File size: 65,100 Bytes
43cd37c
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
c5b0bb7
 
 
 
 
 
43cd37c
c5b0bb7
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
c5b0bb7
43cd37c
c5b0bb7
 
 
 
 
 
 
 
 
 
43cd37c
 
c5b0bb7
43cd37c
c5b0bb7
 
43cd37c
c5b0bb7
43cd37c
 
c5b0bb7
43cd37c
 
 
 
c5b0bb7
43cd37c
 
 
c5b0bb7
 
 
43cd37c
c5b0bb7
 
 
 
 
43cd37c
c5b0bb7
 
 
 
43cd37c
 
c5b0bb7
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
c5b0bb7
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
43cd37c
c5b0bb7
 
 
 
 
43cd37c
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
c5b0bb7
43cd37c
 
 
c5b0bb7
43cd37c
 
 
 
c5b0bb7
43cd37c
 
 
 
 
c5b0bb7
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
c5b0bb7
43cd37c
 
c5b0bb7
43cd37c
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
43cd37c
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
43cd37c
c5b0bb7
 
 
 
43cd37c
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
43cd37c
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
c5b0bb7
43cd37c
 
 
 
 
c5b0bb7
43cd37c
 
 
c5b0bb7
43cd37c
 
 
 
 
 
c5b0bb7
 
43cd37c
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
c5b0bb7
 
 
43cd37c
 
c5b0bb7
43cd37c
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
c5b0bb7
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
c5b0bb7
 
 
 
43cd37c
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
c5b0bb7
 
 
 
 
 
43cd37c
 
 
 
c5b0bb7
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
c5b0bb7
43cd37c
 
 
c5b0bb7
43cd37c
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
43cd37c
c5b0bb7
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
43cd37c
 
 
c5b0bb7
 
43cd37c
 
c5b0bb7
 
 
43cd37c
c5b0bb7
43cd37c
 
c5b0bb7
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
c5b0bb7
43cd37c
c5b0bb7
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
43cd37c
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
43cd37c
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
43cd37c
 
c5b0bb7
 
 
43cd37c
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
# Chat_ui.py
# Description: Chat interface functions for Gradio
#
# Imports
import logging
import os
import sqlite3
import time
from datetime import datetime
#
# External Imports
import gradio as gr
#
# Local Imports
from App_Function_Libraries.Chat.Chat_Functions import approximate_token_count, chat, save_chat_history, \
    update_chat_content, save_chat_history_to_db_wrapper
from App_Function_Libraries.DB.DB_Manager import db, load_chat_history, start_new_conversation, \
    save_message, search_conversations_by_keywords, \
    get_all_conversations, delete_messages_in_conversation, search_media_db, list_prompts
from App_Function_Libraries.DB.RAG_QA_Chat_DB import get_db_connection
from App_Function_Libraries.Gradio_UI.Gradio_Shared import update_dropdown, update_user_prompt
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
from App_Function_Libraries.Utils.Utils import default_api_endpoint, format_api_name, global_api_endpoints
#
#
########################################################################################################################
#
# Functions:


def show_edit_message(selected):
    if selected:
        return gr.update(value=selected[0], visible=True), gr.update(value=selected[1], visible=True), gr.update(
            visible=True)
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


def show_delete_message(selected):
    if selected:
        return gr.update(value=selected[1], visible=True), gr.update(visible=True)
    return gr.update(visible=False), gr.update(visible=False)


def debug_output(media_content, selected_parts):
    print(f"Debug - Media Content: {media_content}")
    print(f"Debug - Selected Parts: {selected_parts}")
    return ""


def update_selected_parts(use_content, use_summary, use_prompt):
    selected_parts = []
    if use_content:
        selected_parts.append("content")
    if use_summary:
        selected_parts.append("summary")
    if use_prompt:
        selected_parts.append("prompt")
    print(f"Debug - Update Selected Parts: {selected_parts}")
    return selected_parts


# Old update_user_prompt shim for backwards compatibility
def get_system_prompt(preset_name):
    # For backwards compatibility
    prompts = update_user_prompt(preset_name)
    return prompts["system_prompt"]

def clear_chat():
    """

    Return empty list for chatbot and None for conversation_id

    @return:

    """
    return gr.update(value=[]), None


def clear_chat_single():
    """

    Clears the chatbot and chat history.



    Returns:

        list: Empty list for chatbot messages.

        list: Empty list for chat history.

    """
    return [], []

# FIXME - add additional features....
def chat_wrapper(message, history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, conversation_id,

                 save_conversation, temperature, system_prompt, max_tokens=None, top_p=None, frequency_penalty=None,

                 presence_penalty=None, stop_sequence=None):
    try:
        if save_conversation:
            if conversation_id is None:
                # Create a new conversation
                media_id = media_content.get('id', None)
                conversation_name = f"Chat about {media_content.get('title', 'Unknown Media')} - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
                conversation_id = start_new_conversation(title=conversation_name, media_id=media_id)
            # Add user message to the database
            user_message_id = save_message(conversation_id, role="user", content=message)

        # Include the selected parts and custom_prompt only for the first message
        if not history and selected_parts:
            message_body = "\n".join(selected_parts)
            full_message = f"{custom_prompt}\n\n{message}\n\n{message_body}"
        elif custom_prompt:
            full_message = f"{custom_prompt}\n\n{message}"
        else:
            full_message = message

        # Generate bot response
        bot_message = chat(full_message, history, media_content, selected_parts, api_endpoint, api_key, custom_prompt,
                           temperature, system_prompt)

        logging.debug(f"Bot message being returned: {bot_message}")

        if save_conversation:
            # Add assistant message to the database
            save_message(conversation_id, role="assistant", content=bot_message)

        # Update history
        new_history = history + [(message, bot_message)]

        return bot_message, new_history, conversation_id
    except Exception as e:
        logging.error(f"Error in chat wrapper: {str(e)}")
        return "An error occurred.", history, conversation_id


def search_conversations(query):
    """Convert existing chat search to use RAG chat functions"""
    try:
        # Use the RAG search function - search by title if given a query
        if query and query.strip():
            results, _, _ = search_conversations_by_keywords(
                title_query=query.strip()
            )
        else:
            # Get all conversations if no query
            results, _, _ = get_all_conversations()

        if not results:
            return gr.update(choices=[])

        # Format choices to match existing UI format
        conversation_options = [
            (f"{conv['title']} (ID: {conv['conversation_id'][:8]})", conv['conversation_id'])
            for conv in results
        ]

        return gr.update(choices=conversation_options)
    except Exception as e:
        logging.error(f"Error searching conversations: {str(e)}")
        return gr.update(choices=[])


def load_conversation(conversation_id):
    """Convert existing load to use RAG chat functions"""
    if not conversation_id:
        return [], None

    try:
        # Use RAG load function
        messages, _, _ = load_chat_history(conversation_id)

        # Convert to chatbot history format
        history = [
            (content, None) if role == 'user' else (None, content)
            for role, content in messages
        ]

        return history, conversation_id
    except Exception as e:
        logging.error(f"Error loading conversation: {str(e)}")
        return [], None


def regenerate_last_message(history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature,

                            system_prompt):
    if not history:
        return history, "No messages to regenerate."

    last_entry = history[-1]
    last_user_message, last_bot_message = last_entry

    if last_bot_message is None:
        return history, "The last message is not from the bot."

    new_history = history[:-1]

    if not last_user_message:
        return new_history, "No user message to regenerate the bot response."

    full_message = last_user_message

    bot_message = chat(
        full_message,
        new_history,
        media_content,
        selected_parts,
        api_endpoint,
        api_key,
        custom_prompt,
        temperature,
        system_prompt
    )

    new_history.append((last_user_message, bot_message))

    return new_history, "Last message regenerated successfully."


def update_dropdown_multiple(query, search_type, keywords=""):
    """Updated function to handle multiple search results using search_media_db"""
    try:
        # Define search fields based on search type
        search_fields = []
        if search_type.lower() == "keyword":
            # When searching by keyword, we'll search across multiple fields
            search_fields = ["title", "content", "author"]
        else:
            # Otherwise use the specific field
            search_fields = [search_type.lower()]

        # Perform the search
        results = search_media_db(
            search_query=query,
            search_fields=search_fields,
            keywords=keywords,
            page=1,
            results_per_page=50  # Adjust as needed
        )

        # Process results
        item_map = {}
        formatted_results = []

        for row in results:
            id, url, title, type_, content, author, date, prompt, summary = row
            # Create a display text that shows relevant info
            display_text = f"{title} - {author or 'Unknown'} ({date})"
            formatted_results.append(display_text)
            item_map[display_text] = id

        return gr.update(choices=formatted_results), item_map
    except Exception as e:
        logging.error(f"Error in update_dropdown_multiple: {str(e)}")
        return gr.update(choices=[]), {}


def create_chat_interface():
    try:
        default_value = None
        if default_api_endpoint:
            if default_api_endpoint in global_api_endpoints:
                default_value = format_api_name(default_api_endpoint)
            else:
                logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
    except Exception as e:
        logging.error(f"Error setting default API endpoint: {str(e)}")
        default_value = None
    custom_css = """

    .chatbot-container .message-wrap .message {

        font-size: 14px !important;

    }

    """
    with gr.TabItem("Remote LLM Chat (Horizontal)", visible=True):
        gr.Markdown("# Chat with a designated LLM Endpoint, using your selected item as starting context")
        chat_history = gr.State([])
        media_content = gr.State({})
        selected_parts = gr.State([])
        conversation_id = gr.State(None)

        with gr.Row():
            with gr.Column(scale=1):
                search_query_input = gr.Textbox(
                    label="Search Query",
                    placeholder="Enter your search query here..."
                )
                search_type_input = gr.Radio(
                    choices=["Title", "Content", "Author", "Keyword"],
                    value="Keyword",
                    label="Search By"
                )
                keyword_filter_input = gr.Textbox(
                    label="Filter by Keywords (comma-separated)",
                    placeholder="ml, ai, python, etc..."
                )
                search_button = gr.Button("Search")
                items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
                item_mapping = gr.State({})
                with gr.Row():
                    use_content = gr.Checkbox(label="Use Content")
                    use_summary = gr.Checkbox(label="Use Summary")
                    use_prompt = gr.Checkbox(label="Use Prompt")
                    save_conversation = gr.Checkbox(label="Save Conversation", value=False, visible=True)
                with gr.Row():
                    temperature = gr.Slider(label="Temperature", minimum=0.00, maximum=1.0, step=0.05, value=0.7)
                with gr.Row():
                    conversation_search = gr.Textbox(label="Search Conversations")
                with gr.Row():
                    search_conversations_btn = gr.Button("Search Conversations")
                with gr.Row():
                    previous_conversations = gr.Dropdown(label="Select Conversation", choices=[], interactive=True)
                with gr.Row():
                    load_conversations_btn = gr.Button("Load Selected Conversation")

                # Refactored API selection dropdown
                api_endpoint = gr.Dropdown(
                    choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
                    value=default_value,
                    label="API for Chat Interaction (Optional)"
                )
                api_key = gr.Textbox(label="API Key (if required)", type="password")

                # Initialize state variables for pagination
                current_page_state = gr.State(value=1)
                total_pages_state = gr.State(value=1)

                custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt",
                                                     value=False,
                                                     visible=True)
                preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt",
                                                     value=False,
                                                     visible=True)
                with gr.Row():
                    # Add pagination controls
                    preset_prompt = gr.Dropdown(label="Select Preset Prompt",
                                                choices=[],
                                                visible=False)
                with gr.Row():
                    prev_page_button = gr.Button("Previous Page", visible=False)
                    page_display = gr.Markdown("Page 1 of X", visible=False)
                    next_page_button = gr.Button("Next Page", visible=False)
                    system_prompt_input = gr.Textbox(label="System Prompt",
                                                     value="You are a helpful AI assistant",
                                                     lines=3,
                                                     visible=False)
                with gr.Row():
                    user_prompt = gr.Textbox(label="Custom Prompt",
                                             placeholder="Enter custom prompt here",
                                             lines=3,
                                             visible=False)
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(height=800, elem_classes="chatbot-container")
                msg = gr.Textbox(label="Enter your message")
                submit = gr.Button("Submit")
                regenerate_button = gr.Button("Regenerate Last Message")
                token_count_display = gr.Number(label="Approximate Token Count", value=0, interactive=False)
                clear_chat_button = gr.Button("Clear Chat")

                chat_media_name = gr.Textbox(label="Custom Chat Name(optional)")
                save_chat_history_to_db = gr.Button("Save Chat History to DataBase")
                save_status = gr.Textbox(label="Save Status", interactive=False)
                save_chat_history_as_file = gr.Button("Save Chat History as File")
                download_file = gr.File(label="Download Chat History")

        # Restore original functionality
        search_button.click(
            fn=update_dropdown_multiple,
            inputs=[search_query_input, search_type_input, keyword_filter_input],
            outputs=[items_output, item_mapping]
        )

        def save_chat_wrapper(history, conversation_id, media_content):
            file_path = save_chat_history(history, conversation_id, media_content)
            if file_path:
                return file_path, f"Chat history saved successfully as {os.path.basename(file_path)}!"
            else:
                return None, "Error saving chat history. Please check the logs and try again."

        save_chat_history_as_file.click(
            save_chat_wrapper,
            inputs=[chatbot, conversation_id, media_content],
            outputs=[download_file, save_status]
        )

        def update_prompts(preset_name):
            prompts = update_user_prompt(preset_name)
            return (
                gr.update(value=prompts["user_prompt"], visible=True),
                gr.update(value=prompts["system_prompt"], visible=True)
            )

        def clear_chat():
            return [], None  # Return empty list for chatbot and None for conversation_id

        clear_chat_button.click(
            clear_chat,
            outputs=[chatbot, conversation_id]
        )

        # Function to handle preset prompt checkbox change
        def on_preset_prompt_checkbox_change(is_checked):
            if is_checked:
                prompts, total_pages, current_page = list_prompts(page=1, per_page=20)
                page_display_text = f"Page {current_page} of {total_pages}"
                return (
                    gr.update(visible=True, interactive=True, choices=prompts),  # preset_prompt
                    gr.update(visible=True),  # prev_page_button
                    gr.update(visible=True),  # next_page_button
                    gr.update(value=page_display_text, visible=True),  # page_display
                    current_page,  # current_page_state
                    total_pages   # total_pages_state
                )
            else:
                return (
                    gr.update(visible=False, interactive=False),  # preset_prompt
                    gr.update(visible=False),  # prev_page_button
                    gr.update(visible=False),  # next_page_button
                    gr.update(visible=False),  # page_display
                    1,  # current_page_state
                    1   # total_pages_state
                )

        preset_prompt_checkbox.change(
            fn=on_preset_prompt_checkbox_change,
            inputs=[preset_prompt_checkbox],
            outputs=[preset_prompt, prev_page_button, next_page_button, page_display, current_page_state, total_pages_state]
        )

        def on_prev_page_click(current_page, total_pages):
            new_page = max(current_page - 1, 1)
            prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
            page_display_text = f"Page {current_page} of {total_pages}"
            return gr.update(choices=prompts), gr.update(value=page_display_text), current_page

        prev_page_button.click(
            fn=on_prev_page_click,
            inputs=[current_page_state, total_pages_state],
            outputs=[preset_prompt, page_display, current_page_state]
        )

        def on_next_page_click(current_page, total_pages):
            new_page = min(current_page + 1, total_pages)
            prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
            page_display_text = f"Page {current_page} of {total_pages}"
            return gr.update(choices=prompts), gr.update(value=page_display_text), current_page

        next_page_button.click(
            fn=on_next_page_click,
            inputs=[current_page_state, total_pages_state],
            outputs=[preset_prompt, page_display, current_page_state]
        )

        preset_prompt.change(
            update_prompts,
            inputs=[preset_prompt],
            outputs=[user_prompt, system_prompt_input]
        )

        custom_prompt_checkbox.change(
            fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
            inputs=[custom_prompt_checkbox],
            outputs=[user_prompt, system_prompt_input]
        )

        submit.click(
            chat_wrapper,
            inputs=[msg, chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, conversation_id,
                    save_conversation, temperature, system_prompt_input],
            outputs=[msg, chatbot, conversation_id]
        ).then(  # Clear the message box after submission
            lambda x: gr.update(value=""),
            inputs=[chatbot],
            outputs=[msg]
        ).then(  # Clear the user prompt after the first message
            lambda: (gr.update(value=""), gr.update(value="")),
            outputs=[user_prompt, system_prompt_input]
        ).then(
            lambda history: approximate_token_count(history),
            inputs=[chatbot],
            outputs=[token_count_display]
        )

        items_output.change(
            update_chat_content,
            inputs=[items_output, use_content, use_summary, use_prompt, item_mapping],
            outputs=[media_content, selected_parts]
        )

        use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
                           outputs=[selected_parts])
        use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
                           outputs=[selected_parts])
        use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
                          outputs=[selected_parts])
        items_output.change(debug_output, inputs=[media_content, selected_parts], outputs=[])

        search_conversations_btn.click(
            search_conversations,
            inputs=[conversation_search],
            outputs=[previous_conversations]
        )

        load_conversations_btn.click(
            clear_chat,
            outputs=[chatbot, chat_history]
        ).then(
            load_conversation,
            inputs=[previous_conversations],
            outputs=[chatbot, conversation_id]
        )

        previous_conversations.change(
            load_conversation,
            inputs=[previous_conversations],
            outputs=[chat_history]
        )

        save_chat_history_as_file.click(
            save_chat_history,
            inputs=[chatbot, conversation_id],
            outputs=[download_file]
        )

        save_chat_history_to_db.click(
            save_chat_history_to_db_wrapper,
            inputs=[chatbot, conversation_id, media_content, chat_media_name],
            outputs=[conversation_id, gr.Textbox(label="Save Status")]
        )

        regenerate_button.click(
            regenerate_last_message,
            inputs=[chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, temperature,
                    system_prompt_input],
            outputs=[chatbot, save_status]
        ).then(
            lambda history: approximate_token_count(history),
            inputs=[chatbot],
            outputs=[token_count_display]
        )


def create_chat_interface_stacked():
    try:
        default_value = None
        if default_api_endpoint:
            if default_api_endpoint in global_api_endpoints:
                default_value = format_api_name(default_api_endpoint)
            else:
                logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
    except Exception as e:
        logging.error(f"Error setting default API endpoint: {str(e)}")
        default_value = None

    custom_css = """

    .chatbot-container .message-wrap .message {

        font-size: 14px !important;

    }

    """
    with gr.TabItem("Remote LLM Chat - Stacked", visible=True):
        gr.Markdown("# Stacked Chat")
        chat_history = gr.State([])
        media_content = gr.State({})
        selected_parts = gr.State([])
        conversation_id = gr.State(None)

        with gr.Row():
            with gr.Column():
                search_query_input = gr.Textbox(
                    label="Search Query",
                    placeholder="Enter your search query here..."
                )
                search_type_input = gr.Radio(
                    choices=["Title", "Content", "Author", "Keyword"],
                    value="Keyword",
                    label="Search By"
                )
                keyword_filter_input = gr.Textbox(
                    label="Filter by Keywords (comma-separated)",
                    placeholder="ml, ai, python, etc..."
                )
                search_button = gr.Button("Search")
                items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
                item_mapping = gr.State({})
                with gr.Row():
                    use_content = gr.Checkbox(label="Use Content")
                    use_summary = gr.Checkbox(label="Use Summary")
                    use_prompt = gr.Checkbox(label="Use Prompt")
                    save_conversation = gr.Checkbox(label="Save Conversation", value=False, visible=True)
                    temp = gr.Slider(label="Temperature", minimum=0.00, maximum=1.0, step=0.05, value=0.7)
                with gr.Row():
                    conversation_search = gr.Textbox(label="Search Conversations")
                with gr.Row():
                    previous_conversations = gr.Dropdown(label="Select Conversation", choices=[], interactive=True)
                with gr.Row():
                    search_conversations_btn = gr.Button("Search Conversations")
                    load_conversations_btn = gr.Button("Load Selected Conversation")
            with gr.Column():
                # Refactored API selection dropdown
                api_endpoint = gr.Dropdown(
                    choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
                    value=default_value,
                    label="API for Chat Interaction (Optional)"
                )
                api_key = gr.Textbox(label="API Key (if required)", type="password")

                # Initialize state variables for pagination
                current_page_state = gr.State(value=1)
                total_pages_state = gr.State(value=1)

                custom_prompt_checkbox = gr.Checkbox(
                    label="Use a Custom Prompt",
                    value=False,
                    visible=True
                )
                preset_prompt_checkbox = gr.Checkbox(
                    label="Use a pre-set Prompt",
                    value=False,
                    visible=True
                )

                with gr.Row():
                    preset_prompt = gr.Dropdown(
                        label="Select Preset Prompt",
                        choices=[],
                        visible=False
                    )
                with gr.Row():
                    prev_page_button = gr.Button("Previous Page", visible=False)
                    page_display = gr.Markdown("Page 1 of X", visible=False)
                    next_page_button = gr.Button("Next Page", visible=False)

                system_prompt = gr.Textbox(
                    label="System Prompt",
                    value="You are a helpful AI assistant.",
                    lines=4,
                    visible=False
                )
                user_prompt = gr.Textbox(
                    label="Custom User Prompt",
                    placeholder="Enter custom prompt here",
                    lines=4,
                    visible=False
                )
                gr.Markdown("Scroll down for the chat window...")
        with gr.Row():
            with gr.Column(scale=1):
                chatbot = gr.Chatbot(height=800, elem_classes="chatbot-container")
                msg = gr.Textbox(label="Enter your message")
        with gr.Row():
            with gr.Column():
                submit = gr.Button("Submit")
                regenerate_button = gr.Button("Regenerate Last Message")
                token_count_display = gr.Number(label="Approximate Token Count", value=0, interactive=False)
                clear_chat_button = gr.Button("Clear Chat")
                chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True)
                save_chat_history_to_db = gr.Button("Save Chat History to DataBase")
                save_status = gr.Textbox(label="Save Status", interactive=False)
                save_chat_history_as_file = gr.Button("Save Chat History as File")
            with gr.Column():
                download_file = gr.File(label="Download Chat History")

        # Restore original functionality
        search_button.click(
            fn=update_dropdown_multiple,
            inputs=[search_query_input, search_type_input, keyword_filter_input],
            outputs=[items_output, item_mapping]
        )

        def search_conversations(query):
            try:
                # Use RAG search with title search
                if query and query.strip():
                    results, _, _ = search_conversations_by_keywords(title_query=query.strip())
                else:
                    results, _, _ = get_all_conversations()

                if not results:
                    return gr.update(choices=[])

                # Format choices to match UI
                conversation_options = [
                    (f"{conv['title']} (ID: {conv['conversation_id'][:8]})", conv['conversation_id'])
                    for conv in results
                ]

                return gr.update(choices=conversation_options)
            except Exception as e:
                logging.error(f"Error searching conversations: {str(e)}")
                return gr.update(choices=[])

        def load_conversation(conversation_id):
            if not conversation_id:
                return [], None

            try:
                # Use RAG load function
                messages, _, _ = load_chat_history(conversation_id)

                # Convert to chatbot history format
                history = [
                    (content, None) if role == 'user' else (None, content)
                    for role, content in messages
                ]

                return history, conversation_id
            except Exception as e:
                logging.error(f"Error loading conversation: {str(e)}")
                return [], None

        def save_chat_history_to_db_wrapper(chatbot, conversation_id, media_content, chat_name=None):
            log_counter("save_chat_history_to_db_attempt")
            start_time = time.time()
            logging.info(f"Attempting to save chat history. Media content type: {type(media_content)}")

            try:
                # First check if we can access the database
                try:
                    with get_db_connection() as conn:
                        cursor = conn.cursor()
                        cursor.execute("SELECT 1")
                except sqlite3.DatabaseError as db_error:
                    logging.error(f"Database is corrupted or inaccessible: {str(db_error)}")
                    return conversation_id, gr.update(
                        value="Database error: The database file appears to be corrupted. Please contact support.")

                # For both new and existing conversations
                try:
                    if not conversation_id:
                        title = chat_name if chat_name else "Untitled Conversation"
                        conversation_id = start_new_conversation(title=title)
                        logging.info(f"Created new conversation with ID: {conversation_id}")

                    # Update existing messages
                    delete_messages_in_conversation(conversation_id)
                    for user_msg, assistant_msg in chatbot:
                        if user_msg:
                            save_message(conversation_id, "user", user_msg)
                        if assistant_msg:
                            save_message(conversation_id, "assistant", assistant_msg)
                except sqlite3.DatabaseError as db_error:
                    logging.error(f"Database error during message save: {str(db_error)}")
                    return conversation_id, gr.update(
                        value="Database error: Unable to save messages. Please try again or contact support.")

                save_duration = time.time() - start_time
                log_histogram("save_chat_history_to_db_duration", save_duration)
                log_counter("save_chat_history_to_db_success")

                return conversation_id, gr.update(value="Chat history saved successfully!")

            except Exception as e:
                log_counter("save_chat_history_to_db_error", labels={"error": str(e)})
                error_message = f"Failed to save chat history: {str(e)}"
                logging.error(error_message, exc_info=True)
                return conversation_id, gr.update(value=error_message)

        def update_prompts(preset_name):
            prompts = update_user_prompt(preset_name)
            return (
                gr.update(value=prompts["user_prompt"], visible=True),
                gr.update(value=prompts["system_prompt"], visible=True)
            )

        def clear_chat():
            return [], None, 0  # Empty history, conversation_id, and token count

        clear_chat_button.click(
            clear_chat,
            outputs=[chatbot, conversation_id, token_count_display]
        )

        # Handle custom prompt checkbox change
        def on_custom_prompt_checkbox_change(is_checked):
            return (
                gr.update(visible=is_checked),
                gr.update(visible=is_checked)
            )

        custom_prompt_checkbox.change(
            fn=on_custom_prompt_checkbox_change,
            inputs=[custom_prompt_checkbox],
            outputs=[user_prompt, system_prompt]
        )

        # Handle preset prompt checkbox change
        def on_preset_prompt_checkbox_change(is_checked):
            if is_checked:
                prompts, total_pages, current_page = list_prompts(page=1, per_page=20)
                page_display_text = f"Page {current_page} of {total_pages}"
                return (
                    gr.update(visible=True, interactive=True, choices=prompts),  # preset_prompt
                    gr.update(visible=True),  # prev_page_button
                    gr.update(visible=True),  # next_page_button
                    gr.update(value=page_display_text, visible=True),  # page_display
                    current_page,  # current_page_state
                    total_pages   # total_pages_state
                )
            else:
                return (
                    gr.update(visible=False, interactive=False),  # preset_prompt
                    gr.update(visible=False),  # prev_page_button
                    gr.update(visible=False),  # next_page_button
                    gr.update(visible=False),  # page_display
                    1,  # current_page_state
                    1   # total_pages_state
                )

        preset_prompt_checkbox.change(
            fn=on_preset_prompt_checkbox_change,
            inputs=[preset_prompt_checkbox],
            outputs=[preset_prompt, prev_page_button, next_page_button, page_display, current_page_state, total_pages_state]
        )

        # Pagination button functions
        def on_prev_page_click(current_page, total_pages):
            new_page = max(current_page - 1, 1)
            prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
            page_display_text = f"Page {current_page} of {total_pages}"
            return gr.update(choices=prompts), gr.update(value=page_display_text), current_page

        prev_page_button.click(
            fn=on_prev_page_click,
            inputs=[current_page_state, total_pages_state],
            outputs=[preset_prompt, page_display, current_page_state]
        )

        def on_next_page_click(current_page, total_pages):
            new_page = min(current_page + 1, total_pages)
            prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
            page_display_text = f"Page {current_page} of {total_pages}"
            return gr.update(choices=prompts), gr.update(value=page_display_text), current_page

        next_page_button.click(
            fn=on_next_page_click,
            inputs=[current_page_state, total_pages_state],
            outputs=[preset_prompt, page_display, current_page_state]
        )

        # Update prompts when a preset is selected
        preset_prompt.change(
            update_prompts,
            inputs=[preset_prompt],
            outputs=[user_prompt, system_prompt]
        )

        submit.click(
            chat_wrapper,
            inputs=[msg, chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt,
                    conversation_id, save_conversation, temp, system_prompt],
            outputs=[msg, chatbot, conversation_id]
        ).then(
            lambda x: gr.update(value=""),
            inputs=[chatbot],
            outputs=[msg]
        ).then(
            lambda history: approximate_token_count(history),
            inputs=[chatbot],
            outputs=[token_count_display]
        )

        items_output.change(
            update_chat_content,
            inputs=[items_output, use_content, use_summary, use_prompt, item_mapping],
            outputs=[media_content, selected_parts]
        )
        use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
                           outputs=[selected_parts])
        use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
                           outputs=[selected_parts])
        use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
                          outputs=[selected_parts])
        items_output.change(debug_output, inputs=[media_content, selected_parts], outputs=[])

        search_conversations_btn.click(
            search_conversations,
            inputs=[conversation_search],
            outputs=[previous_conversations]
        )

        load_conversations_btn.click(
            clear_chat,
            outputs=[chatbot, chat_history]
        ).then(
            load_conversation,
            inputs=[previous_conversations],
            outputs=[chatbot, conversation_id]
        )

        previous_conversations.change(
            load_conversation,
            inputs=[previous_conversations],
            outputs=[chat_history]
        )

        save_chat_history_as_file.click(
            save_chat_history,
            inputs=[chatbot, conversation_id],
            outputs=[download_file]
        )

        save_chat_history_to_db.click(
            save_chat_history_to_db_wrapper,
            inputs=[chatbot, conversation_id, media_content, chat_media_name],
            outputs=[conversation_id, save_status]
        )

        regenerate_button.click(
            regenerate_last_message,
            inputs=[chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, temp, system_prompt],
            outputs=[chatbot, gr.Textbox(label="Regenerate Status")]
        ).then(
            lambda history: approximate_token_count(history),
            inputs=[chatbot],
            outputs=[token_count_display]
        )


def create_chat_interface_multi_api():
    try:
        default_value = None
        if default_api_endpoint:
            if default_api_endpoint in global_api_endpoints:
                default_value = format_api_name(default_api_endpoint)
            else:
                logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
    except Exception as e:
        logging.error(f"Error setting default API endpoint: {str(e)}")
        default_value = None
    custom_css = """

    .chatbot-container .message-wrap .message {

        font-size: 14px !important;

    }

    .chat-window {

        height: 400px;

        overflow-y: auto;

    }

    """
    with gr.TabItem("One Prompt - Multiple APIs", visible=True):
        gr.Markdown("# One Prompt but Multiple APIs Chat Interface")

        with gr.Row():
            with gr.Column(scale=1):
                search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
                search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title",
                                             label="Search By")
                search_button = gr.Button("Search")
                items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
                item_mapping = gr.State({})
                with gr.Row():
                    use_content = gr.Checkbox(label="Use Content")
                    use_summary = gr.Checkbox(label="Use Summary")
                    use_prompt = gr.Checkbox(label="Use Prompt")
            with gr.Column():
                # Initialize state variables for pagination
                current_page_state = gr.State(value=1)
                total_pages_state = gr.State(value=1)

                custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt",
                                                     value=False,
                                                     visible=True)
                preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt",
                                                     value=False,
                                                     visible=True)
                with gr.Row():
                    # Add pagination controls
                    preset_prompt = gr.Dropdown(label="Select Preset Prompt",
                                                choices=[],
                                                visible=False)
                with gr.Row():
                    prev_page_button = gr.Button("Previous Page", visible=False)
                    page_display = gr.Markdown("Page 1 of X", visible=False)
                    next_page_button = gr.Button("Next Page", visible=False)
                system_prompt = gr.Textbox(label="System Prompt",
                                           value="You are a helpful AI assistant.",
                                           lines=5,
                                           visible=True)
                user_prompt = gr.Textbox(label="Modify Prompt (Prefixed to your message every time)", lines=5,
                                         value="", visible=True)

        with gr.Row():
            chatbots = []
            api_endpoints = []
            api_keys = []
            temperatures = []
            regenerate_buttons = []
            token_count_displays = []
            for i in range(3):
                with gr.Column():
                    gr.Markdown(f"### Chat Window {i + 1}")
                    # Refactored API selection dropdown
                    api_endpoint = gr.Dropdown(
                        choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
                        value=default_value,
                        label="API for Chat Interaction (Optional)"
                    )
                    api_key = gr.Textbox(label=f"API Key {i + 1} (if required)", type="password")
                    temperature = gr.Slider(label=f"Temperature {i + 1}", minimum=0.0, maximum=1.0, step=0.05,
                                            value=0.7)
                    chatbot = gr.Chatbot(height=800, elem_classes="chat-window")
                    token_count_display = gr.Number(label=f"Approximate Token Count {i + 1}", value=0,
                                                    interactive=False)
                    token_count_displays.append(token_count_display)
                    regenerate_button = gr.Button(f"Regenerate Last Message {i + 1}")
                    chatbots.append(chatbot)
                    api_endpoints.append(api_endpoint)
                    api_keys.append(api_key)
                    temperatures.append(temperature)
                    regenerate_buttons.append(regenerate_button)

        with gr.Row():
            msg = gr.Textbox(label="Enter your message", scale=4)
            submit = gr.Button("Submit", scale=1)
            clear_chat_button = gr.Button("Clear All Chats")

        # State variables
        chat_history = [gr.State([]) for _ in range(3)]
        media_content = gr.State({})
        selected_parts = gr.State([])
        conversation_id = gr.State(None)

        # Event handlers
        search_button.click(
            fn=update_dropdown,
            inputs=[search_query_input, search_type_input],
            outputs=[items_output, item_mapping]
        )

        def update_prompts(preset_name):
            prompts = update_user_prompt(preset_name)
            return (
                gr.update(value=prompts["user_prompt"], visible=True),
                gr.update(value=prompts["system_prompt"], visible=True)
            )

        def on_custom_prompt_checkbox_change(is_checked):
            return (
                gr.update(visible=is_checked),
                gr.update(visible=is_checked)
            )

        custom_prompt_checkbox.change(
            fn=on_custom_prompt_checkbox_change,
            inputs=[custom_prompt_checkbox],
            outputs=[user_prompt, system_prompt]
        )

        def clear_all_chats():
            return [[]] * 3 + [[]] * 3 + [0] * 3

        clear_chat_button.click(
            clear_all_chats,
            outputs=chatbots + chat_history + token_count_displays
        )

        def on_preset_prompt_checkbox_change(is_checked):
            if is_checked:
                prompts, total_pages, current_page = list_prompts(page=1, per_page=10)
                page_display_text = f"Page {current_page} of {total_pages}"
                return (
                    gr.update(visible=True, interactive=True, choices=prompts),  # preset_prompt
                    gr.update(visible=True),  # prev_page_button
                    gr.update(visible=True),  # next_page_button
                    gr.update(value=page_display_text, visible=True),  # page_display
                    current_page,  # current_page_state
                    total_pages   # total_pages_state
                )
            else:
                return (
                    gr.update(visible=False, interactive=False),  # preset_prompt
                    gr.update(visible=False),  # prev_page_button
                    gr.update(visible=False),  # next_page_button
                    gr.update(visible=False),  # page_display
                    1,  # current_page_state
                    1   # total_pages_state
                )

        preset_prompt.change(update_user_prompt, inputs=preset_prompt, outputs=user_prompt)

        preset_prompt_checkbox.change(
            fn=on_preset_prompt_checkbox_change,
            inputs=[preset_prompt_checkbox],
            outputs=[preset_prompt, prev_page_button, next_page_button, page_display, current_page_state,
                     total_pages_state]
        )

        def on_prev_page_click(current_page, total_pages):
            new_page = max(current_page - 1, 1)
            prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
            page_display_text = f"Page {current_page} of {total_pages}"
            return gr.update(choices=prompts), gr.update(value=page_display_text), current_page

        prev_page_button.click(
            fn=on_prev_page_click,
            inputs=[current_page_state, total_pages_state],
            outputs=[preset_prompt, page_display, current_page_state]
        )

        def on_next_page_click(current_page, total_pages):
            new_page = min(current_page + 1, total_pages)
            prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
            page_display_text = f"Page {current_page} of {total_pages}"
            return gr.update(choices=prompts), gr.update(value=page_display_text), current_page

        next_page_button.click(
            fn=on_next_page_click,
            inputs=[current_page_state, total_pages_state],
            outputs=[preset_prompt, page_display, current_page_state]
        )

        # Update prompts when a preset is selected
        preset_prompt.change(
            update_prompts,
            inputs=[preset_prompt],
            outputs=[user_prompt, system_prompt]
        )

        def clear_all_chats():
            return [[]] * 3 + [[]] * 3 + [0] * 3

        clear_chat_button.click(
            clear_all_chats,
            outputs=chatbots + chat_history + token_count_displays
        )

        def chat_wrapper_multi(message, custom_prompt, system_prompt, *args):
            chat_histories = args[:3]
            chatbots = args[3:6]
            api_endpoints = args[6:9]
            api_keys = args[9:12]
            temperatures = args[12:15]
            media_content = args[15]
            selected_parts = args[16]

            new_chat_histories = []
            new_chatbots = []

            for i in range(3):
                # Call chat_wrapper with dummy values for conversation_id and save_conversation
                bot_message, new_history, _ = chat_wrapper(
                    message, chat_histories[i], media_content, selected_parts,
                    api_endpoints[i], api_keys[i], custom_prompt, None,  # None for conversation_id
                    False,  # False for save_conversation
                    temperature=temperatures[i],
                    system_prompt=system_prompt
                )

                new_chatbot = chatbots[i] + [(message, bot_message)]

                new_chat_histories.append(new_history)
                new_chatbots.append(new_chatbot)

            return [gr.update(value="")] + new_chatbots + new_chat_histories

        def update_token_counts(*histories):
            token_counts = []
            for history in histories:
                token_counts.append(approximate_token_count(history))
            return token_counts

        def regenerate_last_message(chat_history, chatbot, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature, system_prompt):
            if not chat_history:
                return chatbot, chat_history, "No messages to regenerate."

            last_entry = chat_history[-1]
            last_user_message, last_bot_message = last_entry

            if last_bot_message is None:
                return chatbot, chat_history, "The last message is not from the bot."

            new_history = chat_history[:-1]

            if not last_user_message:
                return chatbot[:-1], new_history, "No user message to regenerate the bot response."

            bot_message = chat(
                last_user_message,
                new_history,
                media_content,
                selected_parts,
                api_endpoint,
                api_key,
                custom_prompt,
                temperature,
                system_prompt
            )

            new_history.append((last_user_message, bot_message))
            new_chatbot = chatbot[:-1] + [(last_user_message, bot_message)]

            return new_chatbot, new_history, "Last message regenerated successfully."

        for i in range(3):
            regenerate_buttons[i].click(
                regenerate_last_message,
                inputs=[chat_history[i], chatbots[i], media_content, selected_parts, api_endpoints[i], api_keys[i],
                        user_prompt, temperatures[i], system_prompt],
                outputs=[chatbots[i], chat_history[i], gr.Textbox(label=f"Regenerate Status {i + 1}")]
            ).then(
                lambda history: approximate_token_count(history),
                inputs=[chat_history[i]],
                outputs=[token_count_displays[i]]
            )

        # In the create_chat_interface_multi_api function:
        submit.click(
            chat_wrapper_multi,
            inputs=[msg, user_prompt,
                    system_prompt] + chat_history + chatbots + api_endpoints + api_keys + temperatures +
                   [media_content, selected_parts],
            outputs=[msg] + chatbots + chat_history
        ).then(
            lambda: (gr.update(value=""), gr.update(value="")),
            outputs=[msg, user_prompt]
        ).then(
            update_token_counts,
            inputs=chat_history,
            outputs=token_count_displays
        )

        items_output.change(
            update_chat_content,
            inputs=[items_output, use_content, use_summary, use_prompt, item_mapping],
            outputs=[media_content, selected_parts]
        )

        for checkbox in [use_content, use_summary, use_prompt]:
            checkbox.change(
                update_selected_parts,
                inputs=[use_content, use_summary, use_prompt],
                outputs=[selected_parts]
            )


def create_chat_interface_four():
    try:
        default_value = None
        if default_api_endpoint:
            if default_api_endpoint in global_api_endpoints:
                default_value = format_api_name(default_api_endpoint)
            else:
                logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
    except Exception as e:
        logging.error(f"Error setting default API endpoint: {str(e)}")
        default_value = None
    custom_css = """

    .chatbot-container .message-wrap .message {

        font-size: 14px !important;

    }

    .chat-window {

        height: 400px;

        overflow-y: auto;

    }

    """

    with gr.TabItem("Four Independent API Chats", visible=True):
        gr.Markdown("# Four Independent API Chat Interfaces")

        # Initialize prompts during component creation
        prompts, total_pages, current_page = list_prompts(page=1, per_page=10)
        current_page_state = gr.State(value=current_page)
        total_pages_state = gr.State(value=total_pages)
        page_display_text = f"Page {current_page} of {total_pages}"

        with gr.Row():
            with gr.Column():
                preset_prompt = gr.Dropdown(
                    label="Select Preset Prompt (This will be prefixed to your messages, recommend copy/pasting and then clearing the User Prompt box)",
                    choices=prompts,
                    visible=True
                )
                prev_page_button = gr.Button("Previous Page", visible=True)
                page_display = gr.Markdown(page_display_text, visible=True)
                next_page_button = gr.Button("Next Page", visible=True)
                user_prompt = gr.Textbox(
                    label="Modify User Prompt",
                    lines=3
                )
                system_prompt = gr.Textbox(
                    label="System Prompt",
                    value="You are a helpful AI assistant.",
                    lines=3
                )

            with gr.Column():
                gr.Markdown("Scroll down for the chat windows...")

        chat_interfaces = []

        def create_single_chat_interface(index, user_prompt_component):
            with gr.Column():
                gr.Markdown(f"### Chat Window {index + 1}")
                # Refactored API selection dropdown
                api_endpoint = gr.Dropdown(
                    choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
                    value=default_value,
                    label="API for Chat Interaction (Optional)"
                )
                api_key = gr.Textbox(
                    label=f"API Key {index + 1} (if required)",
                    type="password"
                )
                temperature = gr.Slider(
                    label=f"Temperature {index + 1}",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.7
                )
                chatbot = gr.Chatbot(height=400, elem_classes="chat-window")
                msg = gr.Textbox(label=f"Enter your message for Chat {index + 1}")
                submit = gr.Button(f"Submit to Chat {index + 1}")
                regenerate_button = gr.Button(f"Regenerate Last Message {index + 1}")
                token_count_display = gr.Number(label=f"Approximate Token Count {index + 1}", value=0,
                                                interactive=False)
                clear_chat_button = gr.Button(f"Clear Chat {index + 1}")

                # State to maintain chat history
                chat_history = gr.State([])

                # Append to chat_interfaces list
                chat_interfaces.append({
                    'api_endpoint': api_endpoint,
                    'api_key': api_key,
                    'temperature': temperature,
                    'chatbot': chatbot,
                    'msg': msg,
                    'submit': submit,
                    'regenerate_button': regenerate_button,
                    'clear_chat_button': clear_chat_button,
                    'chat_history': chat_history,
                    'token_count_display': token_count_display
                })

        # Create four chat interfaces arranged in a 2x2 grid
        with gr.Row():
            for i in range(2):
                with gr.Column():
                    for j in range(2):
                        create_single_chat_interface(i * 2 + j, user_prompt)

        # Update user_prompt based on preset_prompt selection
        def update_prompts(preset_name):
            prompts = update_user_prompt(preset_name)
            return gr.update(value=prompts["user_prompt"]), gr.update(value=prompts["system_prompt"])

        preset_prompt.change(
            fn=update_prompts,
            inputs=[preset_prompt],
            outputs=[user_prompt, system_prompt]
        )

        # Pagination button functions
        def on_prev_page_click(current_page, total_pages):
            new_page = max(current_page - 1, 1)
            prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
            page_display_text = f"Page {current_page} of {total_pages}"
            return (
                gr.update(choices=prompts),
                gr.update(value=page_display_text),
                current_page
            )

        prev_page_button.click(
            fn=on_prev_page_click,
            inputs=[current_page_state, total_pages_state],
            outputs=[preset_prompt, page_display, current_page_state]
        )

        def on_next_page_click(current_page, total_pages):
            new_page = min(current_page + 1, total_pages)
            prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
            page_display_text = f"Page {current_page} of {total_pages}"
            return (
                gr.update(choices=prompts),
                gr.update(value=page_display_text),
                current_page
            )

        next_page_button.click(
            fn=on_next_page_click,
            inputs=[current_page_state, total_pages_state],
            outputs=[preset_prompt, page_display, current_page_state]
        )

        def chat_wrapper_single(message, chat_history, api_endpoint, api_key, temperature, user_prompt):
            logging.debug(f"Chat Wrapper Single - Message: {message}, Chat History: {chat_history}")

            new_msg, new_history, _ = chat_wrapper(
                message,
                chat_history,
                {},  # Empty media_content
                [],  # Empty selected_parts
                api_endpoint,
                api_key,
                user_prompt,  # custom_prompt
                None,  # conversation_id
                False,  # save_conversation
                temperature,  # temperature
                system_prompt="",  # system_prompt
                max_tokens=None,
                top_p=None,
                frequency_penalty=None,
                presence_penalty=None,
                stop_sequence=None
            )
            if "API request failed" not in new_msg:
                chat_history.append((message, new_msg))
            else:
                logging.error(f"API request failed: {new_msg}")

            return "", chat_history, chat_history

        def regenerate_last_message(chat_history, api_endpoint, api_key, temperature, user_prompt):
            if not chat_history:
                return chat_history, chat_history, "No messages to regenerate."

            last_user_message, _ = chat_history[-1]

            new_msg, new_history, _ = chat_wrapper(
                last_user_message,
                chat_history[:-1],
                {},  # Empty media_content
                [],  # Empty selected_parts
                api_endpoint,
                api_key,
                user_prompt,  # custom_prompt
                None,  # conversation_id
                False,  # save_conversation
                temperature,  # temperature
                system_prompt="",  # system_prompt
                max_tokens=None,
                top_p=None,
                frequency_penalty=None,
                presence_penalty=None,
                stop_sequence=None
            )

            if "API request failed" not in new_msg:
                new_history.append((last_user_message, new_msg))
                return new_history, new_history, "Last message regenerated successfully."
            else:
                logging.error(f"API request failed during regeneration: {new_msg}")
                return chat_history, chat_history, f"Failed to regenerate: {new_msg}"

        # Attach click events for each chat interface
        for interface in chat_interfaces:
            interface['submit'].click(
                chat_wrapper_single,
                inputs=[
                    interface['msg'],
                    interface['chat_history'],
                    interface['api_endpoint'],
                    interface['api_key'],
                    interface['temperature'],
                    user_prompt
                ],
                outputs=[
                    interface['msg'],
                    interface['chatbot'],
                    interface['chat_history']
                ]
            ).then(
                lambda history: approximate_token_count(history),
                inputs=[interface['chat_history']],
                outputs=[interface['token_count_display']]
            )

            interface['regenerate_button'].click(
                regenerate_last_message,
                inputs=[
                    interface['chat_history'],
                    interface['api_endpoint'],
                    interface['api_key'],
                    interface['temperature'],
                    user_prompt
                ],
                outputs=[
                    interface['chatbot'],
                    interface['chat_history'],
                    gr.Textbox(label="Regenerate Status")
                ]
            ).then(
                lambda history: approximate_token_count(history),
                inputs=[interface['chat_history']],
                outputs=[interface['token_count_display']]
            )

            def clear_chat_single():
                return [], [], 0

            interface['clear_chat_button'].click(
                clear_chat_single,
                outputs=[interface['chatbot'], interface['chat_history'], interface['token_count_display']]
            )


def chat_wrapper_single(message, chat_history, chatbot, api_endpoint, api_key, temperature, media_content,

                        selected_parts, conversation_id, save_conversation, user_prompt):
    new_msg, new_history, new_conv_id = chat_wrapper(
        message, chat_history, media_content, selected_parts,
        api_endpoint, api_key, user_prompt, conversation_id,
        save_conversation, temperature, system_prompt=""
    )

    if new_msg:
        updated_chatbot = chatbot + [(message, new_msg)]
    else:
        updated_chatbot = chatbot

    return new_msg, updated_chatbot, new_history, new_conv_id

# Mock function to simulate LLM processing
def process_with_llm(workflow, context, prompt, api_endpoint, api_key):
    api_key_snippet = api_key[:5] + "..." if api_key else "Not provided"
    return f"LLM output using {api_endpoint} (API Key: {api_key_snippet}) for {workflow} with context: {context[:30]}... and prompt: {prompt[:30]}..."

#
# End of Chat_ui.py
#######################################################################################################################