Spaces:
Sleeping
Sleeping
File size: 12,525 Bytes
fa9a583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# Explain_summarize_tab.py
# Gradio UI for explaining and summarizing text
#
# Imports
import logging
#
# External Imports
import gradio as gr
#
# Local Imports
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm, \
summarize_with_ollama
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, \
summarize_with_cohere, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \
summarize_with_huggingface
#
#
############################################################################################################
#
# Functions:
def create_summarize_explain_tab():
with gr.TabItem("Explain/Summarize Text"):
gr.Markdown("# Explain or Summarize Text without ingesting it into the DB")
with gr.Row():
with gr.Column():
text_to_work_input = gr.Textbox(label="Text to be Explained or Summarized",
placeholder="Enter the text you want explained or summarized here",
lines=20)
with gr.Row():
explanation_checkbox = gr.Checkbox(label="Explain Text", value=True)
summarization_checkbox = gr.Checkbox(label="Summarize Text", value=True)
api_endpoint = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
"OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
value=None,
label="API for Summarization (Optional)"
)
api_key_input = gr.Textbox(label="API Key (if required)", placeholder="Enter your API key here",
type="password")
explain_summarize_button = gr.Button("Explain/Summarize")
with gr.Column():
summarization_output = gr.Textbox(label="Summary:", lines=20)
explanation_output = gr.Textbox(label="Explanation:", lines=50)
explain_summarize_button.click(
fn=summarize_explain_text,
inputs=[text_to_work_input, api_endpoint, api_key_input, summarization_checkbox, explanation_checkbox],
outputs=[summarization_output, explanation_output]
)
def summarize_explain_text(message, api_endpoint, api_key, summarization, explanation):
summarization_response = None
explanation_response = None
temp = 0.7
try:
logging.info(f"Debug - summarize_explain_text Function - Message: {message}")
logging.info(f"Debug - summarize_explain_text Function - API Endpoint: {api_endpoint}")
# Prepare the input for the API
input_data = f"User: {message}\n"
# Print first 500 chars
logging.info(f"Debug - Chat Function - Input Data: {input_data[:500]}...")
logging.debug(f"Debug - Chat Function - API Key: {api_key[:10]}")
user_prompt = " "
if not api_endpoint:
return "Please select an API endpoint", "Please select an API endpoint"
try:
if summarization:
system_prompt = """<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]
**Bulleted Note Creation Guidelines**
**Headings**:
- Based on referenced topics, not categories like quotes or terms
- Surrounded by **bold** formatting
- Not listed as bullet points
- No space between headings and list items underneath
**Emphasis**:
- **Important terms** set in bold font
- **Text ending in a colon**: also bolded
**Review**:
- Ensure adherence to specified format
- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]"""
# Use the existing API request code based on the selected endpoint
logging.info(f"Debug - Chat Function - API Endpoint: {api_endpoint}")
if api_endpoint.lower() == 'openai':
summarization_response = summarize_with_openai(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "anthropic":
summarization_response = summarize_with_anthropic(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "cohere":
summarization_response = summarize_with_cohere(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "groq":
summarization_response = summarize_with_groq(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "openrouter":
summarization_response = summarize_with_openrouter(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "deepseek":
summarization_response = summarize_with_deepseek(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "llama.cpp":
summarization_response = summarize_with_llama(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "kobold":
summarization_response = summarize_with_kobold(input_data, api_key, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "ooba":
summarization_response = summarize_with_oobabooga(input_data, api_key, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "tabbyapi":
summarization_response = summarize_with_tabbyapi(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "vllm":
summarization_response = summarize_with_vllm(input_data, user_prompt, system_prompt)
elif api_endpoint.lower() == "local-llm":
summarization_response = summarize_with_local_llm(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "huggingface":
summarization_response = summarize_with_huggingface(api_key, input_data, user_prompt,
temp) # , system_prompt)
elif api_endpoint.lower() == "ollama":
summarization_response = summarize_with_ollama(input_data, user_prompt, temp, system_prompt)
else:
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
except Exception as e:
logging.error(f"Error in summarization: {str(e)}")
response1 = f"An error occurred during summarization: {str(e)}"
try:
if explanation:
system_prompt = """You are a professional teacher. Please explain the content presented in an easy to digest fashion so that a non-specialist may understand it."""
# Use the existing API request code based on the selected endpoint
logging.info(f"Debug - Chat Function - API Endpoint: {api_endpoint}")
if api_endpoint.lower() == 'openai':
explanation_response = summarize_with_openai(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "anthropic":
explanation_response = summarize_with_anthropic(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "cohere":
explanation_response = summarize_with_cohere(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "groq":
explanation_response = summarize_with_groq(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "openrouter":
explanation_response = summarize_with_openrouter(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "deepseek":
explanation_response = summarize_with_deepseek(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "llama.cpp":
explanation_response = summarize_with_llama(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "kobold":
explanation_response = summarize_with_kobold(input_data, api_key, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "ooba":
explanation_response = summarize_with_oobabooga(input_data, api_key, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "tabbyapi":
explanation_response = summarize_with_tabbyapi(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "vllm":
explanation_response = summarize_with_vllm(input_data, user_prompt, system_prompt)
elif api_endpoint.lower() == "local-llm":
explanation_response = summarize_with_local_llm(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "huggingface":
explanation_response = summarize_with_huggingface(api_key, input_data, user_prompt,
temp) # , system_prompt)
elif api_endpoint.lower() == "ollama":
explanation_response = summarize_with_ollama(input_data, user_prompt, temp, system_prompt)
else:
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
except Exception as e:
logging.error(f"Error in summarization: {str(e)}")
response2 = f"An error occurred during summarization: {str(e)}"
if summarization_response:
response1 = f"Summary: {summarization_response}"
else:
response1 = "Summary: No summary requested"
if explanation_response:
response2 = f"Explanation: {explanation_response}"
else:
response2 = "Explanation: No explanation requested"
return response1, response2
except Exception as e:
logging.error(f"Error in chat function: {str(e)}")
return f"An error occurred: {str(e)}" |