Spaces:
Running
Running
File size: 65,100 Bytes
43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 |
# Chat_ui.py
# Description: Chat interface functions for Gradio
#
# Imports
import logging
import os
import sqlite3
import time
from datetime import datetime
#
# External Imports
import gradio as gr
#
# Local Imports
from App_Function_Libraries.Chat.Chat_Functions import approximate_token_count, chat, save_chat_history, \
update_chat_content, save_chat_history_to_db_wrapper
from App_Function_Libraries.DB.DB_Manager import db, load_chat_history, start_new_conversation, \
save_message, search_conversations_by_keywords, \
get_all_conversations, delete_messages_in_conversation, search_media_db, list_prompts
from App_Function_Libraries.DB.RAG_QA_Chat_DB import get_db_connection
from App_Function_Libraries.Gradio_UI.Gradio_Shared import update_dropdown, update_user_prompt
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
from App_Function_Libraries.Utils.Utils import default_api_endpoint, format_api_name, global_api_endpoints
#
#
########################################################################################################################
#
# Functions:
def show_edit_message(selected):
if selected:
return gr.update(value=selected[0], visible=True), gr.update(value=selected[1], visible=True), gr.update(
visible=True)
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def show_delete_message(selected):
if selected:
return gr.update(value=selected[1], visible=True), gr.update(visible=True)
return gr.update(visible=False), gr.update(visible=False)
def debug_output(media_content, selected_parts):
print(f"Debug - Media Content: {media_content}")
print(f"Debug - Selected Parts: {selected_parts}")
return ""
def update_selected_parts(use_content, use_summary, use_prompt):
selected_parts = []
if use_content:
selected_parts.append("content")
if use_summary:
selected_parts.append("summary")
if use_prompt:
selected_parts.append("prompt")
print(f"Debug - Update Selected Parts: {selected_parts}")
return selected_parts
# Old update_user_prompt shim for backwards compatibility
def get_system_prompt(preset_name):
# For backwards compatibility
prompts = update_user_prompt(preset_name)
return prompts["system_prompt"]
def clear_chat():
"""
Return empty list for chatbot and None for conversation_id
@return:
"""
return gr.update(value=[]), None
def clear_chat_single():
"""
Clears the chatbot and chat history.
Returns:
list: Empty list for chatbot messages.
list: Empty list for chat history.
"""
return [], []
# FIXME - add additional features....
def chat_wrapper(message, history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, conversation_id,
save_conversation, temperature, system_prompt, max_tokens=None, top_p=None, frequency_penalty=None,
presence_penalty=None, stop_sequence=None):
try:
if save_conversation:
if conversation_id is None:
# Create a new conversation
media_id = media_content.get('id', None)
conversation_name = f"Chat about {media_content.get('title', 'Unknown Media')} - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
conversation_id = start_new_conversation(title=conversation_name, media_id=media_id)
# Add user message to the database
user_message_id = save_message(conversation_id, role="user", content=message)
# Include the selected parts and custom_prompt only for the first message
if not history and selected_parts:
message_body = "\n".join(selected_parts)
full_message = f"{custom_prompt}\n\n{message}\n\n{message_body}"
elif custom_prompt:
full_message = f"{custom_prompt}\n\n{message}"
else:
full_message = message
# Generate bot response
bot_message = chat(full_message, history, media_content, selected_parts, api_endpoint, api_key, custom_prompt,
temperature, system_prompt)
logging.debug(f"Bot message being returned: {bot_message}")
if save_conversation:
# Add assistant message to the database
save_message(conversation_id, role="assistant", content=bot_message)
# Update history
new_history = history + [(message, bot_message)]
return bot_message, new_history, conversation_id
except Exception as e:
logging.error(f"Error in chat wrapper: {str(e)}")
return "An error occurred.", history, conversation_id
def search_conversations(query):
"""Convert existing chat search to use RAG chat functions"""
try:
# Use the RAG search function - search by title if given a query
if query and query.strip():
results, _, _ = search_conversations_by_keywords(
title_query=query.strip()
)
else:
# Get all conversations if no query
results, _, _ = get_all_conversations()
if not results:
return gr.update(choices=[])
# Format choices to match existing UI format
conversation_options = [
(f"{conv['title']} (ID: {conv['conversation_id'][:8]})", conv['conversation_id'])
for conv in results
]
return gr.update(choices=conversation_options)
except Exception as e:
logging.error(f"Error searching conversations: {str(e)}")
return gr.update(choices=[])
def load_conversation(conversation_id):
"""Convert existing load to use RAG chat functions"""
if not conversation_id:
return [], None
try:
# Use RAG load function
messages, _, _ = load_chat_history(conversation_id)
# Convert to chatbot history format
history = [
(content, None) if role == 'user' else (None, content)
for role, content in messages
]
return history, conversation_id
except Exception as e:
logging.error(f"Error loading conversation: {str(e)}")
return [], None
def regenerate_last_message(history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature,
system_prompt):
if not history:
return history, "No messages to regenerate."
last_entry = history[-1]
last_user_message, last_bot_message = last_entry
if last_bot_message is None:
return history, "The last message is not from the bot."
new_history = history[:-1]
if not last_user_message:
return new_history, "No user message to regenerate the bot response."
full_message = last_user_message
bot_message = chat(
full_message,
new_history,
media_content,
selected_parts,
api_endpoint,
api_key,
custom_prompt,
temperature,
system_prompt
)
new_history.append((last_user_message, bot_message))
return new_history, "Last message regenerated successfully."
def update_dropdown_multiple(query, search_type, keywords=""):
"""Updated function to handle multiple search results using search_media_db"""
try:
# Define search fields based on search type
search_fields = []
if search_type.lower() == "keyword":
# When searching by keyword, we'll search across multiple fields
search_fields = ["title", "content", "author"]
else:
# Otherwise use the specific field
search_fields = [search_type.lower()]
# Perform the search
results = search_media_db(
search_query=query,
search_fields=search_fields,
keywords=keywords,
page=1,
results_per_page=50 # Adjust as needed
)
# Process results
item_map = {}
formatted_results = []
for row in results:
id, url, title, type_, content, author, date, prompt, summary = row
# Create a display text that shows relevant info
display_text = f"{title} - {author or 'Unknown'} ({date})"
formatted_results.append(display_text)
item_map[display_text] = id
return gr.update(choices=formatted_results), item_map
except Exception as e:
logging.error(f"Error in update_dropdown_multiple: {str(e)}")
return gr.update(choices=[]), {}
def create_chat_interface():
try:
default_value = None
if default_api_endpoint:
if default_api_endpoint in global_api_endpoints:
default_value = format_api_name(default_api_endpoint)
else:
logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
except Exception as e:
logging.error(f"Error setting default API endpoint: {str(e)}")
default_value = None
custom_css = """
.chatbot-container .message-wrap .message {
font-size: 14px !important;
}
"""
with gr.TabItem("Remote LLM Chat (Horizontal)", visible=True):
gr.Markdown("# Chat with a designated LLM Endpoint, using your selected item as starting context")
chat_history = gr.State([])
media_content = gr.State({})
selected_parts = gr.State([])
conversation_id = gr.State(None)
with gr.Row():
with gr.Column(scale=1):
search_query_input = gr.Textbox(
label="Search Query",
placeholder="Enter your search query here..."
)
search_type_input = gr.Radio(
choices=["Title", "Content", "Author", "Keyword"],
value="Keyword",
label="Search By"
)
keyword_filter_input = gr.Textbox(
label="Filter by Keywords (comma-separated)",
placeholder="ml, ai, python, etc..."
)
search_button = gr.Button("Search")
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
with gr.Row():
use_content = gr.Checkbox(label="Use Content")
use_summary = gr.Checkbox(label="Use Summary")
use_prompt = gr.Checkbox(label="Use Prompt")
save_conversation = gr.Checkbox(label="Save Conversation", value=False, visible=True)
with gr.Row():
temperature = gr.Slider(label="Temperature", minimum=0.00, maximum=1.0, step=0.05, value=0.7)
with gr.Row():
conversation_search = gr.Textbox(label="Search Conversations")
with gr.Row():
search_conversations_btn = gr.Button("Search Conversations")
with gr.Row():
previous_conversations = gr.Dropdown(label="Select Conversation", choices=[], interactive=True)
with gr.Row():
load_conversations_btn = gr.Button("Load Selected Conversation")
# Refactored API selection dropdown
api_endpoint = gr.Dropdown(
choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
value=default_value,
label="API for Chat Interaction (Optional)"
)
api_key = gr.Textbox(label="API Key (if required)", type="password")
# Initialize state variables for pagination
current_page_state = gr.State(value=1)
total_pages_state = gr.State(value=1)
custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt",
value=False,
visible=True)
preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt",
value=False,
visible=True)
with gr.Row():
# Add pagination controls
preset_prompt = gr.Dropdown(label="Select Preset Prompt",
choices=[],
visible=False)
with gr.Row():
prev_page_button = gr.Button("Previous Page", visible=False)
page_display = gr.Markdown("Page 1 of X", visible=False)
next_page_button = gr.Button("Next Page", visible=False)
system_prompt_input = gr.Textbox(label="System Prompt",
value="You are a helpful AI assistant",
lines=3,
visible=False)
with gr.Row():
user_prompt = gr.Textbox(label="Custom Prompt",
placeholder="Enter custom prompt here",
lines=3,
visible=False)
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=800, elem_classes="chatbot-container")
msg = gr.Textbox(label="Enter your message")
submit = gr.Button("Submit")
regenerate_button = gr.Button("Regenerate Last Message")
token_count_display = gr.Number(label="Approximate Token Count", value=0, interactive=False)
clear_chat_button = gr.Button("Clear Chat")
chat_media_name = gr.Textbox(label="Custom Chat Name(optional)")
save_chat_history_to_db = gr.Button("Save Chat History to DataBase")
save_status = gr.Textbox(label="Save Status", interactive=False)
save_chat_history_as_file = gr.Button("Save Chat History as File")
download_file = gr.File(label="Download Chat History")
# Restore original functionality
search_button.click(
fn=update_dropdown_multiple,
inputs=[search_query_input, search_type_input, keyword_filter_input],
outputs=[items_output, item_mapping]
)
def save_chat_wrapper(history, conversation_id, media_content):
file_path = save_chat_history(history, conversation_id, media_content)
if file_path:
return file_path, f"Chat history saved successfully as {os.path.basename(file_path)}!"
else:
return None, "Error saving chat history. Please check the logs and try again."
save_chat_history_as_file.click(
save_chat_wrapper,
inputs=[chatbot, conversation_id, media_content],
outputs=[download_file, save_status]
)
def update_prompts(preset_name):
prompts = update_user_prompt(preset_name)
return (
gr.update(value=prompts["user_prompt"], visible=True),
gr.update(value=prompts["system_prompt"], visible=True)
)
def clear_chat():
return [], None # Return empty list for chatbot and None for conversation_id
clear_chat_button.click(
clear_chat,
outputs=[chatbot, conversation_id]
)
# Function to handle preset prompt checkbox change
def on_preset_prompt_checkbox_change(is_checked):
if is_checked:
prompts, total_pages, current_page = list_prompts(page=1, per_page=20)
page_display_text = f"Page {current_page} of {total_pages}"
return (
gr.update(visible=True, interactive=True, choices=prompts), # preset_prompt
gr.update(visible=True), # prev_page_button
gr.update(visible=True), # next_page_button
gr.update(value=page_display_text, visible=True), # page_display
current_page, # current_page_state
total_pages # total_pages_state
)
else:
return (
gr.update(visible=False, interactive=False), # preset_prompt
gr.update(visible=False), # prev_page_button
gr.update(visible=False), # next_page_button
gr.update(visible=False), # page_display
1, # current_page_state
1 # total_pages_state
)
preset_prompt_checkbox.change(
fn=on_preset_prompt_checkbox_change,
inputs=[preset_prompt_checkbox],
outputs=[preset_prompt, prev_page_button, next_page_button, page_display, current_page_state, total_pages_state]
)
def on_prev_page_click(current_page, total_pages):
new_page = max(current_page - 1, 1)
prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
page_display_text = f"Page {current_page} of {total_pages}"
return gr.update(choices=prompts), gr.update(value=page_display_text), current_page
prev_page_button.click(
fn=on_prev_page_click,
inputs=[current_page_state, total_pages_state],
outputs=[preset_prompt, page_display, current_page_state]
)
def on_next_page_click(current_page, total_pages):
new_page = min(current_page + 1, total_pages)
prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
page_display_text = f"Page {current_page} of {total_pages}"
return gr.update(choices=prompts), gr.update(value=page_display_text), current_page
next_page_button.click(
fn=on_next_page_click,
inputs=[current_page_state, total_pages_state],
outputs=[preset_prompt, page_display, current_page_state]
)
preset_prompt.change(
update_prompts,
inputs=[preset_prompt],
outputs=[user_prompt, system_prompt_input]
)
custom_prompt_checkbox.change(
fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
inputs=[custom_prompt_checkbox],
outputs=[user_prompt, system_prompt_input]
)
submit.click(
chat_wrapper,
inputs=[msg, chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, conversation_id,
save_conversation, temperature, system_prompt_input],
outputs=[msg, chatbot, conversation_id]
).then( # Clear the message box after submission
lambda x: gr.update(value=""),
inputs=[chatbot],
outputs=[msg]
).then( # Clear the user prompt after the first message
lambda: (gr.update(value=""), gr.update(value="")),
outputs=[user_prompt, system_prompt_input]
).then(
lambda history: approximate_token_count(history),
inputs=[chatbot],
outputs=[token_count_display]
)
items_output.change(
update_chat_content,
inputs=[items_output, use_content, use_summary, use_prompt, item_mapping],
outputs=[media_content, selected_parts]
)
use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
items_output.change(debug_output, inputs=[media_content, selected_parts], outputs=[])
search_conversations_btn.click(
search_conversations,
inputs=[conversation_search],
outputs=[previous_conversations]
)
load_conversations_btn.click(
clear_chat,
outputs=[chatbot, chat_history]
).then(
load_conversation,
inputs=[previous_conversations],
outputs=[chatbot, conversation_id]
)
previous_conversations.change(
load_conversation,
inputs=[previous_conversations],
outputs=[chat_history]
)
save_chat_history_as_file.click(
save_chat_history,
inputs=[chatbot, conversation_id],
outputs=[download_file]
)
save_chat_history_to_db.click(
save_chat_history_to_db_wrapper,
inputs=[chatbot, conversation_id, media_content, chat_media_name],
outputs=[conversation_id, gr.Textbox(label="Save Status")]
)
regenerate_button.click(
regenerate_last_message,
inputs=[chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, temperature,
system_prompt_input],
outputs=[chatbot, save_status]
).then(
lambda history: approximate_token_count(history),
inputs=[chatbot],
outputs=[token_count_display]
)
def create_chat_interface_stacked():
try:
default_value = None
if default_api_endpoint:
if default_api_endpoint in global_api_endpoints:
default_value = format_api_name(default_api_endpoint)
else:
logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
except Exception as e:
logging.error(f"Error setting default API endpoint: {str(e)}")
default_value = None
custom_css = """
.chatbot-container .message-wrap .message {
font-size: 14px !important;
}
"""
with gr.TabItem("Remote LLM Chat - Stacked", visible=True):
gr.Markdown("# Stacked Chat")
chat_history = gr.State([])
media_content = gr.State({})
selected_parts = gr.State([])
conversation_id = gr.State(None)
with gr.Row():
with gr.Column():
search_query_input = gr.Textbox(
label="Search Query",
placeholder="Enter your search query here..."
)
search_type_input = gr.Radio(
choices=["Title", "Content", "Author", "Keyword"],
value="Keyword",
label="Search By"
)
keyword_filter_input = gr.Textbox(
label="Filter by Keywords (comma-separated)",
placeholder="ml, ai, python, etc..."
)
search_button = gr.Button("Search")
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
with gr.Row():
use_content = gr.Checkbox(label="Use Content")
use_summary = gr.Checkbox(label="Use Summary")
use_prompt = gr.Checkbox(label="Use Prompt")
save_conversation = gr.Checkbox(label="Save Conversation", value=False, visible=True)
temp = gr.Slider(label="Temperature", minimum=0.00, maximum=1.0, step=0.05, value=0.7)
with gr.Row():
conversation_search = gr.Textbox(label="Search Conversations")
with gr.Row():
previous_conversations = gr.Dropdown(label="Select Conversation", choices=[], interactive=True)
with gr.Row():
search_conversations_btn = gr.Button("Search Conversations")
load_conversations_btn = gr.Button("Load Selected Conversation")
with gr.Column():
# Refactored API selection dropdown
api_endpoint = gr.Dropdown(
choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
value=default_value,
label="API for Chat Interaction (Optional)"
)
api_key = gr.Textbox(label="API Key (if required)", type="password")
# Initialize state variables for pagination
current_page_state = gr.State(value=1)
total_pages_state = gr.State(value=1)
custom_prompt_checkbox = gr.Checkbox(
label="Use a Custom Prompt",
value=False,
visible=True
)
preset_prompt_checkbox = gr.Checkbox(
label="Use a pre-set Prompt",
value=False,
visible=True
)
with gr.Row():
preset_prompt = gr.Dropdown(
label="Select Preset Prompt",
choices=[],
visible=False
)
with gr.Row():
prev_page_button = gr.Button("Previous Page", visible=False)
page_display = gr.Markdown("Page 1 of X", visible=False)
next_page_button = gr.Button("Next Page", visible=False)
system_prompt = gr.Textbox(
label="System Prompt",
value="You are a helpful AI assistant.",
lines=4,
visible=False
)
user_prompt = gr.Textbox(
label="Custom User Prompt",
placeholder="Enter custom prompt here",
lines=4,
visible=False
)
gr.Markdown("Scroll down for the chat window...")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(height=800, elem_classes="chatbot-container")
msg = gr.Textbox(label="Enter your message")
with gr.Row():
with gr.Column():
submit = gr.Button("Submit")
regenerate_button = gr.Button("Regenerate Last Message")
token_count_display = gr.Number(label="Approximate Token Count", value=0, interactive=False)
clear_chat_button = gr.Button("Clear Chat")
chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True)
save_chat_history_to_db = gr.Button("Save Chat History to DataBase")
save_status = gr.Textbox(label="Save Status", interactive=False)
save_chat_history_as_file = gr.Button("Save Chat History as File")
with gr.Column():
download_file = gr.File(label="Download Chat History")
# Restore original functionality
search_button.click(
fn=update_dropdown_multiple,
inputs=[search_query_input, search_type_input, keyword_filter_input],
outputs=[items_output, item_mapping]
)
def search_conversations(query):
try:
# Use RAG search with title search
if query and query.strip():
results, _, _ = search_conversations_by_keywords(title_query=query.strip())
else:
results, _, _ = get_all_conversations()
if not results:
return gr.update(choices=[])
# Format choices to match UI
conversation_options = [
(f"{conv['title']} (ID: {conv['conversation_id'][:8]})", conv['conversation_id'])
for conv in results
]
return gr.update(choices=conversation_options)
except Exception as e:
logging.error(f"Error searching conversations: {str(e)}")
return gr.update(choices=[])
def load_conversation(conversation_id):
if not conversation_id:
return [], None
try:
# Use RAG load function
messages, _, _ = load_chat_history(conversation_id)
# Convert to chatbot history format
history = [
(content, None) if role == 'user' else (None, content)
for role, content in messages
]
return history, conversation_id
except Exception as e:
logging.error(f"Error loading conversation: {str(e)}")
return [], None
def save_chat_history_to_db_wrapper(chatbot, conversation_id, media_content, chat_name=None):
log_counter("save_chat_history_to_db_attempt")
start_time = time.time()
logging.info(f"Attempting to save chat history. Media content type: {type(media_content)}")
try:
# First check if we can access the database
try:
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute("SELECT 1")
except sqlite3.DatabaseError as db_error:
logging.error(f"Database is corrupted or inaccessible: {str(db_error)}")
return conversation_id, gr.update(
value="Database error: The database file appears to be corrupted. Please contact support.")
# For both new and existing conversations
try:
if not conversation_id:
title = chat_name if chat_name else "Untitled Conversation"
conversation_id = start_new_conversation(title=title)
logging.info(f"Created new conversation with ID: {conversation_id}")
# Update existing messages
delete_messages_in_conversation(conversation_id)
for user_msg, assistant_msg in chatbot:
if user_msg:
save_message(conversation_id, "user", user_msg)
if assistant_msg:
save_message(conversation_id, "assistant", assistant_msg)
except sqlite3.DatabaseError as db_error:
logging.error(f"Database error during message save: {str(db_error)}")
return conversation_id, gr.update(
value="Database error: Unable to save messages. Please try again or contact support.")
save_duration = time.time() - start_time
log_histogram("save_chat_history_to_db_duration", save_duration)
log_counter("save_chat_history_to_db_success")
return conversation_id, gr.update(value="Chat history saved successfully!")
except Exception as e:
log_counter("save_chat_history_to_db_error", labels={"error": str(e)})
error_message = f"Failed to save chat history: {str(e)}"
logging.error(error_message, exc_info=True)
return conversation_id, gr.update(value=error_message)
def update_prompts(preset_name):
prompts = update_user_prompt(preset_name)
return (
gr.update(value=prompts["user_prompt"], visible=True),
gr.update(value=prompts["system_prompt"], visible=True)
)
def clear_chat():
return [], None, 0 # Empty history, conversation_id, and token count
clear_chat_button.click(
clear_chat,
outputs=[chatbot, conversation_id, token_count_display]
)
# Handle custom prompt checkbox change
def on_custom_prompt_checkbox_change(is_checked):
return (
gr.update(visible=is_checked),
gr.update(visible=is_checked)
)
custom_prompt_checkbox.change(
fn=on_custom_prompt_checkbox_change,
inputs=[custom_prompt_checkbox],
outputs=[user_prompt, system_prompt]
)
# Handle preset prompt checkbox change
def on_preset_prompt_checkbox_change(is_checked):
if is_checked:
prompts, total_pages, current_page = list_prompts(page=1, per_page=20)
page_display_text = f"Page {current_page} of {total_pages}"
return (
gr.update(visible=True, interactive=True, choices=prompts), # preset_prompt
gr.update(visible=True), # prev_page_button
gr.update(visible=True), # next_page_button
gr.update(value=page_display_text, visible=True), # page_display
current_page, # current_page_state
total_pages # total_pages_state
)
else:
return (
gr.update(visible=False, interactive=False), # preset_prompt
gr.update(visible=False), # prev_page_button
gr.update(visible=False), # next_page_button
gr.update(visible=False), # page_display
1, # current_page_state
1 # total_pages_state
)
preset_prompt_checkbox.change(
fn=on_preset_prompt_checkbox_change,
inputs=[preset_prompt_checkbox],
outputs=[preset_prompt, prev_page_button, next_page_button, page_display, current_page_state, total_pages_state]
)
# Pagination button functions
def on_prev_page_click(current_page, total_pages):
new_page = max(current_page - 1, 1)
prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
page_display_text = f"Page {current_page} of {total_pages}"
return gr.update(choices=prompts), gr.update(value=page_display_text), current_page
prev_page_button.click(
fn=on_prev_page_click,
inputs=[current_page_state, total_pages_state],
outputs=[preset_prompt, page_display, current_page_state]
)
def on_next_page_click(current_page, total_pages):
new_page = min(current_page + 1, total_pages)
prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
page_display_text = f"Page {current_page} of {total_pages}"
return gr.update(choices=prompts), gr.update(value=page_display_text), current_page
next_page_button.click(
fn=on_next_page_click,
inputs=[current_page_state, total_pages_state],
outputs=[preset_prompt, page_display, current_page_state]
)
# Update prompts when a preset is selected
preset_prompt.change(
update_prompts,
inputs=[preset_prompt],
outputs=[user_prompt, system_prompt]
)
submit.click(
chat_wrapper,
inputs=[msg, chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt,
conversation_id, save_conversation, temp, system_prompt],
outputs=[msg, chatbot, conversation_id]
).then(
lambda x: gr.update(value=""),
inputs=[chatbot],
outputs=[msg]
).then(
lambda history: approximate_token_count(history),
inputs=[chatbot],
outputs=[token_count_display]
)
items_output.change(
update_chat_content,
inputs=[items_output, use_content, use_summary, use_prompt, item_mapping],
outputs=[media_content, selected_parts]
)
use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
items_output.change(debug_output, inputs=[media_content, selected_parts], outputs=[])
search_conversations_btn.click(
search_conversations,
inputs=[conversation_search],
outputs=[previous_conversations]
)
load_conversations_btn.click(
clear_chat,
outputs=[chatbot, chat_history]
).then(
load_conversation,
inputs=[previous_conversations],
outputs=[chatbot, conversation_id]
)
previous_conversations.change(
load_conversation,
inputs=[previous_conversations],
outputs=[chat_history]
)
save_chat_history_as_file.click(
save_chat_history,
inputs=[chatbot, conversation_id],
outputs=[download_file]
)
save_chat_history_to_db.click(
save_chat_history_to_db_wrapper,
inputs=[chatbot, conversation_id, media_content, chat_media_name],
outputs=[conversation_id, save_status]
)
regenerate_button.click(
regenerate_last_message,
inputs=[chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, temp, system_prompt],
outputs=[chatbot, gr.Textbox(label="Regenerate Status")]
).then(
lambda history: approximate_token_count(history),
inputs=[chatbot],
outputs=[token_count_display]
)
def create_chat_interface_multi_api():
try:
default_value = None
if default_api_endpoint:
if default_api_endpoint in global_api_endpoints:
default_value = format_api_name(default_api_endpoint)
else:
logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
except Exception as e:
logging.error(f"Error setting default API endpoint: {str(e)}")
default_value = None
custom_css = """
.chatbot-container .message-wrap .message {
font-size: 14px !important;
}
.chat-window {
height: 400px;
overflow-y: auto;
}
"""
with gr.TabItem("One Prompt - Multiple APIs", visible=True):
gr.Markdown("# One Prompt but Multiple APIs Chat Interface")
with gr.Row():
with gr.Column(scale=1):
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title",
label="Search By")
search_button = gr.Button("Search")
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
with gr.Row():
use_content = gr.Checkbox(label="Use Content")
use_summary = gr.Checkbox(label="Use Summary")
use_prompt = gr.Checkbox(label="Use Prompt")
with gr.Column():
# Initialize state variables for pagination
current_page_state = gr.State(value=1)
total_pages_state = gr.State(value=1)
custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt",
value=False,
visible=True)
preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt",
value=False,
visible=True)
with gr.Row():
# Add pagination controls
preset_prompt = gr.Dropdown(label="Select Preset Prompt",
choices=[],
visible=False)
with gr.Row():
prev_page_button = gr.Button("Previous Page", visible=False)
page_display = gr.Markdown("Page 1 of X", visible=False)
next_page_button = gr.Button("Next Page", visible=False)
system_prompt = gr.Textbox(label="System Prompt",
value="You are a helpful AI assistant.",
lines=5,
visible=True)
user_prompt = gr.Textbox(label="Modify Prompt (Prefixed to your message every time)", lines=5,
value="", visible=True)
with gr.Row():
chatbots = []
api_endpoints = []
api_keys = []
temperatures = []
regenerate_buttons = []
token_count_displays = []
for i in range(3):
with gr.Column():
gr.Markdown(f"### Chat Window {i + 1}")
# Refactored API selection dropdown
api_endpoint = gr.Dropdown(
choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
value=default_value,
label="API for Chat Interaction (Optional)"
)
api_key = gr.Textbox(label=f"API Key {i + 1} (if required)", type="password")
temperature = gr.Slider(label=f"Temperature {i + 1}", minimum=0.0, maximum=1.0, step=0.05,
value=0.7)
chatbot = gr.Chatbot(height=800, elem_classes="chat-window")
token_count_display = gr.Number(label=f"Approximate Token Count {i + 1}", value=0,
interactive=False)
token_count_displays.append(token_count_display)
regenerate_button = gr.Button(f"Regenerate Last Message {i + 1}")
chatbots.append(chatbot)
api_endpoints.append(api_endpoint)
api_keys.append(api_key)
temperatures.append(temperature)
regenerate_buttons.append(regenerate_button)
with gr.Row():
msg = gr.Textbox(label="Enter your message", scale=4)
submit = gr.Button("Submit", scale=1)
clear_chat_button = gr.Button("Clear All Chats")
# State variables
chat_history = [gr.State([]) for _ in range(3)]
media_content = gr.State({})
selected_parts = gr.State([])
conversation_id = gr.State(None)
# Event handlers
search_button.click(
fn=update_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
def update_prompts(preset_name):
prompts = update_user_prompt(preset_name)
return (
gr.update(value=prompts["user_prompt"], visible=True),
gr.update(value=prompts["system_prompt"], visible=True)
)
def on_custom_prompt_checkbox_change(is_checked):
return (
gr.update(visible=is_checked),
gr.update(visible=is_checked)
)
custom_prompt_checkbox.change(
fn=on_custom_prompt_checkbox_change,
inputs=[custom_prompt_checkbox],
outputs=[user_prompt, system_prompt]
)
def clear_all_chats():
return [[]] * 3 + [[]] * 3 + [0] * 3
clear_chat_button.click(
clear_all_chats,
outputs=chatbots + chat_history + token_count_displays
)
def on_preset_prompt_checkbox_change(is_checked):
if is_checked:
prompts, total_pages, current_page = list_prompts(page=1, per_page=10)
page_display_text = f"Page {current_page} of {total_pages}"
return (
gr.update(visible=True, interactive=True, choices=prompts), # preset_prompt
gr.update(visible=True), # prev_page_button
gr.update(visible=True), # next_page_button
gr.update(value=page_display_text, visible=True), # page_display
current_page, # current_page_state
total_pages # total_pages_state
)
else:
return (
gr.update(visible=False, interactive=False), # preset_prompt
gr.update(visible=False), # prev_page_button
gr.update(visible=False), # next_page_button
gr.update(visible=False), # page_display
1, # current_page_state
1 # total_pages_state
)
preset_prompt.change(update_user_prompt, inputs=preset_prompt, outputs=user_prompt)
preset_prompt_checkbox.change(
fn=on_preset_prompt_checkbox_change,
inputs=[preset_prompt_checkbox],
outputs=[preset_prompt, prev_page_button, next_page_button, page_display, current_page_state,
total_pages_state]
)
def on_prev_page_click(current_page, total_pages):
new_page = max(current_page - 1, 1)
prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
page_display_text = f"Page {current_page} of {total_pages}"
return gr.update(choices=prompts), gr.update(value=page_display_text), current_page
prev_page_button.click(
fn=on_prev_page_click,
inputs=[current_page_state, total_pages_state],
outputs=[preset_prompt, page_display, current_page_state]
)
def on_next_page_click(current_page, total_pages):
new_page = min(current_page + 1, total_pages)
prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
page_display_text = f"Page {current_page} of {total_pages}"
return gr.update(choices=prompts), gr.update(value=page_display_text), current_page
next_page_button.click(
fn=on_next_page_click,
inputs=[current_page_state, total_pages_state],
outputs=[preset_prompt, page_display, current_page_state]
)
# Update prompts when a preset is selected
preset_prompt.change(
update_prompts,
inputs=[preset_prompt],
outputs=[user_prompt, system_prompt]
)
def clear_all_chats():
return [[]] * 3 + [[]] * 3 + [0] * 3
clear_chat_button.click(
clear_all_chats,
outputs=chatbots + chat_history + token_count_displays
)
def chat_wrapper_multi(message, custom_prompt, system_prompt, *args):
chat_histories = args[:3]
chatbots = args[3:6]
api_endpoints = args[6:9]
api_keys = args[9:12]
temperatures = args[12:15]
media_content = args[15]
selected_parts = args[16]
new_chat_histories = []
new_chatbots = []
for i in range(3):
# Call chat_wrapper with dummy values for conversation_id and save_conversation
bot_message, new_history, _ = chat_wrapper(
message, chat_histories[i], media_content, selected_parts,
api_endpoints[i], api_keys[i], custom_prompt, None, # None for conversation_id
False, # False for save_conversation
temperature=temperatures[i],
system_prompt=system_prompt
)
new_chatbot = chatbots[i] + [(message, bot_message)]
new_chat_histories.append(new_history)
new_chatbots.append(new_chatbot)
return [gr.update(value="")] + new_chatbots + new_chat_histories
def update_token_counts(*histories):
token_counts = []
for history in histories:
token_counts.append(approximate_token_count(history))
return token_counts
def regenerate_last_message(chat_history, chatbot, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature, system_prompt):
if not chat_history:
return chatbot, chat_history, "No messages to regenerate."
last_entry = chat_history[-1]
last_user_message, last_bot_message = last_entry
if last_bot_message is None:
return chatbot, chat_history, "The last message is not from the bot."
new_history = chat_history[:-1]
if not last_user_message:
return chatbot[:-1], new_history, "No user message to regenerate the bot response."
bot_message = chat(
last_user_message,
new_history,
media_content,
selected_parts,
api_endpoint,
api_key,
custom_prompt,
temperature,
system_prompt
)
new_history.append((last_user_message, bot_message))
new_chatbot = chatbot[:-1] + [(last_user_message, bot_message)]
return new_chatbot, new_history, "Last message regenerated successfully."
for i in range(3):
regenerate_buttons[i].click(
regenerate_last_message,
inputs=[chat_history[i], chatbots[i], media_content, selected_parts, api_endpoints[i], api_keys[i],
user_prompt, temperatures[i], system_prompt],
outputs=[chatbots[i], chat_history[i], gr.Textbox(label=f"Regenerate Status {i + 1}")]
).then(
lambda history: approximate_token_count(history),
inputs=[chat_history[i]],
outputs=[token_count_displays[i]]
)
# In the create_chat_interface_multi_api function:
submit.click(
chat_wrapper_multi,
inputs=[msg, user_prompt,
system_prompt] + chat_history + chatbots + api_endpoints + api_keys + temperatures +
[media_content, selected_parts],
outputs=[msg] + chatbots + chat_history
).then(
lambda: (gr.update(value=""), gr.update(value="")),
outputs=[msg, user_prompt]
).then(
update_token_counts,
inputs=chat_history,
outputs=token_count_displays
)
items_output.change(
update_chat_content,
inputs=[items_output, use_content, use_summary, use_prompt, item_mapping],
outputs=[media_content, selected_parts]
)
for checkbox in [use_content, use_summary, use_prompt]:
checkbox.change(
update_selected_parts,
inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts]
)
def create_chat_interface_four():
try:
default_value = None
if default_api_endpoint:
if default_api_endpoint in global_api_endpoints:
default_value = format_api_name(default_api_endpoint)
else:
logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
except Exception as e:
logging.error(f"Error setting default API endpoint: {str(e)}")
default_value = None
custom_css = """
.chatbot-container .message-wrap .message {
font-size: 14px !important;
}
.chat-window {
height: 400px;
overflow-y: auto;
}
"""
with gr.TabItem("Four Independent API Chats", visible=True):
gr.Markdown("# Four Independent API Chat Interfaces")
# Initialize prompts during component creation
prompts, total_pages, current_page = list_prompts(page=1, per_page=10)
current_page_state = gr.State(value=current_page)
total_pages_state = gr.State(value=total_pages)
page_display_text = f"Page {current_page} of {total_pages}"
with gr.Row():
with gr.Column():
preset_prompt = gr.Dropdown(
label="Select Preset Prompt (This will be prefixed to your messages, recommend copy/pasting and then clearing the User Prompt box)",
choices=prompts,
visible=True
)
prev_page_button = gr.Button("Previous Page", visible=True)
page_display = gr.Markdown(page_display_text, visible=True)
next_page_button = gr.Button("Next Page", visible=True)
user_prompt = gr.Textbox(
label="Modify User Prompt",
lines=3
)
system_prompt = gr.Textbox(
label="System Prompt",
value="You are a helpful AI assistant.",
lines=3
)
with gr.Column():
gr.Markdown("Scroll down for the chat windows...")
chat_interfaces = []
def create_single_chat_interface(index, user_prompt_component):
with gr.Column():
gr.Markdown(f"### Chat Window {index + 1}")
# Refactored API selection dropdown
api_endpoint = gr.Dropdown(
choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
value=default_value,
label="API for Chat Interaction (Optional)"
)
api_key = gr.Textbox(
label=f"API Key {index + 1} (if required)",
type="password"
)
temperature = gr.Slider(
label=f"Temperature {index + 1}",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.7
)
chatbot = gr.Chatbot(height=400, elem_classes="chat-window")
msg = gr.Textbox(label=f"Enter your message for Chat {index + 1}")
submit = gr.Button(f"Submit to Chat {index + 1}")
regenerate_button = gr.Button(f"Regenerate Last Message {index + 1}")
token_count_display = gr.Number(label=f"Approximate Token Count {index + 1}", value=0,
interactive=False)
clear_chat_button = gr.Button(f"Clear Chat {index + 1}")
# State to maintain chat history
chat_history = gr.State([])
# Append to chat_interfaces list
chat_interfaces.append({
'api_endpoint': api_endpoint,
'api_key': api_key,
'temperature': temperature,
'chatbot': chatbot,
'msg': msg,
'submit': submit,
'regenerate_button': regenerate_button,
'clear_chat_button': clear_chat_button,
'chat_history': chat_history,
'token_count_display': token_count_display
})
# Create four chat interfaces arranged in a 2x2 grid
with gr.Row():
for i in range(2):
with gr.Column():
for j in range(2):
create_single_chat_interface(i * 2 + j, user_prompt)
# Update user_prompt based on preset_prompt selection
def update_prompts(preset_name):
prompts = update_user_prompt(preset_name)
return gr.update(value=prompts["user_prompt"]), gr.update(value=prompts["system_prompt"])
preset_prompt.change(
fn=update_prompts,
inputs=[preset_prompt],
outputs=[user_prompt, system_prompt]
)
# Pagination button functions
def on_prev_page_click(current_page, total_pages):
new_page = max(current_page - 1, 1)
prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
page_display_text = f"Page {current_page} of {total_pages}"
return (
gr.update(choices=prompts),
gr.update(value=page_display_text),
current_page
)
prev_page_button.click(
fn=on_prev_page_click,
inputs=[current_page_state, total_pages_state],
outputs=[preset_prompt, page_display, current_page_state]
)
def on_next_page_click(current_page, total_pages):
new_page = min(current_page + 1, total_pages)
prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
page_display_text = f"Page {current_page} of {total_pages}"
return (
gr.update(choices=prompts),
gr.update(value=page_display_text),
current_page
)
next_page_button.click(
fn=on_next_page_click,
inputs=[current_page_state, total_pages_state],
outputs=[preset_prompt, page_display, current_page_state]
)
def chat_wrapper_single(message, chat_history, api_endpoint, api_key, temperature, user_prompt):
logging.debug(f"Chat Wrapper Single - Message: {message}, Chat History: {chat_history}")
new_msg, new_history, _ = chat_wrapper(
message,
chat_history,
{}, # Empty media_content
[], # Empty selected_parts
api_endpoint,
api_key,
user_prompt, # custom_prompt
None, # conversation_id
False, # save_conversation
temperature, # temperature
system_prompt="", # system_prompt
max_tokens=None,
top_p=None,
frequency_penalty=None,
presence_penalty=None,
stop_sequence=None
)
if "API request failed" not in new_msg:
chat_history.append((message, new_msg))
else:
logging.error(f"API request failed: {new_msg}")
return "", chat_history, chat_history
def regenerate_last_message(chat_history, api_endpoint, api_key, temperature, user_prompt):
if not chat_history:
return chat_history, chat_history, "No messages to regenerate."
last_user_message, _ = chat_history[-1]
new_msg, new_history, _ = chat_wrapper(
last_user_message,
chat_history[:-1],
{}, # Empty media_content
[], # Empty selected_parts
api_endpoint,
api_key,
user_prompt, # custom_prompt
None, # conversation_id
False, # save_conversation
temperature, # temperature
system_prompt="", # system_prompt
max_tokens=None,
top_p=None,
frequency_penalty=None,
presence_penalty=None,
stop_sequence=None
)
if "API request failed" not in new_msg:
new_history.append((last_user_message, new_msg))
return new_history, new_history, "Last message regenerated successfully."
else:
logging.error(f"API request failed during regeneration: {new_msg}")
return chat_history, chat_history, f"Failed to regenerate: {new_msg}"
# Attach click events for each chat interface
for interface in chat_interfaces:
interface['submit'].click(
chat_wrapper_single,
inputs=[
interface['msg'],
interface['chat_history'],
interface['api_endpoint'],
interface['api_key'],
interface['temperature'],
user_prompt
],
outputs=[
interface['msg'],
interface['chatbot'],
interface['chat_history']
]
).then(
lambda history: approximate_token_count(history),
inputs=[interface['chat_history']],
outputs=[interface['token_count_display']]
)
interface['regenerate_button'].click(
regenerate_last_message,
inputs=[
interface['chat_history'],
interface['api_endpoint'],
interface['api_key'],
interface['temperature'],
user_prompt
],
outputs=[
interface['chatbot'],
interface['chat_history'],
gr.Textbox(label="Regenerate Status")
]
).then(
lambda history: approximate_token_count(history),
inputs=[interface['chat_history']],
outputs=[interface['token_count_display']]
)
def clear_chat_single():
return [], [], 0
interface['clear_chat_button'].click(
clear_chat_single,
outputs=[interface['chatbot'], interface['chat_history'], interface['token_count_display']]
)
def chat_wrapper_single(message, chat_history, chatbot, api_endpoint, api_key, temperature, media_content,
selected_parts, conversation_id, save_conversation, user_prompt):
new_msg, new_history, new_conv_id = chat_wrapper(
message, chat_history, media_content, selected_parts,
api_endpoint, api_key, user_prompt, conversation_id,
save_conversation, temperature, system_prompt=""
)
if new_msg:
updated_chatbot = chatbot + [(message, new_msg)]
else:
updated_chatbot = chatbot
return new_msg, updated_chatbot, new_history, new_conv_id
# Mock function to simulate LLM processing
def process_with_llm(workflow, context, prompt, api_endpoint, api_key):
api_key_snippet = api_key[:5] + "..." if api_key else "Not provided"
return f"LLM output using {api_endpoint} (API Key: {api_key_snippet}) for {workflow} with context: {context[:30]}... and prompt: {prompt[:30]}..."
#
# End of Chat_ui.py
####################################################################################################################### |