File size: 18,612 Bytes
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
ed28876
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed28876
 
 
 
 
 
fa9a583
ed28876
 
 
 
fa9a583
ed28876
 
 
fa9a583
ed28876
 
 
 
 
 
 
 
 
 
 
fa9a583
 
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
 
ed28876
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed28876
 
 
 
 
 
fa9a583
ed28876
 
 
 
 
 
 
fa9a583
 
 
 
 
ed28876
 
 
 
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed28876
fa9a583
 
 
 
 
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
ed28876
 
 
 
 
 
 
 
 
 
 
fa9a583
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
 
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# Local_Summarization_Lib.py
#########################################
# Local Summarization Library
# This library is used to perform summarization with a 'local' inference engine.
#
####

####################
# Function List
# FIXME - UPDATE Function Arguments
# 1. chat_with_local_llm(text, custom_prompt_arg)
# 2. chat_with_llama(api_url, text, token, custom_prompt)
# 3. chat_with_kobold(api_url, text, kobold_api_token, custom_prompt)
# 4. chat_with_oobabooga(api_url, text, ooba_api_token, custom_prompt)
# 5. chat_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. chat_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
#
####################
# Import necessary libraries
# Import Local
from Utils import *
#
#######################################################################################################################
# Function Definitions
#


def chat_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None):
    try:
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Local LLM: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("openai: Using provided string data for summarization")
            data = input_data

        logging.debug(f"Local LLM: Loaded data: {data}")
        logging.debug(f"Local LLM: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Local LLM: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Invalid input data format")

        if system_message is None:
            system_message = "You are a helpful AI assistant."

        headers = {
            'Content-Type': 'application/json'
        }

        logging.debug("Local LLM: Preparing data + prompt for submittal")
        local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        data = {
            "messages": [
                {
                    "role": "system",
                    "content": system_message
                },
                {
                    "role": "user",
                    "content": local_llm_prompt
                }
            ],
            "max_tokens": 28000,  # Adjust tokens as needed
        }
        logging.debug("Local LLM: Posting request")
        response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)

        if response.status_code == 200:
            response_data = response.json()
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("Local LLM: Summarization successful")
                print("Local LLM: Summarization successful.")
                return summary
            else:
                logging.warning("Local LLM: Chat response not found in the response data")
                return "Local LLM: Chat response not available"
        else:
            logging.debug("Local LLM: Chat request failed")
            print("Local LLM: Failed to process Chat response:", response.text)
            return "Local LLM: Failed to process Chat response"
    except Exception as e:
        logging.debug("Local LLM: Error in processing: %s", str(e))
        print("Error occurred while processing Chat request with Local LLM:", str(e))
        return "Local LLM: Error occurred while processing Chat response"

def chat_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/completion", api_key=None, system_prompt=None):
    loaded_config_data = load_and_log_configs()
    try:
        # API key validation
        if api_key is None:
            logging.info("llama.cpp: API key not provided as parameter")
            logging.info("llama.cpp: Attempting to use API key from config file")
            api_key = loaded_config_data['api_keys']['llama']

        if api_key is None or api_key.strip() == "":
            logging.info("llama.cpp: API key not found or is empty")

        logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }
        if len(api_key) > 5:
            headers['Authorization'] = f'Bearer {api_key}'

        if system_prompt is None:
            system_prompt = "You are a helpful AI assistant that provides accurate and concise information."

        logging.debug("Llama.cpp: System prompt being used is: %s", system_prompt)
        logging.debug("Llama.cpp: User prompt being used is: %s", custom_prompt)


        llama_prompt = f"{custom_prompt} \n\n\n\n{input_data}"
        logging.debug(f"llama: Prompt being sent is {llama_prompt}")

        data = {
            "prompt": f"{llama_prompt}",
            "system_prompt": f"{system_prompt}"
        }

        logging.debug("llama: Submitting request to API endpoint")
        print("llama: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data)
        response_data = response.json()
        logging.debug("API Response Data: %s", response_data)

        if response.status_code == 200:
            # if 'X' in response_data:
            logging.debug(response_data)
            summary = response_data['content'].strip()
            logging.debug("llama: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}")
            return f"Llama: API request failed: {response.text}"

    except Exception as e:
        logging.error("Llama: Error in processing: %s", str(e))
        return f"Llama: Error occurred while processing summary with llama: {str(e)}"


# System prompts not supported through API requests.
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
def chat_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_ip="http://127.0.0.1:5001/api/v1/generate", temp=None, system_message=None):
    logging.debug("Kobold: Summarization process starting...")
    try:
        logging.debug("Kobold: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            kobold_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                kobold_api_key = api_key
                logging.info("Kobold: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                kobold_api_key = loaded_config_data['api_keys'].get('kobold')
                if kobold_api_key:
                    logging.info("Kobold: Using API key from config file")
                else:
                    logging.warning("Kobold: No API key found in config file")

        logging.debug(f"Kobold: Using API Key: {kobold_api_key[:5]}...{kobold_api_key[-5:]}")

        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Kobold.cpp: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("Kobold.cpp: Using provided string data for summarization")
            data = input_data

        logging.debug(f"Kobold.cpp: Loaded data: {data}")
        logging.debug(f"Kobold.cpp: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Kobold.cpp: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Kobold.cpp: Invalid input data format")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }

        kobold_prompt = f"{custom_prompt_input}\n\n\n\n{text}"
        logging.debug("kobold: Prompt being sent is {kobold_prompt}")

        # FIXME
        # Values literally c/p from the api docs....
        data = {
            "max_context_length": 8096,
            "max_length": 4096,
            "prompt": kobold_prompt,
            "temperature": 0.7,
            #"top_p": 0.9,
            #"top_k": 100
            #"rep_penalty": 1.0,
        }

        logging.debug("kobold: Submitting request to API endpoint")
        print("kobold: Submitting request to API endpoint")
        kobold_api_ip = loaded_config_data['local_api_ip']['kobold']
        try:
            response = requests.post(kobold_api_ip, headers=headers, json=data)
            logging.debug("kobold: API Response Status Code: %d", response.status_code)

            if response.status_code == 200:
                try:
                    response_data = response.json()
                    logging.debug("kobold: API Response Data: %s", response_data)

                    if response_data and 'results' in response_data and len(response_data['results']) > 0:
                        summary = response_data['results'][0]['text'].strip()
                        logging.debug("kobold: Chat request successful")
                        return summary
                    else:
                        logging.error("Expected data not found in API response.")
                        return "Expected data not found in API response."
                except ValueError as e:
                    logging.error("kobold: Error parsing JSON response: %s", str(e))
                    return f"Error parsing JSON response: {str(e)}"
            else:
                logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
                return f"kobold: API request failed: {response.text}"
        except Exception as e:
            logging.error("kobold: Error in processing: %s", str(e))
            return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
    except Exception as e:
        logging.error("kobold: Error in processing: %s", str(e))
        return f"kobold: Error occurred while processing chat response with kobold: {str(e)}"

# System prompt doesn't work. FIXME
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
def chat_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions", system_prompt=None):
    loaded_config_data = load_and_log_configs()
    try:
        # API key validation
        if api_key is None:
            logging.info("ooba: API key not provided as parameter")
            logging.info("ooba: Attempting to use API key from config file")
            api_key = loaded_config_data['api_keys']['ooba']

        if api_key is None or api_key.strip() == "":
            logging.info("ooba: API key not found or is empty")

        if system_prompt is None:
            system_prompt = "You are a helpful AI assistant that provides accurate and concise information."

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }

        # prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It
        # is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are
        # my favorite." prompt_text += f"\n\n{text}"  # Uncomment this line if you want to include the text variable
        ooba_prompt = f"{input_data}" + f"\n\n\n\n{custom_prompt}"
        logging.debug("ooba: Prompt being sent is {ooba_prompt}")

        data = {
            "mode": "chat",
            "character": "Example",
            "messages": [{"role": "user", "content": ooba_prompt}]
        }

        logging.debug("ooba: Submitting request to API endpoint")
        print("ooba: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data, verify=False)
        logging.debug("ooba: API Response Data: %s", response)

        if response.status_code == 200:
            response_data = response.json()
            summary = response.json()['choices'][0]['message']['content']
            logging.debug("ooba: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
            return f"ooba: API request failed with status code {response.status_code}: {response.text}"

    except Exception as e:
        logging.error("ooba: Error in processing: %s", str(e))
        return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"


# FIXME - Install is more trouble than care to deal with right now.
def chat_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"):
    loaded_config_data = load_and_log_configs()
    model = loaded_config_data['models']['tabby']
    # API key validation
    if api_key is None:
        logging.info("tabby: API key not provided as parameter")
        logging.info("tabby: Attempting to use API key from config file")
        api_key = loaded_config_data['api_keys']['tabby']

    if api_key is None or api_key.strip() == "":
        logging.info("tabby: API key not found or is empty")

    if isinstance(input_data, str) and os.path.isfile(input_data):
        logging.debug("tabby: Loading json data for summarization")
        with open(input_data, 'r') as file:
            data = json.load(file)
    else:
        logging.debug("tabby: Using provided string data for summarization")
        data = input_data

    logging.debug(f"tabby: Loaded data: {data}")
    logging.debug(f"tabby: Type of data: {type(data)}")

    if isinstance(data, dict) and 'summary' in data:
        # If the loaded data is a dictionary and already contains a summary, return it
        logging.debug("tabby: Summary already exists in the loaded data")
        return data['summary']

    # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
    if isinstance(data, list):
        segments = data
        text = extract_text_from_segments(segments)
    elif isinstance(data, str):
        text = data
    else:
        raise ValueError("Invalid input data format")

    headers = {
        'Authorization': f'Bearer {api_key}',
        'Content-Type': 'application/json'
    }
    data2 = {
        'text': text,
        'model': 'tabby'  # Specify the model if needed
    }
    tabby_api_ip = loaded_config_data['local_api']['tabby']['ip']
    try:
        response = requests.post(tabby_api_ip, headers=headers, json=data2)
        response.raise_for_status()
        summary = response.json().get('summary', '')
        return summary
    except requests.exceptions.RequestException as e:
        logging.error(f"Error summarizing with TabbyAPI: {e}")
        return "Error summarizing with TabbyAPI."


# FIXME aphrodite engine - code was literally tab complete in one go from copilot... :/
def chat_with_aphrodite(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:8080/completion"):
    loaded_config_data = load_and_log_configs()
    model = loaded_config_data['models']['aphrodite']
    # API key validation
    if api_key is None:
        logging.info("aphrodite: API key not provided as parameter")
        logging.info("aphrodite: Attempting to use API key from config file")
        api_key = loaded_config_data['api_keys']['aphrodite']

    if api_key is None or api_key.strip() == "":
        logging.info("aphrodite: API key not found or is empty")

    headers = {
        'Authorization': f'Bearer {api_key}',
        'Content-Type': 'application/json'
    }
    data2 = {
        'text': input_data,
    }
    try:
        response = requests.post(api_IP, headers=headers, json=data2)
        response.raise_for_status()
        summary = response.json().get('summary', '')
        return summary
    except requests.exceptions.RequestException as e:
        logging.error(f"Error summarizing with Aphrodite: {e}")
        return "Error summarizing with Aphrodite."


def chat_with_ollama(input_data, prompt, temp, system_message):
    pass


def save_summary_to_file(summary, file_path):
    logging.debug("Now saving summary to file...")
    base_name = os.path.splitext(os.path.basename(file_path))[0]
    summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt')
    os.makedirs(os.path.dirname(summary_file_path), exist_ok=True)
    logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
    with open(summary_file_path, 'w') as file:
        file.write(summary)
    logging.info(f"Summary saved to file: {summary_file_path}")

#
#
#######################################################################################################################