+ processed_response = process_character_response(response)
524
+ conversation.append((current_char['name'], processed_response))
525
+ except Exception as e:
526
+ error_message = f"Error generating response: {str(e)}"
527
+ conversation.append((current_char['name'], error_message))
528
+
529
+ return conversation, current_character
530
+
531
+
532
+ def character_interaction(character1: str, character2: str, api_endpoint: str, api_key: str,
533
+ num_turns: int, scenario: str, temperature: float,
534
+ user_interjection: str = "") -> List[str]:
535
+ characters = load_characters()
536
+ char1 = characters[character1]
537
+ char2 = characters[character2]
538
+ conversation = []
539
+ current_speaker = char1
540
+ other_speaker = char2
541
+
542
+ # Add scenario to the conversation start
543
+ if scenario:
544
+ conversation.append(f"Scenario: {scenario}")
545
+
546
+ for turn in range(num_turns):
547
+ # Construct the prompt for the current speaker
548
+ prompt = f"{current_speaker['name']}'s personality: {current_speaker['personality']}\n"
549
+ prompt += f"{other_speaker['name']}'s personality: {other_speaker['personality']}\n"
550
+ prompt += f"Conversation so far:\n" + "\n".join(
551
+ [msg if isinstance(msg, str) else f"{msg[0]}: {msg[1]}" for msg in conversation])
552
+
553
+ # Add user interjection if provided
554
+ if user_interjection and turn == num_turns // 2:
555
+ prompt += f"\n\nUser interjection: {user_interjection}\n"
556
+ conversation.append(f"User: {user_interjection}")
557
+
558
+ prompt += f"\n\nHow would {current_speaker['name']} respond?"
559
+
560
+ # FIXME - figure out why the double print is happening
561
+ # Get response from the LLM
562
+ response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "")
563
+
564
+ # Add the response to the conversation
565
+ conversation.append((current_speaker['name'], response))
566
+
567
+ # Switch speakers
568
+ current_speaker, other_speaker = other_speaker, current_speaker
569
+
570
+ # Convert the conversation to a list of strings for output
571
+ return [f"{msg[0]}: {msg[1]}" if isinstance(msg, tuple) else msg for msg in conversation]
572
+
573
+
574
+ def create_multiple_character_chat_tab():
575
+ with gr.TabItem("Multi-Character Chat"):
576
+ characters, conversation, current_character, other_character = character_interaction_setup()
577
+
578
+ with gr.Blocks() as character_interaction:
579
+ gr.Markdown("# Multi-Character Chat")
580
+
581
+ with gr.Row():
582
+ num_characters = gr.Dropdown(label="Number of Characters", choices=["2", "3", "4"], value="2")
583
+ character_selectors = [gr.Dropdown(label=f"Character {i + 1}", choices=list(characters.keys())) for i in
584
+ range(4)]
585
+
586
+ api_endpoint = gr.Dropdown(label="API Endpoint",
587
+ choices=["OpenAI", "Anthropic", "Local-LLM", "Cohere", "Groq", "DeepSeek",
588
+ "Mistral", "OpenRouter"])
589
+ api_key = gr.Textbox(label="API Key (if required)", type="password")
590
+ temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)
591
+ scenario = gr.Textbox(label="Scenario (optional)", lines=3)
592
+
593
+ chat_display = gr.Chatbot(label="Character Interaction")
594
+ current_index = gr.State(0)
595
+
596
+ next_turn_btn = gr.Button("Next Turn")
597
+ narrator_input = gr.Textbox(label="Narrator Input", placeholder="Add a narration or description...")
598
+ add_narration_btn = gr.Button("Add Narration")
599
+ error_box = gr.Textbox(label="Error Messages", visible=False)
600
+ reset_btn = gr.Button("Reset Conversation")
601
+
602
+ def update_character_selectors(num):
603
+ return [gr.update(visible=True) if i < int(num) else gr.update(visible=False) for i in range(4)]
604
+
605
+ num_characters.change(
606
+ update_character_selectors,
607
+ inputs=[num_characters],
608
+ outputs=character_selectors
609
+ )
610
+
611
+ def reset_conversation():
612
+ return [], 0, gr.update(value=""), gr.update(value="")
613
+
614
+ def take_turn(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature,
615
+ scenario):
616
+ char_selectors = [char for char in [char1, char2, char3, char4] if char] # Remove None values
617
+ num_chars = len(char_selectors)
618
+
619
+ if num_chars == 0:
620
+ return conversation, current_index # No characters selected, return without changes
621
+
622
+ if not conversation:
623
+ conversation = []
624
+ if scenario:
625
+ conversation.append(("Scenario", scenario))
626
+
627
+ current_character = char_selectors[current_index % num_chars]
628
+ next_index = (current_index + 1) % num_chars
629
+
630
+ prompt = f"Character speaking: {current_character}\nOther characters: {', '.join(char for char in char_selectors if char != current_character)}\n"
631
+ prompt += "Generate the next part of the conversation, including character dialogues and actions. Characters should speak in first person."
632
+
633
+ response, new_conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "",
634
+ None, False, temperature, "")
635
+
636
+ # Format the response
637
+ formatted_lines = []
638
+ for line in response.split('\n'):
639
+ if ':' in line:
640
+ speaker, text = line.split(':', 1)
641
+ formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}")
642
+ else:
643
+ formatted_lines.append(line)
644
+
645
+ formatted_response = '\n'.join(formatted_lines)
646
+
647
+ # Update the last message in the conversation with the formatted response
648
+ if new_conversation:
649
+ new_conversation[-1] = (new_conversation[-1][0], formatted_response)
650
+ else:
651
+ new_conversation.append((current_character, formatted_response))
652
+
653
+ return new_conversation, next_index
654
+
655
+ def add_narration(narration, conversation):
656
+ if narration:
657
+ conversation.append(("Narrator", narration))
658
+ return conversation, ""
659
+
660
+ def take_turn_with_error_handling(conversation, current_index, char1, char2, char3, char4, api_endpoint,
661
+ api_key, temperature, scenario):
662
+ try:
663
+ new_conversation, next_index = take_turn(conversation, current_index, char1, char2, char3, char4,
664
+ api_endpoint, api_key, temperature, scenario)
665
+ return new_conversation, next_index, gr.update(visible=False, value="")
666
+ except Exception as e:
667
+ error_message = f"An error occurred: {str(e)}"
668
+ return conversation, current_index, gr.update(visible=True, value=error_message)
669
+
670
+ next_turn_btn.click(
671
+ take_turn_with_error_handling,
672
+ inputs=[chat_display, current_index] + character_selectors + [api_endpoint, api_key, temperature,
673
+ scenario],
674
+ outputs=[chat_display, current_index, error_box]
675
+ )
676
+
677
+ add_narration_btn.click(
678
+ add_narration,
679
+ inputs=[narrator_input, chat_display],
680
+ outputs=[chat_display, narrator_input]
681
+ )
682
+
683
+ reset_btn.click(
684
+ reset_conversation,
685
+ outputs=[chat_display, current_index, scenario, narrator_input]
686
+ )
687
+
688
+ return character_interaction
689
+
690
+ #
691
+ # End of Multi-Character chat tab
692
+ ########################################################################################################################
693
+ #
694
+ # Narrator-Controlled Conversation Tab
695
+
696
+ # From `Fuzzlewumper` on Reddit.
697
+ def create_narrator_controlled_conversation_tab():
698
+ with gr.TabItem("Narrator-Controlled Conversation"):
699
+ gr.Markdown("# Narrator-Controlled Conversation")
700
+
701
+ with gr.Row():
702
+ with gr.Column(scale=1):
703
+ api_endpoint = gr.Dropdown(
704
+ label="API Endpoint",
705
+ choices=["OpenAI", "Anthropic", "Local-LLM", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter"],
706
+ value="OpenAI"
707
+ )
708
+ api_key = gr.Textbox(label="API Key (if required)", type="password")
709
+ temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)
710
+
711
+ with gr.Column(scale=2):
712
+ narrator_input = gr.Textbox(
713
+ label="Narrator Input",
714
+ placeholder="Set the scene or provide context...",
715
+ lines=3
716
+ )
717
+
718
+ character_inputs = []
719
+ for i in range(4): # Allow up to 4 characters
720
+ with gr.Row():
721
+ name = gr.Textbox(label=f"Character {i + 1} Name")
722
+ description = gr.Textbox(label=f"Character {i + 1} Description", lines=3)
723
+ character_inputs.append((name, description))
724
+
725
+ conversation_display = gr.Chatbot(label="Conversation", height=400)
726
+ user_input = gr.Textbox(label="Your Input (optional)", placeholder="Add your own dialogue or action...")
727
+
728
+ with gr.Row():
729
+ generate_btn = gr.Button("Generate Next Interaction")
730
+ reset_btn = gr.Button("Reset Conversation")
731
+
732
+ error_box = gr.Textbox(label="Error Messages", visible=False)
733
+
734
+ def generate_interaction(conversation, narrator_text, user_text, api_endpoint, api_key, temperature,
735
+ *character_data):
736
+ try:
737
+ characters = [{"name": name.strip(), "description": desc.strip()}
738
+ for name, desc in zip(character_data[::2], character_data[1::2])
739
+ if name.strip() and desc.strip()]
740
+
741
+ if not characters:
742
+ raise ValueError("At least one character must be defined.")
743
+
744
+ prompt = f"Narrator: {narrator_text}\n\n"
745
+ for char in characters:
746
+ prompt += f"Character '{char['name']}': {char['description']}\n"
747
+ prompt += "\nGenerate the next part of the conversation, including character dialogues and actions. "
748
+ prompt += "Characters should speak in first person. "
749
+ if user_text:
750
+ prompt += f"\nIncorporate this user input: {user_text}"
751
+ prompt += "\nResponse:"
752
+
753
+ response, conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None,
754
+ False, temperature, "")
755
+
756
+ # Format the response
757
+ formatted_lines = []
758
+ for line in response.split('\n'):
759
+ if ':' in line:
760
+ speaker, text = line.split(':', 1)
761
+ formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}")
762
+ else:
763
+ formatted_lines.append(line)
764
+
765
+ formatted_response = '\n'.join(formatted_lines)
766
+
767
+ # Update the last message in the conversation with the formatted response
768
+ if conversation:
769
+ conversation[-1] = (conversation[-1][0], formatted_response)
770
+ else:
771
+ conversation.append((None, formatted_response))
772
+
773
+ return conversation, gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="")
774
+ except Exception as e:
775
+ error_message = f"An error occurred: {str(e)}"
776
+ return conversation, gr.update(), gr.update(), gr.update(visible=True, value=error_message)
777
+
778
+ def reset_conversation():
779
+ return [], gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="")
780
+
781
+ generate_btn.click(
782
+ generate_interaction,
783
+ inputs=[conversation_display, narrator_input, user_input, api_endpoint, api_key, temperature] +
784
+ [input for char_input in character_inputs for input in char_input],
785
+ outputs=[conversation_display, narrator_input, user_input, error_box]
786
+ )
787
+
788
+ reset_btn.click(
789
+ reset_conversation,
790
+ outputs=[conversation_display, narrator_input, user_input, error_box]
791
+ )
792
+
793
+ return api_endpoint, api_key, temperature, narrator_input, conversation_display, user_input, generate_btn, reset_btn, error_box
794
+
795
+ #
796
+ # End of Multi-Character chat tab
797
+ ########################################################################################################################
App_Function_Libraries/Gradio_UI/Chat_ui.py CHANGED
@@ -984,6 +984,7 @@ def process_with_llm(workflow, context, prompt, api_endpoint, api_key):
984
  api_key_snippet = api_key[:5] + "..." if api_key else "Not provided"
985
  return f"LLM output using {api_endpoint} (API Key: {api_key_snippet}) for {workflow} with context: {context[:30]}... and prompt: {prompt[:30]}..."
986
 
 
987
  #
988
  # End of Chat_ui.py
989
  #######################################################################################################################
 
984
  api_key_snippet = api_key[:5] + "..." if api_key else "Not provided"
985
  return f"LLM output using {api_endpoint} (API Key: {api_key_snippet}) for {workflow} with context: {context[:30]}... and prompt: {prompt[:30]}..."
986
 
987
+
988
  #
989
  # End of Chat_ui.py
990
  #######################################################################################################################
App_Function_Libraries/Gradio_UI/Embeddings_tab.py ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Embeddings_tabc.py
2
+ # Description: This file contains the code for the RAG Chat tab in the Gradio UI
3
+ #
4
+ # Imports
5
+ import json
6
+ import logging
7
+ #
8
+ # External Imports
9
+ import gradio as gr
10
+
11
+ from App_Function_Libraries.Chunk_Lib import improved_chunking_process, determine_chunk_position
12
+ #
13
+ # Local Imports
14
+ from App_Function_Libraries.DB.DB_Manager import get_all_content_from_database
15
+ from App_Function_Libraries.RAG.ChromaDB_Library import chroma_client, \
16
+ store_in_chroma
17
+ from App_Function_Libraries.RAG.Embeddings_Create import create_embedding
18
+ #
19
+ ########################################################################################################################
20
+ #
21
+ # Functions:
22
+
23
+ # FIXME - under construction
24
+ def create_embeddings_tab():
25
+ with gr.TabItem("Create Embeddings"):
26
+ gr.Markdown("# Create Embeddings for All Content")
27
+
28
+ with gr.Row():
29
+ with gr.Column():
30
+ embedding_provider = gr.Radio(
31
+ choices=["huggingface", "local", "openai"],
32
+ label="Select Embedding Provider",
33
+ value="huggingface"
34
+ )
35
+ gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
36
+ gr.Markdown("OpenAI provider requires a valid API key. ")
37
+ gr.Markdown("OpenAI Embeddings models: `text-embedding-3-small`, `text-embedding-3-large`")
38
+ gr.Markdown("HuggingFace provider requires a valid model name, i.e. `dunzhang/stella_en_400M_v5`")
39
+ embedding_model = gr.Textbox(
40
+ label="Embedding Model",
41
+ value="Enter your embedding model name here", lines=3
42
+ )
43
+ embedding_api_url = gr.Textbox(
44
+ label="API URL (for local provider)",
45
+ value="http://localhost:8080/embedding",
46
+ visible=False
47
+ )
48
+
49
+ # Add chunking options
50
+ chunking_method = gr.Dropdown(
51
+ choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
52
+ label="Chunking Method",
53
+ value="words"
54
+ )
55
+ max_chunk_size = gr.Slider(
56
+ minimum=1, maximum=8000, step=1, value=500,
57
+ label="Max Chunk Size"
58
+ )
59
+ chunk_overlap = gr.Slider(
60
+ minimum=0, maximum=4000, step=1, value=200,
61
+ label="Chunk Overlap"
62
+ )
63
+ adaptive_chunking = gr.Checkbox(
64
+ label="Use Adaptive Chunking",
65
+ value=False
66
+ )
67
+
68
+ create_button = gr.Button("Create Embeddings")
69
+
70
+ with gr.Column():
71
+ status_output = gr.Textbox(label="Status", lines=10)
72
+
73
+ def update_provider_options(provider):
74
+ return gr.update(visible=provider == "local")
75
+
76
+ embedding_provider.change(
77
+ fn=update_provider_options,
78
+ inputs=[embedding_provider],
79
+ outputs=[embedding_api_url]
80
+ )
81
+
82
+ def create_all_embeddings(provider, model, api_url, method, max_size, overlap, adaptive):
83
+ try:
84
+ all_content = get_all_content_from_database()
85
+ if not all_content:
86
+ return "No content found in the database."
87
+
88
+ chunk_options = {
89
+ 'method': method,
90
+ 'max_size': max_size,
91
+ 'overlap': overlap,
92
+ 'adaptive': adaptive
93
+ }
94
+
95
+ collection_name = "all_content_embeddings"
96
+ collection = chroma_client.get_or_create_collection(name=collection_name)
97
+
98
+ for item in all_content:
99
+ media_id = item['id']
100
+ text = item['content']
101
+
102
+ chunks = improved_chunking_process(text, chunk_options)
103
+ for i, chunk in enumerate(chunks):
104
+ chunk_text = chunk['text']
105
+ chunk_id = f"doc_{media_id}_chunk_{i}"
106
+
107
+ existing = collection.get(ids=[chunk_id])
108
+ if existing['ids']:
109
+ continue
110
+
111
+ embedding = create_embedding(chunk_text, provider, model, api_url)
112
+ metadata = {
113
+ "media_id": str(media_id),
114
+ "chunk_index": i,
115
+ "total_chunks": len(chunks),
116
+ "chunking_method": method,
117
+ "max_chunk_size": max_size,
118
+ "chunk_overlap": overlap,
119
+ "adaptive_chunking": adaptive,
120
+ "embedding_model": model,
121
+ "embedding_provider": provider,
122
+ **chunk['metadata']
123
+ }
124
+ store_in_chroma(collection_name, [chunk_text], [embedding], [chunk_id], [metadata])
125
+
126
+ return "Embeddings created and stored successfully for all content."
127
+ except Exception as e:
128
+ logging.error(f"Error during embedding creation: {str(e)}")
129
+ return f"Error: {str(e)}"
130
+
131
+ create_button.click(
132
+ fn=create_all_embeddings,
133
+ inputs=[embedding_provider, embedding_model, embedding_api_url,
134
+ chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking],
135
+ outputs=status_output
136
+ )
137
+
138
+
139
+ def create_view_embeddings_tab():
140
+ with gr.TabItem("View/Update Embeddings"):
141
+ gr.Markdown("# View and Update Embeddings")
142
+ item_mapping = gr.State({})
143
+ with gr.Row():
144
+ with gr.Column():
145
+ item_dropdown = gr.Dropdown(label="Select Item", choices=[], interactive=True)
146
+ refresh_button = gr.Button("Refresh Item List")
147
+ embedding_status = gr.Textbox(label="Embedding Status", interactive=False)
148
+ embedding_preview = gr.Textbox(label="Embedding Preview", interactive=False, lines=5)
149
+ embedding_metadata = gr.Textbox(label="Embedding Metadata", interactive=False, lines=10)
150
+
151
+ with gr.Column():
152
+ create_new_embedding_button = gr.Button("Create New Embedding")
153
+ embedding_provider = gr.Radio(
154
+ choices=["huggingface", "local", "openai"],
155
+ label="Select Embedding Provider",
156
+ value="huggingface"
157
+ )
158
+ gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
159
+ gr.Markdown("OpenAI provider requires a valid API key. ")
160
+ gr.Markdown("OpenAI Embeddings models: `text-embedding-3-small`, `text-embedding-3-large`")
161
+ gr.Markdown("HuggingFace provider requires a valid model name, i.e. `dunzhang/stella_en_400M_v5`")
162
+ embedding_model = gr.Textbox(
163
+ label="Embedding Model",
164
+ value="Enter your embedding model name here", lines=3
165
+ )
166
+ embedding_api_url = gr.Textbox(
167
+ label="API URL (for local provider)",
168
+ value="http://localhost:8080/embedding",
169
+ visible=False
170
+ )
171
+ chunking_method = gr.Dropdown(
172
+ choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
173
+ label="Chunking Method",
174
+ value="words"
175
+ )
176
+ max_chunk_size = gr.Slider(
177
+ minimum=1, maximum=8000, step=1, value=500,
178
+ label="Max Chunk Size"
179
+ )
180
+ chunk_overlap = gr.Slider(
181
+ minimum=0, maximum=5000, step=1, value=200,
182
+ label="Chunk Overlap"
183
+ )
184
+ adaptive_chunking = gr.Checkbox(
185
+ label="Use Adaptive Chunking",
186
+ value=False
187
+ )
188
+
189
+ def get_items_with_embedding_status():
190
+ try:
191
+ items = get_all_content_from_database()
192
+ collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
193
+ choices = []
194
+ new_item_mapping = {}
195
+ for item in items:
196
+ try:
197
+ result = collection.get(ids=[f"doc_{item['id']}_chunk_0"])
198
+ embedding_exists = result is not None and result.get('ids') and len(result['ids']) > 0
199
+ status = "Embedding exists" if embedding_exists else "No embedding"
200
+ except Exception as e:
201
+ print(f"Error checking embedding for item {item['id']}: {str(e)}")
202
+ status = "Error checking"
203
+ choice = f"{item['title']} ({status})"
204
+ choices.append(choice)
205
+ new_item_mapping[choice] = item['id']
206
+ return gr.update(choices=choices), new_item_mapping
207
+ except Exception as e:
208
+ print(f"Error in get_items_with_embedding_status: {str(e)}")
209
+ return gr.update(choices=["Error: Unable to fetch items"]), {}
210
+
211
+ def update_provider_options(provider):
212
+ return gr.update(visible=provider == "local")
213
+
214
+ def check_embedding_status(selected_item, item_mapping):
215
+ if not selected_item:
216
+ return "Please select an item", "", ""
217
+
218
+ try:
219
+ item_id = item_mapping.get(selected_item)
220
+ if item_id is None:
221
+ return f"Invalid item selected: {selected_item}", "", ""
222
+
223
+ item_title = selected_item.rsplit(' (', 1)[0]
224
+ collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
225
+
226
+ result = collection.get(ids=[f"doc_{item_id}_chunk_0"], include=["embeddings", "metadatas"])
227
+ logging.info(f"ChromaDB result for item '{item_title}' (ID: {item_id}): {result}")
228
+
229
+ if not result['ids']:
230
+ return f"No embedding found for item '{item_title}' (ID: {item_id})", "", ""
231
+
232
+ if not result['embeddings'] or not result['embeddings'][0]:
233
+ return f"Embedding data missing for item '{item_title}' (ID: {item_id})", "", ""
234
+
235
+ embedding = result['embeddings'][0]
236
+ metadata = result['metadatas'][0] if result['metadatas'] else {}
237
+ embedding_preview = str(embedding[:50])
238
+ status = f"Embedding exists for item '{item_title}' (ID: {item_id})"
239
+ return status, f"First 50 elements of embedding:\n{embedding_preview}", json.dumps(metadata, indent=2)
240
+
241
+ except Exception as e:
242
+ logging.error(f"Error in check_embedding_status: {str(e)}")
243
+ return f"Error processing item: {selected_item}. Details: {str(e)}", "", ""
244
+
245
+ def create_new_embedding_for_item(selected_item, provider, model, api_url, method, max_size, overlap, adaptive, item_mapping):
246
+ if not selected_item:
247
+ return "Please select an item", "", ""
248
+
249
+ try:
250
+ item_id = item_mapping.get(selected_item)
251
+ if item_id is None:
252
+ return f"Invalid item selected: {selected_item}", "", ""
253
+
254
+ items = get_all_content_from_database()
255
+ item = next((item for item in items if item['id'] == item_id), None)
256
+ if not item:
257
+ return f"Item not found: {item_id}", "", ""
258
+
259
+ chunk_options = {
260
+ 'method': method,
261
+ 'max_size': max_size,
262
+ 'overlap': overlap,
263
+ 'adaptive': adaptive
264
+ }
265
+
266
+ chunks = improved_chunking_process(item['content'], chunk_options)
267
+ collection_name = "all_content_embeddings"
268
+ collection = chroma_client.get_or_create_collection(name=collection_name)
269
+
270
+ # Delete existing embeddings for this item
271
+ existing_ids = [f"doc_{item_id}_chunk_{i}" for i in range(len(chunks))]
272
+ collection.delete(ids=existing_ids)
273
+
274
+ for i, chunk in enumerate(chunks):
275
+ chunk_text = chunk['text']
276
+ chunk_metadata = chunk['metadata']
277
+ chunk_position = determine_chunk_position(chunk_metadata['relative_position'])
278
+
279
+ chunk_header = f"""
280
+ Original Document: {item['title']}
281
+ Chunk: {i + 1} of {len(chunks)}
282
+ Position: {chunk_position}
283
+ Header: {chunk_metadata.get('header_text', 'N/A')}
284
+
285
+ --- Chunk Content ---
286
+ """
287
+
288
+ full_chunk_text = chunk_header + chunk_text
289
+ chunk_id = f"doc_{item_id}_chunk_{i}"
290
+ embedding = create_embedding(full_chunk_text, provider, model, api_url)
291
+ metadata = {
292
+ "media_id": str(item_id),
293
+ "chunk_index": i,
294
+ "total_chunks": len(chunks),
295
+ "chunking_method": method,
296
+ "max_chunk_size": max_size,
297
+ "chunk_overlap": overlap,
298
+ "adaptive_chunking": adaptive,
299
+ "embedding_model": model,
300
+ "embedding_provider": provider,
301
+ **chunk_metadata
302
+ }
303
+ store_in_chroma(collection_name, [full_chunk_text], [embedding], [chunk_id], [metadata])
304
+
305
+ embedding_preview = str(embedding[:50])
306
+ status = f"New embeddings created and stored for item: {item['title']} (ID: {item_id})"
307
+ return status, f"First 50 elements of new embedding:\n{embedding_preview}", json.dumps(metadata, indent=2)
308
+ except Exception as e:
309
+ logging.error(f"Error in create_new_embedding_for_item: {str(e)}")
310
+ return f"Error creating embedding: {str(e)}", "", ""
311
+
312
+ refresh_button.click(
313
+ get_items_with_embedding_status,
314
+ outputs=[item_dropdown, item_mapping]
315
+ )
316
+ item_dropdown.change(
317
+ check_embedding_status,
318
+ inputs=[item_dropdown, item_mapping],
319
+ outputs=[embedding_status, embedding_preview, embedding_metadata]
320
+ )
321
+ create_new_embedding_button.click(
322
+ create_new_embedding_for_item,
323
+ inputs=[item_dropdown, embedding_provider, embedding_model, embedding_api_url,
324
+ chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, item_mapping],
325
+ outputs=[embedding_status, embedding_preview, embedding_metadata]
326
+ )
327
+ embedding_provider.change(
328
+ update_provider_options,
329
+ inputs=[embedding_provider],
330
+ outputs=[embedding_api_url]
331
+ )
332
+
333
+ return item_dropdown, refresh_button, embedding_status, embedding_preview, embedding_metadata, create_new_embedding_button, embedding_provider, embedding_model, embedding_api_url, chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking
334
+
335
+
336
+ def create_purge_embeddings_tab():
337
+ with gr.TabItem("Purge Embeddings"):
338
+ gr.Markdown("# Purge Embeddings")
339
+
340
+ with gr.Row():
341
+ with gr.Column():
342
+ purge_button = gr.Button("Purge All Embeddings")
343
+ with gr.Column():
344
+ status_output = gr.Textbox(label="Status", lines=10)
345
+
346
+ def purge_all_embeddings():
347
+ try:
348
+ collection_name = "all_content_embeddings"
349
+ chroma_client.delete_collection(collection_name)
350
+ chroma_client.create_collection(collection_name)
351
+ return "All embeddings have been purged successfully."
352
+ except Exception as e:
353
+ logging.error(f"Error during embedding purge: {str(e)}")
354
+ return f"Error: {str(e)}"
355
+
356
+ purge_button.click(
357
+ fn=purge_all_embeddings,
358
+ outputs=status_output
359
+ )
360
+
361
+
362
+
363
+ #
364
+ # End of file
365
+ ########################################################################################################################
App_Function_Libraries/Gradio_UI/Live_Recording.py CHANGED
@@ -1,125 +1,123 @@
1
- # Live_Recording.py
2
- # Description: Gradio UI for live audio recording and transcription.
3
- #
4
- # Import necessary modules and functions
5
- import logging
6
- import os
7
- # External Imports
8
- import gradio as gr
9
- # Local Imports
10
- #from App_Function_Libraries.Audio_Transcription_Lib import (record_audio, speech_to_text, save_audio_temp,
11
- # stop_recording)
12
- from App_Function_Libraries.DB.DB_Manager import add_media_to_database
13
- #
14
- #######################################################################################################################
15
- #
16
- # Functions:
17
-
18
- whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
19
- "distil-large-v2", "distil-medium.en", "distil-small.en"]
20
-
21
- def create_live_recording_tab():
22
- with gr.Tab("Live Recording and Transcription"):
23
- gr.Markdown("# Live Audio Recording and Transcription")
24
- with gr.Row():
25
- with gr.Column():
26
- duration = gr.Slider(minimum=1, maximum=8000, value=15, label="Recording Duration (seconds)")
27
- whisper_models_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
28
- vad_filter = gr.Checkbox(label="Use VAD Filter")
29
- save_recording = gr.Checkbox(label="Save Recording")
30
- save_to_db = gr.Checkbox(label="Save Transcription to Database(Must be checked to save - can be checked afer transcription)", value=False)
31
- custom_title = gr.Textbox(label="Custom Title (for database)", visible=False)
32
- record_button = gr.Button("Start Recording")
33
- stop_button = gr.Button("Stop Recording")
34
- with gr.Column():
35
- output = gr.Textbox(label="Transcription", lines=10)
36
- audio_output = gr.Audio(label="Recorded Audio", visible=False)
37
-
38
- recording_state = gr.State(value=None)
39
-
40
- def start_recording(duration):
41
- pass
42
- # p, stream, audio_queue, stop_event, audio_thread = record_audio(duration)
43
- # return (p, stream, audio_queue, stop_event, audio_thread)
44
-
45
- def end_recording_and_transcribe(recording_state, whisper_model, vad_filter, save_recording, save_to_db, custom_title):
46
- pass
47
- # if recording_state is None:
48
- # return "Recording hasn't started yet.", None
49
-
50
- # p, stream, audio_queue, stop_event, audio_thread = recording_state
51
- # audio_data = stop_recording(p, stream, audio_queue, stop_event, audio_thread)
52
-
53
- # temp_file = save_audio_temp(audio_data)
54
- # segments = speech_to_text(temp_file, whisper_model=whisper_model, vad_filter=vad_filter)
55
- # transcription = "\n".join([segment["Text"] for segment in segments])
56
-
57
- # if save_recording:
58
- # return transcription, temp_file
59
- # else:
60
- # os.remove(temp_file)
61
- # return transcription, None
62
-
63
- def save_transcription_to_db(transcription, custom_title):
64
- if custom_title.strip() == "":
65
- custom_title = "Self-recorded Audio"
66
-
67
- try:
68
- url = "self_recorded"
69
- info_dict = {
70
- "title": custom_title,
71
- "uploader": "self-recorded",
72
- "webpage_url": url
73
- }
74
- segments = [{"Text": transcription}]
75
- summary = ""
76
- keywords = ["self-recorded", "audio"]
77
- custom_prompt_input = ""
78
- whisper_model = "self-recorded"
79
- media_type = "audio"
80
-
81
- result = add_media_to_database(
82
- url=url,
83
- info_dict=info_dict,
84
- segments=segments,
85
- summary=summary,
86
- keywords=keywords,
87
- custom_prompt_input=custom_prompt_input,
88
- whisper_model=whisper_model,
89
- media_type=media_type
90
- )
91
- return f"Transcription saved to database successfully. {result}"
92
- except Exception as e:
93
- logging.error(f"Error saving transcription to database: {str(e)}")
94
- return f"Error saving transcription to database: {str(e)}"
95
-
96
- def update_custom_title_visibility(save_to_db):
97
- return gr.update(visible=save_to_db)
98
-
99
- record_button.click(
100
- fn=start_recording,
101
- inputs=[duration],
102
- outputs=[recording_state]
103
- )
104
-
105
- stop_button.click(
106
- fn=end_recording_and_transcribe,
107
- inputs=[recording_state, whisper_models_input, vad_filter, save_recording, save_to_db, custom_title],
108
- outputs=[output, audio_output]
109
- )
110
-
111
- save_to_db.change(
112
- fn=update_custom_title_visibility,
113
- inputs=[save_to_db],
114
- outputs=[custom_title]
115
- )
116
-
117
- gr.Button("Save to Database").click(
118
- fn=save_transcription_to_db,
119
- inputs=[output, custom_title],
120
- outputs=gr.Textbox(label="Database Save Status")
121
- )
122
-
123
- #
124
- # End of Functions
125
- ########################################################################################################################
 
1
+ # Live_Recording.py
2
+ # Description: Gradio UI for live audio recording and transcription.
3
+ #
4
+ # Import necessary modules and functions
5
+ import logging
6
+ import os
7
+ # External Imports
8
+ import gradio as gr
9
+ # Local Imports
10
+ from App_Function_Libraries.Audio.Audio_Transcription_Lib import (record_audio, speech_to_text, save_audio_temp,
11
+ stop_recording)
12
+ from App_Function_Libraries.DB.DB_Manager import add_media_to_database
13
+ #
14
+ #######################################################################################################################
15
+ #
16
+ # Functions:
17
+
18
+ whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
19
+ "distil-large-v2", "distil-medium.en", "distil-small.en"]
20
+
21
+ def create_live_recording_tab():
22
+ with gr.Tab("Live Recording and Transcription"):
23
+ gr.Markdown("# Live Audio Recording and Transcription")
24
+ with gr.Row():
25
+ with gr.Column():
26
+ duration = gr.Slider(minimum=1, maximum=8000, value=15, label="Recording Duration (seconds)")
27
+ whisper_models_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
28
+ vad_filter = gr.Checkbox(label="Use VAD Filter")
29
+ save_recording = gr.Checkbox(label="Save Recording")
30
+ save_to_db = gr.Checkbox(label="Save Transcription to Database(Must be checked to save - can be checked afer transcription)", value=False)
31
+ custom_title = gr.Textbox(label="Custom Title (for database)", visible=False)
32
+ record_button = gr.Button("Start Recording")
33
+ stop_button = gr.Button("Stop Recording")
34
+ with gr.Column():
35
+ output = gr.Textbox(label="Transcription", lines=10)
36
+ audio_output = gr.Audio(label="Recorded Audio", visible=False)
37
+
38
+ recording_state = gr.State(value=None)
39
+
40
+ def start_recording(duration):
41
+ p, stream, audio_queue, stop_event, audio_thread = record_audio(duration)
42
+ return (p, stream, audio_queue, stop_event, audio_thread)
43
+
44
+ def end_recording_and_transcribe(recording_state, whisper_model, vad_filter, save_recording, save_to_db, custom_title):
45
+ if recording_state is None:
46
+ return "Recording hasn't started yet.", None
47
+
48
+ p, stream, audio_queue, stop_event, audio_thread = recording_state
49
+ audio_data = stop_recording(p, stream, audio_queue, stop_event, audio_thread)
50
+
51
+ temp_file = save_audio_temp(audio_data)
52
+ segments = speech_to_text(temp_file, whisper_model=whisper_model, vad_filter=vad_filter)
53
+ transcription = "\n".join([segment["Text"] for segment in segments])
54
+
55
+ if save_recording:
56
+ return transcription, temp_file
57
+ else:
58
+ os.remove(temp_file)
59
+ return transcription, None
60
+
61
+ def save_transcription_to_db(transcription, custom_title):
62
+ if custom_title.strip() == "":
63
+ custom_title = "Self-recorded Audio"
64
+
65
+ try:
66
+ url = "self_recorded"
67
+ info_dict = {
68
+ "title": custom_title,
69
+ "uploader": "self-recorded",
70
+ "webpage_url": url
71
+ }
72
+ segments = [{"Text": transcription}]
73
+ summary = ""
74
+ keywords = ["self-recorded", "audio"]
75
+ custom_prompt_input = ""
76
+ whisper_model = "self-recorded"
77
+ media_type = "audio"
78
+
79
+ result = add_media_to_database(
80
+ url=url,
81
+ info_dict=info_dict,
82
+ segments=segments,
83
+ summary=summary,
84
+ keywords=keywords,
85
+ custom_prompt_input=custom_prompt_input,
86
+ whisper_model=whisper_model,
87
+ media_type=media_type
88
+ )
89
+ return f"Transcription saved to database successfully. {result}"
90
+ except Exception as e:
91
+ logging.error(f"Error saving transcription to database: {str(e)}")
92
+ return f"Error saving transcription to database: {str(e)}"
93
+
94
+ def update_custom_title_visibility(save_to_db):
95
+ return gr.update(visible=save_to_db)
96
+
97
+ record_button.click(
98
+ fn=start_recording,
99
+ inputs=[duration],
100
+ outputs=[recording_state]
101
+ )
102
+
103
+ stop_button.click(
104
+ fn=end_recording_and_transcribe,
105
+ inputs=[recording_state, whisper_models_input, vad_filter, save_recording, save_to_db, custom_title],
106
+ outputs=[output, audio_output]
107
+ )
108
+
109
+ save_to_db.change(
110
+ fn=update_custom_title_visibility,
111
+ inputs=[save_to_db],
112
+ outputs=[custom_title]
113
+ )
114
+
115
+ gr.Button("Save to Database").click(
116
+ fn=save_transcription_to_db,
117
+ inputs=[output, custom_title],
118
+ outputs=gr.Textbox(label="Database Save Status")
119
+ )
120
+
121
+ #
122
+ # End of Functions
123
+ ########################################################################################################################
 
 
App_Function_Libraries/Gradio_UI/Llamafile_tab.py CHANGED
@@ -9,7 +9,7 @@ import glob
9
  import gradio as gr
10
  #
11
  # Local Imports
12
- from App_Function_Libraries.Llamafile import start_llamafile
13
  #
14
  #######################################################################################################################
15
  #
 
9
  import gradio as gr
10
  #
11
  # Local Imports
12
+ from App_Function_Libraries.Local_LLM.Llamafile import start_llamafile
13
  #
14
  #######################################################################################################################
15
  #
App_Function_Libraries/Gradio_UI/PDF_ingestion_tab.py CHANGED
@@ -12,7 +12,7 @@ import gradio as gr
12
  # Local Imports
13
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
14
  from App_Function_Libraries.Gradio_UI.Chat_ui import update_user_prompt
15
- from App_Function_Libraries.PDF_Ingestion_Lib import extract_metadata_from_pdf, extract_text_and_format_from_pdf, \
16
  process_and_cleanup_pdf
17
  #
18
  #
 
12
  # Local Imports
13
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
14
  from App_Function_Libraries.Gradio_UI.Chat_ui import update_user_prompt
15
+ from App_Function_Libraries.PDF.PDF_Ingestion_Lib import extract_metadata_from_pdf, extract_text_and_format_from_pdf, \
16
  process_and_cleanup_pdf
17
  #
18
  #
App_Function_Libraries/Gradio_UI/Podcast_tab.py CHANGED
@@ -8,7 +8,7 @@
8
  import gradio as gr
9
  #
10
  # Local Imports
11
- from App_Function_Libraries.Audio_Files import process_podcast
12
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
13
  from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models, update_user_prompt
14
 
 
8
  import gradio as gr
9
  #
10
  # Local Imports
11
+ from App_Function_Libraries.Audio.Audio_Files import process_podcast
12
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
13
  from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models, update_user_prompt
14
 
App_Function_Libraries/Gradio_UI/RAG_Chat_tab.py CHANGED
@@ -8,10 +8,7 @@ import logging
8
  import gradio as gr
9
  #
10
  # Local Imports
11
- from App_Function_Libraries.DB.DB_Manager import get_all_content_from_database
12
- from App_Function_Libraries.RAG.ChromaDB_Library import chroma_client, \
13
- check_embedding_status, store_in_chroma
14
- from App_Function_Libraries.RAG.Embeddings_Create import create_embedding
15
  from App_Function_Libraries.RAG.RAG_Libary_2 import enhanced_rag_pipeline
16
  #
17
  ########################################################################################################################
@@ -71,176 +68,6 @@ def create_rag_tab():
71
  search_button.click(perform_rag_search, inputs=[search_query, keywords_input, api_choice], outputs=[result_output, context_output])
72
 
73
 
74
- # FIXME - under construction
75
- def create_embeddings_tab():
76
- with gr.TabItem("Create Embeddings"):
77
- gr.Markdown("# Create Embeddings for All Content")
78
-
79
- with gr.Row():
80
- with gr.Column():
81
- embedding_provider = gr.Radio(
82
- choices=["openai", "local", "huggingface"],
83
- label="Select Embedding Provider",
84
- value="openai"
85
- )
86
- embedding_model = gr.Textbox(
87
- label="Embedding Model",
88
- value="text-embedding-3-small"
89
- )
90
- embedding_api_url = gr.Textbox(
91
- label="API URL (for local provider)",
92
- value="http://localhost:8080/embedding",
93
- visible=False
94
- )
95
- create_button = gr.Button("Create Embeddings")
96
-
97
- with gr.Column():
98
- status_output = gr.Textbox(label="Status", lines=10)
99
-
100
- def update_provider_options(provider):
101
- return gr.update(visible=provider == "local")
102
-
103
- embedding_provider.change(
104
- fn=update_provider_options,
105
- inputs=[embedding_provider],
106
- outputs=[embedding_api_url]
107
- )
108
-
109
- def create_all_embeddings(provider, model, api_url):
110
- try:
111
- all_content = get_all_content_from_database()
112
- if not all_content:
113
- return "No content found in the database."
114
-
115
- collection_name = "all_content_embeddings"
116
- collection = chroma_client.get_or_create_collection(name=collection_name)
117
-
118
- for item in all_content:
119
- media_id = item['id']
120
- text = item['content']
121
-
122
- existing = collection.get(ids=[f"doc_{media_id}"])
123
- if existing['ids']:
124
- continue
125
-
126
- embedding = create_embedding(text, provider, model, api_url)
127
- store_in_chroma(collection_name, [text], [embedding], [f"doc_{media_id}"], [{"media_id": media_id}])
128
-
129
- return "Embeddings created and stored successfully for all new content."
130
- except Exception as e:
131
- logging.error(f"Error during embedding creation: {str(e)}")
132
- return f"Error: {str(e)}"
133
-
134
- create_button.click(
135
- fn=create_all_embeddings,
136
- inputs=[embedding_provider, embedding_model, embedding_api_url],
137
- outputs=status_output
138
- )
139
-
140
-
141
- def create_view_embeddings_tab():
142
- with gr.TabItem("View/Update Embeddings"):
143
- gr.Markdown("# View and Update Embeddings")
144
- item_mapping = gr.State({})
145
- with gr.Row():
146
- with gr.Column():
147
- item_dropdown = gr.Dropdown(label="Select Item", choices=[], interactive=True)
148
- refresh_button = gr.Button("Refresh Item List")
149
- embedding_status = gr.Textbox(label="Embedding Status", interactive=False)
150
- embedding_preview = gr.Textbox(label="Embedding Preview", interactive=False, lines=5)
151
-
152
- with gr.Column():
153
- create_new_embedding_button = gr.Button("Create New Embedding")
154
- embedding_provider = gr.Radio(
155
- choices=["openai", "local", "huggingface"],
156
- label="Embedding Provider",
157
- value="openai"
158
- )
159
- embedding_model = gr.Textbox(
160
- label="Embedding Model",
161
- value="text-embedding-3-small",
162
- visible=True
163
- )
164
- embedding_api_url = gr.Textbox(
165
- label="API URL (for local provider)",
166
- value="http://localhost:8080/embedding",
167
- visible=False
168
- )
169
-
170
- def get_items_with_embedding_status():
171
- try:
172
- items = get_all_content_from_database()
173
- collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
174
- choices = []
175
- new_item_mapping = {}
176
- for item in items:
177
- try:
178
- result = collection.get(ids=[f"doc_{item['id']}"])
179
- embedding_exists = result is not None and result.get('ids') and len(result['ids']) > 0
180
- status = "Embedding exists" if embedding_exists else "No embedding"
181
- except Exception as e:
182
- print(f"Error checking embedding for item {item['id']}: {str(e)}")
183
- status = "Error checking"
184
- choice = f"{item['title']} ({status})"
185
- choices.append(choice)
186
- new_item_mapping[choice] = item['id']
187
- return gr.update(choices=choices), new_item_mapping
188
- except Exception as e:
189
- print(f"Error in get_items_with_embedding_status: {str(e)}")
190
- return gr.update(choices=["Error: Unable to fetch items"]), {}
191
-
192
- def update_provider_options(provider):
193
- return gr.update(visible=provider == "local")
194
-
195
- def create_new_embedding_for_item(selected_item, provider, model, api_url, item_mapping):
196
- if not selected_item:
197
- return "Please select an item", ""
198
-
199
- try:
200
- item_id = item_mapping.get(selected_item)
201
- if item_id is None:
202
- return f"Invalid item selected: {selected_item}", ""
203
-
204
- items = get_all_content_from_database()
205
- item = next((item for item in items if item['id'] == item_id), None)
206
- if not item:
207
- return f"Item not found: {item_id}", ""
208
-
209
- embedding = create_embedding(item['content'], provider, model, api_url)
210
-
211
- collection_name = "all_content_embeddings"
212
- metadata = {"media_id": item_id, "title": item['title']}
213
- store_in_chroma(collection_name, [item['content']], [embedding], [f"doc_{item_id}"],
214
- [{"media_id": item_id, "title": item['title']}])
215
-
216
- embedding_preview = str(embedding[:50])
217
- status = f"New embedding created and stored for item: {item['title']} (ID: {item_id})"
218
- return status, f"First 50 elements of new embedding:\n{embedding_preview}\n\nMetadata: {metadata}"
219
- except Exception as e:
220
- logging.error(f"Error in create_new_embedding_for_item: {str(e)}")
221
- return f"Error creating embedding: {str(e)}", ""
222
-
223
- refresh_button.click(
224
- get_items_with_embedding_status,
225
- outputs=[item_dropdown, item_mapping]
226
- )
227
- item_dropdown.change(
228
- check_embedding_status,
229
- inputs=[item_dropdown, item_mapping],
230
- outputs=[embedding_status, embedding_preview]
231
- )
232
- create_new_embedding_button.click(
233
- create_new_embedding_for_item,
234
- inputs=[item_dropdown, embedding_provider, embedding_model, embedding_api_url, item_mapping],
235
- outputs=[embedding_status, embedding_preview]
236
- )
237
- embedding_provider.change(
238
- update_provider_options,
239
- inputs=[embedding_provider],
240
- outputs=[embedding_api_url]
241
- )
242
-
243
- return item_dropdown, refresh_button, embedding_status, embedding_preview, create_new_embedding_button, embedding_provider, embedding_model, embedding_api_url
244
 
245
  #
246
  # End of file
 
8
  import gradio as gr
9
  #
10
  # Local Imports
11
+
 
 
 
12
  from App_Function_Libraries.RAG.RAG_Libary_2 import enhanced_rag_pipeline
13
  #
14
  ########################################################################################################################
 
68
  search_button.click(perform_rag_search, inputs=[search_query, keywords_input, api_choice], outputs=[result_output, context_output])
69
 
70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  #
73
  # End of file
App_Function_Libraries/Gradio_UI/Utilities.py CHANGED
@@ -40,7 +40,7 @@ def create_utilities_yt_audio_tab():
40
  output_file_audio = gr.File(label="Download Audio")
41
  output_message_audio = gr.Textbox(label="Status")
42
 
43
- from App_Function_Libraries.Audio_Files import download_youtube_audio
44
  download_button_audio.click(
45
  fn=download_youtube_audio,
46
  inputs=youtube_url_input_audio,
 
40
  output_file_audio = gr.File(label="Download Audio")
41
  output_message_audio = gr.Textbox(label="Status")
42
 
43
+ from App_Function_Libraries.Audio.Audio_Files import download_youtube_audio
44
  download_button_audio.click(
45
  fn=download_youtube_audio,
46
  inputs=youtube_url_input_audio,
App_Function_Libraries/Gradio_UI/Video_transcription_tab.py CHANGED
@@ -14,7 +14,7 @@ import yt_dlp
14
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts, add_media_to_database
15
  from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models, update_user_prompt
16
  from App_Function_Libraries.Gradio_UI.Gradio_Shared import error_handler
17
- from App_Function_Libraries.Summarization_General_Lib import perform_transcription, perform_summarization, \
18
  save_transcription_and_summary
19
  from App_Function_Libraries.Utils.Utils import convert_to_seconds, safe_read_file, format_transcription, \
20
  create_download_directory, generate_unique_identifier, extract_text_from_segments
@@ -156,9 +156,9 @@ def create_video_transcription_tab():
156
  with gr.Column():
157
  chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'],
158
  label="Chunking Method")
159
- max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50,
160
  label="Max Chunk Size")
161
- chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
162
  use_adaptive_chunking = gr.Checkbox(
163
  label="Use Adaptive Chunking (Adjust chunking based on text complexity)")
164
  use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
@@ -492,8 +492,8 @@ def create_video_transcription_tab():
492
  # FIXME - remove dead args for process_url_with_metadata
493
  @error_handler
494
  def process_url_with_metadata(input_item, num_speakers, whisper_model, custom_prompt, offset, api_name,
495
- api_key,
496
- vad_filter, download_video_flag, download_audio, rolling_summarization,
497
  detail_level, question_box, keywords, local_file_path, diarize, end_time=None,
498
  include_timestamps=True, metadata=None, use_chunking=False,
499
  chunk_options=None, keep_original_video=False, current_whisper_model="Blank"):
@@ -562,10 +562,11 @@ def create_video_transcription_tab():
562
  # Download video/audio
563
  logging.info("Downloading video/audio...")
564
  video_file_path = download_video(input_item, download_path, full_info, download_video_flag,
565
- current_whisper_model="Blank")
566
- if not video_file_path:
567
- logging.error(f"Failed to download video/audio from {input_item}")
568
- return None, None, None, None, None, None
 
569
 
570
  logging.info(f"Processing file: {video_file_path}")
571
 
 
14
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts, add_media_to_database
15
  from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models, update_user_prompt
16
  from App_Function_Libraries.Gradio_UI.Gradio_Shared import error_handler
17
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import perform_transcription, perform_summarization, \
18
  save_transcription_and_summary
19
  from App_Function_Libraries.Utils.Utils import convert_to_seconds, safe_read_file, format_transcription, \
20
  create_download_directory, generate_unique_identifier, extract_text_from_segments
 
156
  with gr.Column():
157
  chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'],
158
  label="Chunking Method")
159
+ max_chunk_size = gr.Slider(minimum=100, maximum=8000, value=400, step=1,
160
  label="Max Chunk Size")
161
+ chunk_overlap = gr.Slider(minimum=0, maximum=5000, value=100, step=1, label="Chunk Overlap")
162
  use_adaptive_chunking = gr.Checkbox(
163
  label="Use Adaptive Chunking (Adjust chunking based on text complexity)")
164
  use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
 
492
  # FIXME - remove dead args for process_url_with_metadata
493
  @error_handler
494
  def process_url_with_metadata(input_item, num_speakers, whisper_model, custom_prompt, offset, api_name,
495
+ api_key, vad_filter, download_video_flag, download_audio,
496
+ rolling_summarization,
497
  detail_level, question_box, keywords, local_file_path, diarize, end_time=None,
498
  include_timestamps=True, metadata=None, use_chunking=False,
499
  chunk_options=None, keep_original_video=False, current_whisper_model="Blank"):
 
562
  # Download video/audio
563
  logging.info("Downloading video/audio...")
564
  video_file_path = download_video(input_item, download_path, full_info, download_video_flag,
565
+ current_whisper_model=current_whisper_model)
566
+ if video_file_path is None:
567
+ logging.info(
568
+ f"Download skipped for {input_item}. Media might already exist or be processed.")
569
+ return input_item, None, None, None, None, info_dict
570
 
571
  logging.info(f"Processing file: {video_file_path}")
572
 
App_Function_Libraries/Gradio_UI/Website_scraping_tab.py CHANGED
@@ -19,11 +19,11 @@ from playwright.sync_api import sync_playwright
19
 
20
  #
21
  # Local Imports
22
- from App_Function_Libraries.Article_Extractor_Lib import scrape_from_sitemap, scrape_by_url_level, scrape_article
23
- from App_Function_Libraries.Article_Summarization_Lib import scrape_and_summarize_multiple
24
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
25
  from App_Function_Libraries.Gradio_UI.Chat_ui import update_user_prompt
26
- from App_Function_Libraries.Summarization_General_Lib import summarize
27
 
28
 
29
  #
@@ -423,12 +423,12 @@ def create_website_scraping_tab():
423
  result = await scrape_and_summarize_multiple(url_input, custom_prompt, api_name, api_key, keywords,
424
  custom_titles, system_prompt)
425
  elif scrape_method == "Sitemap":
426
- result = scrape_from_sitemap(url_input)
427
  elif scrape_method == "URL Level":
428
  if url_level is None:
429
  return convert_json_to_markdown(
430
  json.dumps({"error": "URL level is required for URL Level scraping."}))
431
- result = scrape_by_url_level(url_input, url_level)
432
  elif scrape_method == "Recursive Scraping":
433
  result = await recursive_scrape(url_input, max_pages, max_depth, progress.update, delay=1.0)
434
  else:
@@ -437,16 +437,30 @@ def create_website_scraping_tab():
437
  # Ensure result is always a list of dictionaries
438
  if isinstance(result, dict):
439
  result = [result]
440
- elif not isinstance(result, list):
441
- raise TypeError(f"Unexpected result type: {type(result)}")
 
 
 
 
 
 
 
 
 
 
442
 
443
  if summarize_checkbox:
444
  total_articles = len(result)
445
  for i, article in enumerate(result):
446
  progress.update(f"Summarizing article {i + 1}/{total_articles}")
447
- summary = summarize(article['content'], custom_prompt, api_name, api_key, temperature,
448
- system_prompt)
449
- article['summary'] = summary
 
 
 
 
450
 
451
  # Concatenate all content
452
  all_content = "\n\n".join(
 
19
 
20
  #
21
  # Local Imports
22
+ from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_from_sitemap, scrape_by_url_level, scrape_article
23
+ from App_Function_Libraries.Web_Scraping.Article_Summarization_Lib import scrape_and_summarize_multiple
24
  from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
25
  from App_Function_Libraries.Gradio_UI.Chat_ui import update_user_prompt
26
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize
27
 
28
 
29
  #
 
423
  result = await scrape_and_summarize_multiple(url_input, custom_prompt, api_name, api_key, keywords,
424
  custom_titles, system_prompt)
425
  elif scrape_method == "Sitemap":
426
+ result = await asyncio.to_thread(scrape_from_sitemap, url_input)
427
  elif scrape_method == "URL Level":
428
  if url_level is None:
429
  return convert_json_to_markdown(
430
  json.dumps({"error": "URL level is required for URL Level scraping."}))
431
+ result = await asyncio.to_thread(scrape_by_url_level, url_input, url_level)
432
  elif scrape_method == "Recursive Scraping":
433
  result = await recursive_scrape(url_input, max_pages, max_depth, progress.update, delay=1.0)
434
  else:
 
437
  # Ensure result is always a list of dictionaries
438
  if isinstance(result, dict):
439
  result = [result]
440
+ elif isinstance(result, list):
441
+ if all(isinstance(item, str) for item in result):
442
+ # Convert list of strings to list of dictionaries
443
+ result = [{"content": item} for item in result]
444
+ elif not all(isinstance(item, dict) for item in result):
445
+ raise ValueError("Not all items in result are dictionaries or strings")
446
+ else:
447
+ raise ValueError(f"Unexpected result type: {type(result)}")
448
+
449
+ # Ensure all items in result are dictionaries
450
+ if not all(isinstance(item, dict) for item in result):
451
+ raise ValueError("Not all items in result are dictionaries")
452
 
453
  if summarize_checkbox:
454
  total_articles = len(result)
455
  for i, article in enumerate(result):
456
  progress.update(f"Summarizing article {i + 1}/{total_articles}")
457
+ content = article.get('content', '')
458
+ if content:
459
+ summary = await asyncio.to_thread(summarize, content, custom_prompt, api_name, api_key,
460
+ temperature, system_prompt)
461
+ article['summary'] = summary
462
+ else:
463
+ article['summary'] = "No content available to summarize."
464
 
465
  # Concatenate all content
466
  all_content = "\n\n".join(
App_Function_Libraries/Gradio_UI/Writing_tab.py CHANGED
@@ -2,20 +2,13 @@
2
  # Description: This file contains the functions that are used for writing in the Gradio UI.
3
  #
4
  # Imports
5
- import base64
6
- from datetime import datetime as datetime
7
- import logging
8
- import json
9
- import os
10
  #
11
  # External Imports
12
  import gradio as gr
13
- from PIL import Image
14
  import textstat
15
  #
16
  # Local Imports
17
- from App_Function_Libraries.Summarization_General_Lib import perform_summarization
18
- from App_Function_Libraries.Chat import chat
19
  #
20
  ########################################################################################################################
21
  #
@@ -375,323 +368,6 @@ def create_creative_writing_tab():
375
  gr.Markdown("# Utility to be added...")
376
 
377
 
378
- def chat_with_character(user_message, history, char_data, api_name_input, api_key):
379
- if char_data is None:
380
- return history, "Please import a character card first."
381
-
382
- bot_message = generate_writing_feedback(user_message, char_data['name'], "Overall", api_name_input,
383
- api_key)
384
- history.append((user_message, bot_message))
385
- return history, ""
386
-
387
- def import_character_card(file):
388
- if file is None:
389
- logging.warning("No file provided for character card import")
390
- return None
391
- try:
392
- if file.name.lower().endswith(('.png', '.webp')):
393
- logging.info(f"Attempting to import character card from image: {file.name}")
394
- json_data = extract_json_from_image(file)
395
- if json_data:
396
- logging.info("JSON data extracted from image, attempting to parse")
397
- return import_character_card_json(json_data)
398
- else:
399
- logging.warning("No JSON data found in the image")
400
- else:
401
- logging.info(f"Attempting to import character card from JSON file: {file.name}")
402
- content = file.read().decode('utf-8')
403
- return import_character_card_json(content)
404
- except Exception as e:
405
- logging.error(f"Error importing character card: {e}")
406
- return None
407
-
408
-
409
- def import_character_card_json(json_content):
410
- try:
411
- # Remove any leading/trailing whitespace
412
- json_content = json_content.strip()
413
-
414
- # Log the first 100 characters of the content
415
- logging.debug(f"JSON content (first 100 chars): {json_content[:100]}...")
416
-
417
- card_data = json.loads(json_content)
418
- logging.debug(f"Parsed JSON data keys: {list(card_data.keys())}")
419
- if 'spec' in card_data and card_data['spec'] == 'chara_card_v2':
420
- logging.info("Detected V2 character card")
421
- return card_data['data']
422
- else:
423
- logging.info("Assuming V1 character card")
424
- return card_data
425
- except json.JSONDecodeError as e:
426
- logging.error(f"JSON decode error: {e}")
427
- logging.error(f"Problematic JSON content: {json_content[:500]}...")
428
- except Exception as e:
429
- logging.error(f"Unexpected error parsing JSON: {e}")
430
- return None
431
-
432
-
433
- def extract_json_from_image(image_file):
434
- logging.debug(f"Attempting to extract JSON from image: {image_file.name}")
435
- try:
436
- with Image.open(image_file) as img:
437
- logging.debug("Image opened successfully")
438
- metadata = img.info
439
- if 'chara' in metadata:
440
- logging.debug("Found 'chara' in image metadata")
441
- chara_content = metadata['chara']
442
- logging.debug(f"Content of 'chara' metadata (first 100 chars): {chara_content[:100]}...")
443
- try:
444
- decoded_content = base64.b64decode(chara_content).decode('utf-8')
445
- logging.debug(f"Decoded content (first 100 chars): {decoded_content[:100]}...")
446
- return decoded_content
447
- except Exception as e:
448
- logging.error(f"Error decoding base64 content: {e}")
449
-
450
- logging.debug("'chara' not found in metadata, checking for base64 encoded data")
451
- raw_data = img.tobytes()
452
- possible_json = raw_data.split(b'{', 1)[-1].rsplit(b'}', 1)[0]
453
- if possible_json:
454
- try:
455
- decoded = base64.b64decode(possible_json).decode('utf-8')
456
- if decoded.startswith('{') and decoded.endswith('}'):
457
- logging.debug("Found and decoded base64 JSON data")
458
- return '{' + decoded + '}'
459
- except Exception as e:
460
- logging.error(f"Error decoding base64 data: {e}")
461
-
462
- logging.warning("No JSON data found in the image")
463
- except Exception as e:
464
- logging.error(f"Error extracting JSON from image: {e}")
465
- return None
466
-
467
- def load_chat_history(file):
468
- try:
469
- content = file.read().decode('utf-8')
470
- chat_data = json.loads(content)
471
- return chat_data['history'], chat_data['character']
472
- except Exception as e:
473
- logging.error(f"Error loading chat history: {e}")
474
- return None, None
475
-
476
-
477
- # FIXME This should be in the chat tab....
478
- def create_character_card_interaction_tab():
479
- with gr.TabItem("Chat with a Character Card"):
480
- gr.Markdown("# Chat with a Character Card")
481
- with gr.Row():
482
- with gr.Column(scale=1):
483
- character_card_upload = gr.File(label="Upload Character Card")
484
- import_card_button = gr.Button("Import Character Card")
485
- load_characters_button = gr.Button("Load Existing Characters")
486
- from App_Function_Libraries.Chat import get_character_names
487
- character_dropdown = gr.Dropdown(label="Select Character", choices=get_character_names())
488
- api_name_input = gr.Dropdown(
489
- choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
490
- "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace", "Custom-OpenAI-API"],
491
- value=None,
492
- # FIXME - make it so the user cant' click `Send Message` without first setting an API + Chatbot
493
- label="API for Interaction(Mandatory)"
494
- )
495
- api_key_input = gr.Textbox(label="API Key (if not set in Config_Files/config.txt)",
496
- placeholder="Enter your API key here", type="password")
497
- temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="Temperature")
498
- import_chat_button = gr.Button("Import Chat History")
499
- chat_file_upload = gr.File(label="Upload Chat History JSON", visible=False)
500
-
501
-
502
- with gr.Column(scale=2):
503
- chat_history = gr.Chatbot(label="Conversation")
504
- user_input = gr.Textbox(label="Your message")
505
- send_message_button = gr.Button("Send Message")
506
- regenerate_button = gr.Button("Regenerate Last Message")
507
- save_chat_button = gr.Button("Save This Chat")
508
- save_status = gr.Textbox(label="Save Status", interactive=False)
509
-
510
- character_data = gr.State(None)
511
-
512
- def import_chat_history(file, current_history, char_data):
513
- loaded_history, char_name = load_chat_history(file)
514
- if loaded_history is None:
515
- return current_history, char_data, "Failed to load chat history."
516
-
517
- # Check if the loaded chat is for the current character
518
- if char_data and char_data.get('name') != char_name:
519
- return current_history, char_data, f"Warning: Loaded chat is for character '{char_name}', but current character is '{char_data.get('name')}'. Chat not imported."
520
-
521
- # If no character is selected, try to load the character from the chat
522
- if not char_data:
523
- new_char_data = load_character(char_name)[0]
524
- if new_char_data:
525
- char_data = new_char_data
526
- else:
527
- return current_history, char_data, f"Warning: Character '{char_name}' not found. Please select the character manually."
528
-
529
- return loaded_history, char_data, f"Chat history for '{char_name}' imported successfully."
530
-
531
- def import_character(file):
532
- card_data = import_character_card(file)
533
- if card_data:
534
- from App_Function_Libraries.Chat import save_character
535
- save_character(card_data)
536
- return card_data, gr.update(choices=get_character_names())
537
- else:
538
- return None, gr.update()
539
-
540
- def load_character(name):
541
- from App_Function_Libraries.Chat import load_characters
542
- characters = load_characters()
543
- char_data = characters.get(name)
544
- if char_data:
545
- first_message = char_data.get('first_mes', "Hello! I'm ready to chat.")
546
- return char_data, [(None, first_message)] if first_message else []
547
- return None, []
548
-
549
- def character_chat_wrapper(message, history, char_data, api_endpoint, api_key, temperature):
550
- logging.debug("Entered character_chat_wrapper")
551
- if char_data is None:
552
- return "Please select a character first.", history
553
-
554
- # Prepare the character's background information
555
- char_background = f"""
556
- Name: {char_data.get('name', 'Unknown')}
557
- Description: {char_data.get('description', 'N/A')}
558
- Personality: {char_data.get('personality', 'N/A')}
559
- Scenario: {char_data.get('scenario', 'N/A')}
560
- """
561
-
562
- # Prepare the system prompt for character impersonation
563
- system_message = f"""You are roleplaying as the character described below. Respond to the user's messages in character, maintaining the personality and background provided. Do not break character or refer to yourself as an AI.
564
-
565
- {char_background}
566
-
567
- Additional instructions: {char_data.get('post_history_instructions', '')}
568
- """
569
-
570
- # Prepare media_content and selected_parts
571
- media_content = {
572
- 'id': char_data.get('name'),
573
- 'title': char_data.get('name', 'Unknown Character'),
574
- 'content': char_background,
575
- 'description': char_data.get('description', ''),
576
- 'personality': char_data.get('personality', ''),
577
- 'scenario': char_data.get('scenario', '')
578
- }
579
- selected_parts = ['description', 'personality', 'scenario']
580
-
581
- prompt = char_data.get('post_history_instructions', '')
582
-
583
- # Prepare the input for the chat function
584
- if not history:
585
- full_message = f"{prompt}\n\n{message}" if prompt else message
586
- else:
587
- full_message = message
588
-
589
- # Call the chat function
590
- bot_message = chat(
591
- message,
592
- history,
593
- media_content,
594
- selected_parts,
595
- api_endpoint,
596
- api_key,
597
- prompt,
598
- temperature,
599
- system_message
600
- )
601
-
602
- # Update history
603
- history.append((message, bot_message))
604
- return history
605
-
606
- def save_chat_history(history, character_name):
607
- # Create the Saved_Chats folder if it doesn't exist
608
- save_directory = "Saved_Chats"
609
- os.makedirs(save_directory, exist_ok=True)
610
-
611
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
612
- filename = f"chat_history_{character_name}_{timestamp}.json"
613
- filepath = os.path.join(save_directory, filename)
614
-
615
- chat_data = {
616
- "character": character_name,
617
- "timestamp": timestamp,
618
- "history": history
619
- }
620
-
621
- try:
622
- with open(filepath, 'w', encoding='utf-8') as f:
623
- json.dump(chat_data, f, ensure_ascii=False, indent=2)
624
- return filepath
625
- except Exception as e:
626
- return f"Error saving chat: {str(e)}"
627
-
628
- def save_current_chat(history, char_data):
629
- if not char_data or not history:
630
- return "No chat to save or character not selected."
631
-
632
- character_name = char_data.get('name', 'Unknown')
633
- result = save_chat_history(history, character_name)
634
- if result.startswith("Error"):
635
- return result
636
- return f"Chat saved successfully as {result}"
637
-
638
- def regenerate_last_message(history, char_data, api_name, api_key, temperature):
639
- if not history:
640
- return history
641
-
642
- last_user_message = history[-1][0]
643
- new_history = history[:-1]
644
-
645
- return character_chat_wrapper(last_user_message, new_history, char_data, api_name, api_key, temperature)
646
-
647
- import_chat_button.click(
648
- fn=lambda: gr.update(visible=True),
649
- outputs=chat_file_upload
650
- )
651
-
652
- chat_file_upload.change(
653
- fn=import_chat_history,
654
- inputs=[chat_file_upload, chat_history, character_data],
655
- outputs=[chat_history, character_data, save_status]
656
- )
657
-
658
- import_card_button.click(
659
- fn=import_character,
660
- inputs=[character_card_upload],
661
- outputs=[character_data, character_dropdown]
662
- )
663
-
664
- load_characters_button.click(
665
- fn=lambda: gr.update(choices=get_character_names()),
666
- outputs=character_dropdown
667
- )
668
-
669
- character_dropdown.change(
670
- fn=load_character,
671
- inputs=[character_dropdown],
672
- outputs=[character_data, chat_history]
673
- )
674
-
675
- send_message_button.click(
676
- fn=character_chat_wrapper,
677
- inputs=[user_input, chat_history, character_data, api_name_input, api_key_input, temperature_slider],
678
- outputs=[chat_history]
679
- ).then(lambda: "", outputs=user_input)
680
-
681
- regenerate_button.click(
682
- fn=regenerate_last_message,
683
- inputs=[chat_history, character_data, api_name_input, api_key_input, temperature_slider],
684
- outputs=[chat_history]
685
- )
686
-
687
- save_chat_button.click(
688
- fn=save_current_chat,
689
- inputs=[chat_history, character_data],
690
- outputs=[save_status]
691
- )
692
-
693
- return character_data, chat_history, user_input
694
-
695
 
696
  def create_mikupad_tab():
697
  with gr.TabItem("Mikupad"):
 
2
  # Description: This file contains the functions that are used for writing in the Gradio UI.
3
  #
4
  # Imports
 
 
 
 
 
5
  #
6
  # External Imports
7
  import gradio as gr
 
8
  import textstat
9
  #
10
  # Local Imports
11
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import perform_summarization
 
12
  #
13
  ########################################################################################################################
14
  #
 
368
  gr.Markdown("# Utility to be added...")
369
 
370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371
 
372
  def create_mikupad_tab():
373
  with gr.TabItem("Mikupad"):