Spaces:
Running
on
T4
Running
on
T4
File size: 32,912 Bytes
9c56866 e15e1c7 9c56866 e15e1c7 9c56866 e15e1c7 9c56866 e15e1c7 9c56866 e15e1c7 9c56866 e15e1c7 9c56866 5d354c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
# Chunk_Lib.py
#########################################
# Chunking Library
# This library is used to perform chunking of input files.
# Currently, uses naive approaches. Nothing fancy.
#
####
# Import necessary libraries
import hashlib
import json
import logging
import re
from typing import Any, Dict, List, Optional, Tuple
#
# Import 3rd party
from openai import OpenAI
from tqdm import tqdm
from langdetect import detect
from transformers import GPT2Tokenizer
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
#
# Import Local
from App_Function_Libraries.Tokenization_Methods_Lib import openai_tokenize
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
#
#######################################################################################################################
# Config Settings
#
#
# FIXME - Make sure it only downloads if it already exists, and does a check first.
# Ensure NLTK data is downloaded
def ntlk_prep():
nltk.download('punkt')
#
# Load GPT2 tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
#
# Load configuration
config = load_comprehensive_config()
# Embedding Chunking options
chunk_options = {
'method': config.get('Chunking', 'method', fallback='words'),
'max_size': config.getint('Chunking', 'max_size', fallback=400),
'overlap': config.getint('Chunking', 'overlap', fallback=200),
'adaptive': config.getboolean('Chunking', 'adaptive', fallback=False),
'multi_level': config.getboolean('Chunking', 'multi_level', fallback=False),
'language': config.get('Chunking', 'language', fallback='english')
}
openai_api_key = config.get('API', 'openai_api_key')
#
# End of settings
#######################################################################################################################
#
# Functions:
def detect_language(text: str) -> str:
try:
return detect(text)
except:
# Default to English if detection fails
return 'en'
def load_document(file_path):
with open(file_path, 'r') as file:
text = file.read()
return re.sub('\\s+', ' ', text).strip()
def improved_chunking_process(text: str, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
logging.debug("Improved chunking process started...")
# Extract JSON metadata if present
json_content = {}
try:
json_end = text.index("}\n") + 1
json_content = json.loads(text[:json_end])
text = text[json_end:].strip()
logging.debug(f"Extracted JSON metadata: {json_content}")
except (ValueError, json.JSONDecodeError):
logging.debug("No JSON metadata found at the beginning of the text")
# Extract any additional header text
header_match = re.match(r"(This text was transcribed using.*?)\n\n", text, re.DOTALL)
header_text = ""
if header_match:
header_text = header_match.group(1)
text = text[len(header_text):].strip()
logging.debug(f"Extracted header text: {header_text}")
options = chunk_options.copy()
if custom_chunk_options:
options.update(custom_chunk_options)
chunk_method = options.get('method', 'words')
max_size = options.get('max_size', 2000)
overlap = options.get('overlap', 0)
language = options.get('language', None)
if language is None:
language = detect_language(text)
chunks = chunk_text(text, chunk_method, max_size, overlap, language)
chunks_with_metadata = []
total_chunks = len(chunks)
for i, chunk in enumerate(chunks):
metadata = {
'chunk_index': i,
'total_chunks': total_chunks,
'chunk_method': chunk_method,
'max_size': max_size,
'overlap': overlap,
'language': language,
'relative_position': i / total_chunks
}
metadata.update(json_content) # Add the extracted JSON content to metadata
metadata['header_text'] = header_text # Add the header text to metadata
chunks_with_metadata.append({
'text': chunk,
'metadata': metadata
})
return chunks_with_metadata
def multi_level_chunking(text: str, method: str, max_size: int, overlap: int, language: str) -> List[str]:
logging.debug("Multi-level chunking process started...")
# First level: chunk by paragraphs
paragraphs = chunk_text_by_paragraphs(text, max_size * 2, overlap)
# Second level: chunk each paragraph further
chunks = []
for para in paragraphs:
if method == 'words':
chunks.extend(chunk_text_by_words(para, max_size, overlap, language))
elif method == 'sentences':
chunks.extend(chunk_text_by_sentences(para, max_size, overlap, language))
else:
chunks.append(para)
return chunks
# FIXME - ensure language detection occurs in each chunk function
def chunk_text(text: str, method: str, max_size: int, overlap: int, language: str=None) -> List[str]:
if method == 'words':
logging.debug("Chunking by words...")
return chunk_text_by_words(text, max_size, overlap, language)
elif method == 'sentences':
logging.debug("Chunking by sentences...")
return chunk_text_by_sentences(text, max_size, overlap, language)
elif method == 'paragraphs':
logging.debug("Chunking by paragraphs...")
return chunk_text_by_paragraphs(text, max_size, overlap)
elif method == 'tokens':
logging.debug("Chunking by tokens...")
return chunk_text_by_tokens(text, max_size, overlap)
elif method == 'semantic':
logging.debug("Chunking by semantic similarity...")
return semantic_chunking(text, max_size)
else:
return [text]
def determine_chunk_position(relative_position: float) -> str:
if relative_position < 0.33:
return "This chunk is from the beginning of the document"
elif relative_position < 0.66:
return "This chunk is from the middle of the document"
else:
return "This chunk is from the end of the document"
def chunk_text_by_words(text: str, max_words: int = 300, overlap: int = 0, language: str = None) -> List[str]:
logging.debug("chunk_text_by_words...")
if language is None:
language = detect_language(text)
if language.startswith('zh'): # Chinese
import jieba
words = list(jieba.cut(text))
elif language == 'ja': # Japanese
import fugashi
tagger = fugashi.Tagger()
words = [word.surface for word in tagger(text)]
else: # Default to simple splitting for other languages
words = text.split()
chunks = []
for i in range(0, len(words), max_words - overlap):
chunk = ' '.join(words[i:i + max_words])
chunks.append(chunk)
return post_process_chunks(chunks)
def chunk_text_by_sentences(text: str, max_sentences: int = 10, overlap: int = 0, language: str = None) -> List[str]:
logging.debug("chunk_text_by_sentences...")
if language is None:
language = detect_language(text)
nltk.download('punkt', quiet=True)
if language.startswith('zh'): # Chinese
import jieba
sentences = list(jieba.cut(text, cut_all=False))
elif language == 'ja': # Japanese
import fugashi
tagger = fugashi.Tagger()
sentences = [word.surface for word in tagger(text) if word.feature.pos1 in ['記号', '補助記号'] and word.surface.strip()]
else: # Default to NLTK for other languages
sentences = sent_tokenize(text, language=language)
chunks = []
for i in range(0, len(sentences), max_sentences - overlap):
chunk = ' '.join(sentences[i:i + max_sentences])
chunks.append(chunk)
return post_process_chunks(chunks)
def chunk_text_by_paragraphs(text: str, max_paragraphs: int = 5, overlap: int = 0) -> List[str]:
logging.debug("chunk_text_by_paragraphs...")
paragraphs = re.split(r'\n\s*\n', text)
chunks = []
for i in range(0, len(paragraphs), max_paragraphs - overlap):
chunk = '\n\n'.join(paragraphs[i:i + max_paragraphs])
chunks.append(chunk)
return post_process_chunks(chunks)
def chunk_text_by_tokens(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]:
logging.debug("chunk_text_by_tokens...")
# This is a simplified token-based chunking. For more accurate tokenization,
# consider using a proper tokenizer like GPT-2 TokenizerFast
words = text.split()
chunks = []
current_chunk = []
current_token_count = 0
for word in words:
word_token_count = len(word) // 4 + 1 # Rough estimate of token count
if current_token_count + word_token_count > max_tokens and current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = current_chunk[-overlap:] if overlap > 0 else []
current_token_count = sum(len(w) // 4 + 1 for w in current_chunk)
current_chunk.append(word)
current_token_count += word_token_count
if current_chunk:
chunks.append(' '.join(current_chunk))
return post_process_chunks(chunks)
def post_process_chunks(chunks: List[str]) -> List[str]:
return [chunk.strip() for chunk in chunks if chunk.strip()]
# FIXME - F
def get_chunk_metadata(chunk: str, full_text: str, chunk_type: str = "generic",
chapter_number: Optional[int] = None,
chapter_pattern: Optional[str] = None,
language: str = None) -> Dict[str, Any]:
try:
logging.debug("get_chunk_metadata...")
start_index = full_text.index(chunk)
end_index = start_index + len(chunk)
# Calculate a hash for the chunk
chunk_hash = hashlib.md5(chunk.encode()).hexdigest()
metadata = {
'start_index': start_index,
'end_index': end_index,
'word_count': len(chunk.split()),
'char_count': len(chunk),
'chunk_type': chunk_type,
'language': language,
'chunk_hash': chunk_hash,
'relative_position': start_index / len(full_text)
}
if chunk_type == "chapter":
metadata['chapter_number'] = chapter_number
metadata['chapter_pattern'] = chapter_pattern
return metadata
except ValueError as e:
logging.error(f"Chunk not found in full_text: {chunk[:50]}... Full text length: {len(full_text)}")
raise
def process_document_with_metadata(text: str, chunk_options: Dict[str, Any],
document_metadata: Dict[str, Any]) -> Dict[str, Any]:
chunks = improved_chunking_process(text, chunk_options)
return {
'document_metadata': document_metadata,
'chunks': chunks
}
# Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number
def chunk_text_hybrid(text, max_tokens=1000):
logging.debug("chunk_text_hybrid...")
sentences = nltk.tokenize.sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
tokens = tokenizer.encode(sentence)
if current_length + len(tokens) <= max_tokens:
current_chunk.append(sentence)
current_length += len(tokens)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = len(tokens)
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
# Thanks openai
def chunk_on_delimiter(input_string: str,
max_tokens: int,
delimiter: str) -> List[str]:
logging.debug("chunk_on_delimiter...")
chunks = input_string.split(delimiter)
combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum(
chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True)
if dropped_chunk_count > 0:
print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.")
combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks]
return combined_chunks
# ????FIXME
def recursive_summarize_chunks(chunks, summarize_func, custom_prompt, temp=None, system_prompt=None):
logging.debug("recursive_summarize_chunks...")
summarized_chunks = []
current_summary = ""
logging.debug(f"recursive_summarize_chunks: Summarizing {len(chunks)} chunks recursively...")
logging.debug(f"recursive_summarize_chunks: temperature is @ {temp}")
for i, chunk in enumerate(chunks):
if i == 0:
current_summary = summarize_func(chunk, custom_prompt, temp, system_prompt)
else:
combined_text = current_summary + "\n\n" + chunk
current_summary = summarize_func(combined_text, custom_prompt, temp, system_prompt)
summarized_chunks.append(current_summary)
return summarized_chunks
# Sample text for testing
sample_text = """
Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence
concerned with the interactions between computers and human language, in particular how to program computers
to process and analyze large amounts of natural language data. The result is a computer capable of "understanding"
the contents of documents, including the contextual nuances of the language within them. The technology can then
accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.
Challenges in natural language processing frequently involve speech recognition, natural language understanding,
and natural language generation.
Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled
"Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence.
"""
# Example usage of different chunking methods
# print("Chunking by words:")
# print(chunk_text_by_words(sample_text, max_words=50))
#
# print("\nChunking by sentences:")
# print(chunk_text_by_sentences(sample_text, max_sentences=2))
#
# print("\nChunking by paragraphs:")
# print(chunk_text_by_paragraphs(sample_text, max_paragraphs=1))
#
# print("\nChunking by tokens:")
# print(chunk_text_by_tokens(sample_text, max_tokens=50))
#
# print("\nHybrid chunking:")
# print(chunk_text_hybrid(sample_text, max_tokens=50))
#######################################################################################################################
#
# Experimental Semantic Chunking
#
# Chunk text into segments based on semantic similarity
def count_units(text, unit='words'):
if unit == 'words':
return len(text.split())
elif unit == 'tokens':
return len(word_tokenize(text))
elif unit == 'characters':
return len(text)
else:
raise ValueError("Invalid unit. Choose 'words', 'tokens', or 'characters'.")
def semantic_chunking(text, max_chunk_size=2000, unit='words'):
logging.debug("semantic_chunking...")
nltk.download('punkt', quiet=True)
sentences = sent_tokenize(text)
vectorizer = TfidfVectorizer()
sentence_vectors = vectorizer.fit_transform(sentences)
chunks = []
current_chunk = []
current_size = 0
for i, sentence in enumerate(sentences):
sentence_size = count_units(sentence, unit)
if current_size + sentence_size > max_chunk_size and current_chunk:
chunks.append(' '.join(current_chunk))
overlap_size = count_units(' '.join(current_chunk[-3:]), unit) # Use last 3 sentences for overlap
current_chunk = current_chunk[-3:] # Keep last 3 sentences for overlap
current_size = overlap_size
current_chunk.append(sentence)
current_size += sentence_size
if i + 1 < len(sentences):
current_vector = sentence_vectors[i]
next_vector = sentence_vectors[i + 1]
similarity = cosine_similarity(current_vector, next_vector)[0][0]
if similarity < 0.5 and current_size >= max_chunk_size // 2:
chunks.append(' '.join(current_chunk))
overlap_size = count_units(' '.join(current_chunk[-3:]), unit)
current_chunk = current_chunk[-3:]
current_size = overlap_size
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def semantic_chunk_long_file(file_path, max_chunk_size=1000, overlap=100, unit='words'):
logging.debug("semantic_chunk_long_file...")
try:
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
chunks = semantic_chunking(content, max_chunk_size, unit)
return chunks
except Exception as e:
logging.error(f"Error chunking text file: {str(e)}")
return None
#
#
#######################################################################################################################
#######################################################################################################################
#
# Embedding Chunking
def chunk_for_embedding(text: str, file_name: str, full_summary: str, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
options = chunk_options.copy()
if custom_chunk_options:
options.update(custom_chunk_options)
chunks = improved_chunking_process(text, options)
total_chunks = len(chunks)
chunked_text_with_headers = []
for i, chunk in enumerate(chunks, 1):
chunk_text = chunk['text']
chunk_position = determine_chunk_position(chunk['metadata']['relative_position'])
chunk_header = f"""
Original Document: {file_name}
Full Document Summary: {full_summary or "Full document summary not available."}
Chunk: {i} of {total_chunks}
Position: {chunk_position}
--- Chunk Content ---
"""
full_chunk_text = chunk_header + chunk_text
chunk['text'] = full_chunk_text
chunk['metadata']['file_name'] = file_name
chunked_text_with_headers.append(chunk)
return chunked_text_with_headers
#
# End of Embedding Chunking
#######################################################################################################################
#######################################################################################################################
#
# OpenAI Rolling Summarization
#
client = OpenAI(api_key=openai_api_key)
def get_chat_completion(messages, model='gpt-4-turbo'):
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0,
)
return response.choices[0].message.content
# This function combines text chunks into larger blocks without exceeding a specified token count.
# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow.
def combine_chunks_with_no_minimum(
chunks: List[str],
max_tokens: int,
chunk_delimiter="\n\n",
header: Optional[str] = None,
add_ellipsis_for_overflow=False,
) -> Tuple[List[str], List[List[int]], int]:
dropped_chunk_count = 0
output = [] # list to hold the final combined chunks
output_indices = [] # list to hold the indices of the final combined chunks
candidate = (
[] if header is None else [header]
) # list to hold the current combined chunk candidate
candidate_indices = []
for chunk_i, chunk in enumerate(chunks):
chunk_with_header = [chunk] if header is None else [header, chunk]
# FIXME MAKE NOT OPENAI SPECIFIC
if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens:
print(f"warning: chunk overflow")
if (
add_ellipsis_for_overflow
# FIXME MAKE NOT OPENAI SPECIFIC
and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens
):
candidate.append("...")
dropped_chunk_count += 1
continue # this case would break downstream assumptions
# estimate token count with the current chunk added
# FIXME MAKE NOT OPENAI SPECIFIC
extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk])))
# If the token count exceeds max_tokens, add the current candidate to output and start a new candidate
if extended_candidate_token_count > max_tokens:
output.append(chunk_delimiter.join(candidate))
output_indices.append(candidate_indices)
candidate = chunk_with_header # re-initialize candidate
candidate_indices = [chunk_i]
# otherwise keep extending the candidate
else:
candidate.append(chunk)
candidate_indices.append(chunk_i)
# add the remaining candidate to output if it's not empty
if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0):
output.append(chunk_delimiter.join(candidate))
output_indices.append(candidate_indices)
return output, output_indices, dropped_chunk_count
def rolling_summarize(text: str,
detail: float = 0,
model: str = 'gpt-4-turbo',
additional_instructions: Optional[str] = None,
minimum_chunk_size: Optional[int] = 500,
chunk_delimiter: str = ".",
summarize_recursively=False,
verbose=False):
"""
Summarizes a given text by splitting it into chunks, each of which is summarized individually.
The level of detail in the summary can be adjusted, and the process can optionally be made recursive.
Parameters:
- text (str): The text to be summarized.
- detail (float, optional): A value between 0 and 1
indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more
detailed summary. Defaults to 0.
- additional_instructions (Optional[str], optional): Additional instructions to provide to the
model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text
chunks. Defaults to 500.
- chunk_delimiter (str, optional): The delimiter used to split the text into chunks. Defaults to ".".
- summarize_recursively (bool, optional): If True, summaries are generated recursively, using previous summaries for context.
- verbose (bool, optional): If True, prints detailed information about the chunking process.
Returns:
- str: The final compiled summary of the text.
The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count
based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If
`summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the
summarization process. The function returns a compiled summary of all chunks.
"""
# check detail is set correctly
assert 0 <= detail <= 1
# interpolate the number of chunks based to get specified level of detail
max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter))
min_chunks = 1
num_chunks = int(min_chunks + detail * (max_chunks - min_chunks))
# adjust chunk_size based on interpolated number of chunks
# FIXME MAKE NOT OPENAI SPECIFIC
document_length = len(openai_tokenize(text))
chunk_size = max(minimum_chunk_size, document_length // num_chunks)
text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter)
if verbose:
print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.")
# FIXME MAKE NOT OPENAI SPECIFIC
print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}")
# set system message - FIXME
system_message_content = "Rewrite this text in summarized form."
if additional_instructions is not None:
system_message_content += f"\n\n{additional_instructions}"
accumulated_summaries = []
for i, chunk in enumerate(tqdm(text_chunks)):
if summarize_recursively and accumulated_summaries:
# Combine previous summary with current chunk for recursive summarization
combined_text = accumulated_summaries[-1] + "\n\n" + chunk
user_message_content = f"Previous summary and new content to summarize:\n\n{combined_text}"
else:
user_message_content = chunk
messages = [
{"role": "system", "content": system_message_content},
{"role": "user", "content": user_message_content}
]
response = get_chat_completion(messages, model=model)
accumulated_summaries.append(response)
final_summary = '\n\n'.join(accumulated_summaries)
return final_summary
#
#
#######################################################################################################################
#
# Ebook Chapter Chunking
def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]:
logging.debug("chunk_ebook_by_chapters")
max_chunk_size = chunk_options.get('max_size', 300)
overlap = chunk_options.get('overlap', 0)
custom_pattern = chunk_options.get('custom_chapter_pattern', None)
# List of chapter heading patterns to try, in order
chapter_patterns = [
custom_pattern,
r'^#{1,2}\s+', # Markdown style: '# ' or '## '
r'^Chapter\s+\d+', # 'Chapter ' followed by numbers
r'^\d+\.\s+', # Numbered chapters: '1. ', '2. ', etc.
r'^[A-Z\s]+$' # All caps headings
]
chapter_positions = []
used_pattern = None
for pattern in chapter_patterns:
if pattern is None:
continue
chapter_regex = re.compile(pattern, re.MULTILINE | re.IGNORECASE)
chapter_positions = [match.start() for match in chapter_regex.finditer(text)]
if chapter_positions:
used_pattern = pattern
break
# If no chapters found, return the entire content as one chunk
if not chapter_positions:
return [{'text': text, 'metadata': get_chunk_metadata(text, text, chunk_type="whole_document")}]
# Split content into chapters
chunks = []
for i in range(len(chapter_positions)):
start = chapter_positions[i]
end = chapter_positions[i + 1] if i + 1 < len(chapter_positions) else None
chapter = text[start:end]
# Apply overlap if specified
if overlap > 0 and i > 0:
overlap_start = max(0, start - overlap)
chapter = text[overlap_start:end]
chunks.append(chapter)
# Post-process chunks
processed_chunks = post_process_chunks(chunks)
# Add metadata to chunks
return [{'text': chunk, 'metadata': get_chunk_metadata(chunk, text, chunk_type="chapter", chapter_number=i + 1,
chapter_pattern=used_pattern)}
for i, chunk in enumerate(processed_chunks)]
# # Example usage
# if __name__ == "__main__":
# sample_ebook_content = """
# # Chapter 1: Introduction
#
# This is the introduction.
#
# ## Section 1.1
#
# Some content here.
#
# # Chapter 2: Main Content
#
# This is the main content.
#
# ## Section 2.1
#
# More content here.
#
# CHAPTER THREE
#
# This is the third chapter.
#
# 4. Fourth Chapter
#
# This is the fourth chapter.
# """
#
# chunk_options = {
# 'method': 'chapters',
# 'max_size': 500,
# 'overlap': 50,
# 'custom_chapter_pattern': r'^CHAPTER\s+[A-Z]+' # Custom pattern for 'CHAPTER THREE' style
# }
#
# chunked_chapters = improved_chunking_process(sample_ebook_content, chunk_options)
#
# for i, chunk in enumerate(chunked_chapters, 1):
# print(f"Chunk {i}:")
# print(chunk['text'])
# print(f"Metadata: {chunk['metadata']}\n")
#
# End of ebook chapter chunking
#######################################################################################################################
#######################################################################################################################
#
# Functions for adapative chunking:
# FIXME - punkt
def adaptive_chunk_size(text: str, base_size: int = 1000, min_size: int = 500, max_size: int = 2000) -> int:
# Ensure NLTK data is downloaded
nltk.download('punkt', quiet=True)
# Tokenize the text into sentences
sentences = sent_tokenize(text)
# Calculate average sentence length
avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)
# Adjust chunk size based on average sentence length
if avg_sentence_length < 10:
size_factor = 1.2 # Increase chunk size for short sentences
elif avg_sentence_length > 20:
size_factor = 0.8 # Decrease chunk size for long sentences
else:
size_factor = 1.0
# Calculate adaptive chunk size
adaptive_size = int(base_size * size_factor)
# Ensure chunk size is within bounds
return max(min_size, min(adaptive_size, max_size))
def adaptive_chunk_size_non_punkt(text: str, base_size: int, min_size: int = 100, max_size: int = 2000) -> int:
# Adaptive logic: adjust chunk size based on text complexity
words = text.split()
if not words:
return base_size # Return base_size if text is empty
avg_word_length = sum(len(word) for word in words) / len(words)
if avg_word_length > 6: # Threshold for "complex" text
adjusted_size = int(base_size * 0.8) # Reduce chunk size for complex text
elif avg_word_length < 4: # Threshold for "simple" text
adjusted_size = int(base_size * 1.2) # Increase chunk size for simple text
else:
adjusted_size = base_size
# Ensure the chunk size is within the specified range
return max(min_size, min(adjusted_size, max_size))
def adaptive_chunking(text: str, base_size: int = 1000, min_size: int = 500, max_size: int = 2000) -> List[str]:
logging.debug("adaptive_chunking...")
chunk_size = adaptive_chunk_size(text, base_size, min_size, max_size)
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if current_length + len(word) > chunk_size and current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = []
current_length = 0
current_chunk.append(word)
current_length += len(word) + 1 # +1 for space
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
# FIXME - usage example
# chunk_options = {
# 'method': 'words', # or any other method
# 'base_size': 1000,
# 'min_size': 100,
# 'max_size': 2000,
# 'adaptive': True,
# 'language': 'en'
# }
#chunks = improved_chunking_process(your_text, chunk_options)
# Example of chunking a document with metadata
# document_metadata = {
# 'title': 'Example Document',
# 'author': 'John Doe',
# 'creation_date': '2023-06-14',
# 'source': 'https://example.com/document',
# 'document_type': 'article'
# }
#
# chunk_options = {
# 'method': 'sentences',
# 'base_size': 1000,
# 'adaptive': True,
# 'language': 'en'
# }
#
# processed_document = process_document_with_metadata(your_text, chunk_options, document_metadata)
#
# End of Chunking Library
####################################################################################################################### |