# Local_LLM_Inference_Engine_Lib.py ######################################### # Local LLM Inference Engine Library # This library is used to handle downloading, configuring, and launching the Local LLM Inference Engine # via (llama.cpp via llamafile) # # #### #################### # Function List # # 1. download_latest_llamafile(repo, asset_name_prefix, output_filename) # 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5) # 3. verify_checksum(file_path, expected_checksum) # 4. cleanup_process() # 5. signal_handler(sig, frame) # 6. local_llm_function() # 7. launch_in_new_terminal_windows(executable, args) # 8. launch_in_new_terminal_linux(executable, args) # 9. launch_in_new_terminal_mac(executable, args) # #################### # Import necessary libraries #import atexit import re import subprocess import sys import time from App_Function_Libraries.Utils.Utils import download_file # Import 3rd-pary Libraries # # Import Local from App_Function_Libraries.Web_Scraping.Article_Summarization_Lib import * # # ####################################################################################################################### # Function Definitions # # Function to download the latest llamafile from the Mozilla-Ocho/llamafile repo def download_latest_llamafile(output_filename): # Check if the file already exists print("Checking for and downloading Llamafile it it doesn't already exist...") if os.path.exists(output_filename): print("Llamafile already exists. Skipping download.") logging.debug(f"{output_filename} already exists. Skipping download.") llamafile_exists = True else: llamafile_exists = False # Double check if the file exists if llamafile_exists: pass else: # Establish variables for Llamafile download repo = "Mozilla-Ocho/llamafile" asset_name_prefix = "llamafile-" # Get the latest release information latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" response = requests.get(latest_release_url) if response.status_code != 200: raise Exception(f"Failed to fetch latest release info: {response.status_code}") latest_release_data = response.json() tag_name = latest_release_data['tag_name'] # Get the release details using the tag name release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" response = requests.get(release_details_url) if response.status_code != 200: raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") release_data = response.json() assets = release_data.get('assets', []) # Find the asset with the specified prefix asset_url = None for asset in assets: if re.match(f"{asset_name_prefix}.*", asset['name']): asset_url = asset['browser_download_url'] break if not asset_url: raise Exception(f"No asset found with prefix {asset_name_prefix}") # Download the asset response = requests.get(asset_url) if response.status_code != 200: raise Exception(f"Failed to download asset: {response.status_code}") print("Llamafile downloaded successfully.") logging.debug("Main: Llamafile downloaded successfully.") # Save the file with open(output_filename, 'wb') as file: file.write(response.content) logging.debug(f"Downloaded {output_filename} from {asset_url}") print(f"Downloaded {output_filename} from {asset_url}") return output_filename def download_llm_model(model_name, model_url, model_filename, model_hash): print("Checking available LLM models:") available_models = [] missing_models = [] for key, model in llm_models.items(): if os.path.exists(model['filename']): print(f"{key}. {model['name']} (Available)") available_models.append(key) else: print(f"{key}. {model['name']} (Not downloaded)") missing_models.append(key) if not available_models: print("No models are currently downloaded.") else: print(f"\n{len(available_models)} model(s) are available for use.") action = input("Do you want to (u)se an available model, (d)ownload a new model, or (q)uit? ").lower() if action == 'u': if not available_models: print("No models are available. Please download a model first.") return None while True: choice = input(f"Enter the number of the model you want to use ({', '.join(available_models)}): ") if choice in available_models: print(f"Selected model: {llm_models[choice]['name']}") return llm_models[choice]['filename'] else: print("Invalid choice. Please try again.") elif action == 'd': if not missing_models: print("All models are already downloaded. You can use an available model.") return None print("\nThe following models can be downloaded:") for key in missing_models: print(f"{key}. {llm_models[key]['name']}") while True: choice = input(f"Enter the number of the model you want to download ({', '.join(missing_models)}): ") if choice in missing_models: model = llm_models[choice] print(f"Downloading {model['name']}...") download_file(model['url'], model['filename'], expected_checksum=model['hash']) print(f"{model['filename']} has been downloaded successfully.") return model['filename'] else: print("Invalid choice. Please try again.") elif action == 'q': print("Exiting model selection.") return None else: print("Invalid action. Exiting model selection.") return None # # ######################################## # # LLM models information llm_models = { "1": { "name": "Mistral-7B-Instruct-v0.2-Q8.llamafile", "url": "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true", "filename": "mistral-7b-instruct-v0.2.Q8_0.llamafile", "hash": "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" }, "2": { "name": "Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf", "url": "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true", "filename": "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf", "hash": "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" }, "3": { "name": "Phi-3-mini-128k-instruct-Q8_0.gguf", "url": "https://huggingface.co/gaianet/Phi-3-mini-128k-instruct-GGUF/resolve/main/Phi-3-mini-128k-instruct-Q8_0.gguf?download=true", "filename": "Phi-3-mini-128k-instruct-Q8_0.gguf", "hash": "6817b66d1c3c59ab06822e9732f0e594eea44e64cae2110906eac9d17f75d193" }, "4": { "name": "Meta-Llama-3-8B-Instruct.Q8_0.llamafile", "url": "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true", "filename": "Meta-Llama-3-8B-Instruct.Q8_0.llamafile", "hash": "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" } } process = None # Function to close out llamafile process on script exit. def cleanup_process(): global process if process is not None: # FIXME - process.kill() #process.kill() logging.debug("Main: Terminated the external process") def signal_handler(sig, frame): logging.info('Signal handler called with signal: %s', sig) cleanup_process() sys.exit(0) # FIXME - Add callout to gradio UI def local_llm_function(): global process useros = os.name if useros == "nt": output_filename = "llamafile.exe" else: output_filename = "llamafile" print( "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while") print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") print("WARNING - Hope you're comfy. Or it's already downloaded.") time.sleep(6) logging.debug("Main: Checking and downloading Llamafile from Github if needed...") llamafile_path = download_latest_llamafile(output_filename) logging.debug("Main: Llamafile downloaded successfully.") # FIXME - llm_choice input("What model do you want to use? (Press Enter to continue)") print("1. Mistral-7B-Instruct-v0.2-Q8.llamafile") print("2. Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf") print("3. Phi-3-mini-128k-instruct-Q8_0.gguf") print("4. Meta-Llama-3-8B-Instruct.Q8_0.llamafile") llm_choice = int(input("Enter the number of the model you want to use: ")) if llm_choice not in [1, 2, 3, 4]: print("Invalid choice. Exiting.") return arguments = [] # Launch the llamafile in an external process with the specified argument if llm_choice == 1: arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"] elif llm_choice == 2: arguments = ["--ctx-size", "8192 ", " -m", "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"] elif llm_choice == 3: arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"] elif llm_choice == 4: arguments = ["--ctx-size", "8192 ", " -m", "Meta-Llama-3-8B-Instruct.Q8_0.llamafile"] # FIXME try: logging.info("local_llm_function: Launching the LLM (llamafile) in an external terminal window...") if useros == "nt": launch_in_new_terminal_windows(llamafile_path, arguments) elif useros == "posix": launch_in_new_terminal_linux(llamafile_path, arguments) else: launch_in_new_terminal_mac(llamafile_path, arguments) # FIXME - pid doesn't exist in this context #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") # Ha like this shit works #atexit.register(cleanup_process, process) except Exception as e: logging.error(f"Failed to launch the process: {e}") print(f"Failed to launch the process: {e}") # This function is used to dl a llamafile binary + the Samantha Mistral Finetune model. # It should only be called when the user is using the GUI to set up and interact with Llamafile. def local_llm_gui_function(am_noob, verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value, model_checked, model_value, hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value, ctx_size_checked, ctx_size_value, ngl_checked, ngl_value, host_checked, host_value, port_checked, port_value): # Identify running OS useros = os.name if useros == "nt": output_filename = "llamafile.exe" else: output_filename = "llamafile" # Build up the commands for llamafile built_up_args = [] # Identify if the user wants us to do everything for them if am_noob: print("You're a noob. (lol j/k; they're good settings)") # Setup variables for Model download from HF repo = "Mozilla-Ocho/llamafile" asset_name_prefix = "llamafile-" print( "WARNING - Checking for existence of llamafile or HuggingFace model (GGUF type), downloading if needed...This could be a while") print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") print("WARNING - Hope you're comfy. Or it's already downloaded.") time.sleep(6) logging.debug("Main: Checking for Llamafile and downloading from Github if needed...\n\tAlso checking for a " "local LLM model...\n\tDownloading if needed...\n\tThis could take a while...\n\tWill be the " "'samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf' model...") llamafile_path = download_latest_llamafile(output_filename) logging.debug("Main: Llamafile downloaded successfully.") arguments = [] # FIXME - llm_choice # This is the gui, we can add this as options later llm_choice = 2 # Launch the llamafile in an external process with the specified argument if llm_choice == 1: arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"] elif llm_choice == 2: arguments = """--ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf""" elif llm_choice == 3: arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"] elif llm_choice == 4: arguments = ["--ctx-size", "8192 ", " -m", "Meta-Llama-3-8B-Instruct.Q8_0.llamafile"] try: logging.info("Main(Local-LLM-GUI-noob): Launching the LLM (llamafile) in an external terminal window...") if useros == "nt": command = 'start cmd /k "llamafile.exe --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"' subprocess.Popen(command, shell=True) elif useros == "posix": command = "llamafile --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" subprocess.Popen(command, shell=True) else: command = "llamafile.exe --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" subprocess.Popen(command, shell=True) # FIXME - pid doesn't exist in this context #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") # FIXME - Shit just don't work # atexit.register(cleanup_process, process) except Exception as e: logging.error(f"Failed to launch the process: {e}") print(f"Failed to launch the process: {e}") else: print("You're not a noob.") llamafile_path = download_latest_llamafile(output_filename) if verbose_checked == True: print("Verbose mode enabled.") built_up_args.append("--verbose") if threads_checked == True: print(f"Threads enabled with value: {threads_value}") built_up_args.append(f"--threads {threads_value}") if http_threads_checked == True: print(f"HTTP Threads enabled with value: {http_threads_value}") built_up_args.append(f"--http-threads {http_threads_value}") if model_checked == True: print(f"Model enabled with value: {model_value}") built_up_args.append(f"--model {model_value}") if hf_repo_checked == True: print(f"Huggingface repo enabled with value: {hf_repo_value}") built_up_args.append(f"--hf-repo {hf_repo_value}") if hf_file_checked == True: print(f"Huggingface file enabled with value: {hf_file_value}") built_up_args.append(f"--hf-file {hf_file_value}") if ctx_size_checked == True: print(f"Context size enabled with value: {ctx_size_value}") built_up_args.append(f"--ctx-size {ctx_size_value}") if ngl_checked == True: print(f"NGL enabled with value: {ngl_value}") built_up_args.append(f"--ngl {ngl_value}") if host_checked == True: print(f"Host enabled with value: {host_value}") built_up_args.append(f"--host {host_value}") if port_checked == True: print(f"Port enabled with value: {port_value}") built_up_args.append(f"--port {port_value}") # Lets go ahead and finally launch the bastard... try: logging.info("Main(Local-LLM-GUI-Main): Launching the LLM (llamafile) in an external terminal window...") if useros == "nt": launch_in_new_terminal_windows(llamafile_path, built_up_args) elif useros == "posix": launch_in_new_terminal_linux(llamafile_path, built_up_args) else: launch_in_new_terminal_mac(llamafile_path, built_up_args) # FIXME - pid doesn't exist in this context #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") # FIXME #atexit.register(cleanup_process, process) except Exception as e: logging.error(f"Failed to launch the process: {e}") print(f"Failed to launch the process: {e}") # Launch the executable in a new terminal window # FIXME - really should figure out a cleaner way of doing this... def launch_in_new_terminal_windows(executable, args): command = f'start cmd /k "{executable} {" ".join(args)}"' subprocess.Popen(command, shell=True) # FIXME def launch_in_new_terminal_linux(executable, args): command = f'gnome-terminal -- {executable} {" ".join(args)}' subprocess.Popen(command, shell=True) # FIXME def launch_in_new_terminal_mac(executable, args): command = f'open -a Terminal.app {executable} {" ".join(args)}' subprocess.Popen(command, shell=True)