Spaces:
Running
Running
File size: 19,208 Bytes
4e1f4a3 02b34b4 4e1f4a3 02b34b4 4e1f4a3 02b34b4 4e1f4a3 02b34b4 4e1f4a3 02b34b4 4e1f4a3 02b34b4 cb782bd 02b34b4 4e1f4a3 cb782bd 4e1f4a3 02b34b4 4e1f4a3 02b34b4 4e1f4a3 02b34b4 4e1f4a3 02b34b4 cb782bd 02b34b4 4e1f4a3 02b34b4 cb782bd 02b34b4 4e1f4a3 02b34b4 cb782bd 02b34b4 cb782bd 02b34b4 4e1f4a3 cb782bd 4e1f4a3 cb782bd 4e1f4a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
# Embeddings_tabc.py
# Description: This file contains the code for the RAG Chat tab in the Gradio UI
#
# Imports
import json
import logging
#
# External Imports
import gradio as gr
from tqdm import tqdm
from App_Function_Libraries.Chunk_Lib import improved_chunking_process, chunk_for_embedding
#
# Local Imports
from App_Function_Libraries.DB.DB_Manager import get_all_content_from_database
from App_Function_Libraries.RAG.ChromaDB_Library import chroma_client, \
store_in_chroma, situate_context
from App_Function_Libraries.RAG.Embeddings_Create import create_embedding, create_embeddings_batch
#
########################################################################################################################
#
# Functions:
# FIXME - under construction
def create_embeddings_tab():
with gr.TabItem("Create Embeddings"):
gr.Markdown("# Create Embeddings for All Content")
with gr.Row():
with gr.Column():
embedding_provider = gr.Radio(
choices=["huggingface", "local", "openai"],
label="Select Embedding Provider",
value="huggingface"
)
gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
gr.Markdown("OpenAI provider requires a valid API key. ")
gr.Markdown("OpenAI Embeddings models: `text-embedding-3-small`, `text-embedding-3-large`")
gr.Markdown("HuggingFace provider requires a valid model name, i.e. `dunzhang/stella_en_400M_v5`")
embedding_model = gr.Textbox(
label="Embedding Model",
value="Enter your embedding model name here", lines=3
)
embedding_api_url = gr.Textbox(
label="API URL (for local provider)",
value="http://localhost:8080/embedding",
visible=False
)
# Add chunking options
chunking_method = gr.Dropdown(
choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
label="Chunking Method",
value="words"
)
max_chunk_size = gr.Slider(
minimum=1, maximum=8000, step=1, value=500,
label="Max Chunk Size"
)
chunk_overlap = gr.Slider(
minimum=0, maximum=4000, step=1, value=200,
label="Chunk Overlap"
)
adaptive_chunking = gr.Checkbox(
label="Use Adaptive Chunking",
value=False
)
create_button = gr.Button("Create Embeddings")
with gr.Column():
status_output = gr.Textbox(label="Status", lines=10)
def update_provider_options(provider):
return gr.update(visible=provider == "local")
embedding_provider.change(
fn=update_provider_options,
inputs=[embedding_provider],
outputs=[embedding_api_url]
)
def create_all_embeddings(provider, model, api_url, method, max_size, overlap, adaptive):
try:
all_content = get_all_content_from_database()
if not all_content:
return "No content found in the database."
chunk_options = {
'method': method,
'max_size': max_size,
'overlap': overlap,
'adaptive': adaptive
}
collection_name = "all_content_embeddings"
collection = chroma_client.get_or_create_collection(name=collection_name)
for item in all_content:
media_id = item['id']
text = item['content']
chunks = improved_chunking_process(text, chunk_options)
for i, chunk in enumerate(chunks):
chunk_text = chunk['text']
chunk_id = f"doc_{media_id}_chunk_{i}"
existing = collection.get(ids=[chunk_id])
if existing['ids']:
continue
embedding = create_embedding(chunk_text, provider, model, api_url)
metadata = {
"media_id": str(media_id),
"chunk_index": i,
"total_chunks": len(chunks),
"chunking_method": method,
"max_chunk_size": max_size,
"chunk_overlap": overlap,
"adaptive_chunking": adaptive,
"embedding_model": model,
"embedding_provider": provider,
**chunk['metadata']
}
store_in_chroma(collection_name, [chunk_text], [embedding], [chunk_id], [metadata])
return "Embeddings created and stored successfully for all content."
except Exception as e:
logging.error(f"Error during embedding creation: {str(e)}")
return f"Error: {str(e)}"
create_button.click(
fn=create_all_embeddings,
inputs=[embedding_provider, embedding_model, embedding_api_url,
chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking],
outputs=status_output
)
def create_view_embeddings_tab():
with gr.TabItem("View/Update Embeddings"):
gr.Markdown("# View and Update Embeddings")
item_mapping = gr.State({})
with gr.Row():
with gr.Column():
item_dropdown = gr.Dropdown(label="Select Item", choices=[], interactive=True)
refresh_button = gr.Button("Refresh Item List")
embedding_status = gr.Textbox(label="Embedding Status", interactive=False)
embedding_preview = gr.Textbox(label="Embedding Preview", interactive=False, lines=5)
embedding_metadata = gr.Textbox(label="Embedding Metadata", interactive=False, lines=10)
with gr.Column():
create_new_embedding_button = gr.Button("Create New Embedding")
embedding_provider = gr.Radio(
choices=["huggingface", "local", "openai"],
label="Select Embedding Provider",
value="huggingface"
)
gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
gr.Markdown("OpenAI provider requires a valid API key. ")
gr.Markdown("OpenAI Embeddings models: `text-embedding-3-small`, `text-embedding-3-large`")
gr.Markdown("HuggingFace provider requires a valid model name, i.e. `dunzhang/stella_en_400M_v5`")
embedding_model = gr.Textbox(
label="Embedding Model",
value="Enter your embedding model name here", lines=3
)
embedding_api_url = gr.Textbox(
label="API URL (for local provider)",
value="http://localhost:8080/embedding",
visible=False
)
chunking_method = gr.Dropdown(
choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
label="Chunking Method",
value="words"
)
max_chunk_size = gr.Slider(
minimum=1, maximum=8000, step=5, value=500,
label="Max Chunk Size"
)
chunk_overlap = gr.Slider(
minimum=0, maximum=5000, step=5, value=200,
label="Chunk Overlap"
)
adaptive_chunking = gr.Checkbox(
label="Use Adaptive Chunking",
value=False
)
contextual_api_choice = gr.Dropdown(
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
label="Select API for Contextualized Embeddings",
value="OpenAI"
)
use_contextual_embeddings = gr.Checkbox(
label="Use Contextual Embeddings",
value=True
)
contextual_api_key = gr.Textbox(label="API Key", lines=1)
def get_items_with_embedding_status():
try:
items = get_all_content_from_database()
collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
choices = []
new_item_mapping = {}
for item in items:
try:
result = collection.get(ids=[f"doc_{item['id']}_chunk_0"])
embedding_exists = result is not None and result.get('ids') and len(result['ids']) > 0
status = "Embedding exists" if embedding_exists else "No embedding"
except Exception as e:
print(f"Error checking embedding for item {item['id']}: {str(e)}")
status = "Error checking"
choice = f"{item['title']} ({status})"
choices.append(choice)
new_item_mapping[choice] = item['id']
return gr.update(choices=choices), new_item_mapping
except Exception as e:
print(f"Error in get_items_with_embedding_status: {str(e)}")
return gr.update(choices=["Error: Unable to fetch items"]), {}
def update_provider_options(provider):
return gr.update(visible=provider == "local")
def check_embedding_status(selected_item, item_mapping):
if not selected_item:
return "Please select an item", "", ""
try:
item_id = item_mapping.get(selected_item)
if item_id is None:
return f"Invalid item selected: {selected_item}", "", ""
item_title = selected_item.rsplit(' (', 1)[0]
collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
result = collection.get(ids=[f"doc_{item_id}_chunk_0"], include=["embeddings", "metadatas"])
logging.info(f"ChromaDB result for item '{item_title}' (ID: {item_id}): {result}")
if not result['ids']:
return f"No embedding found for item '{item_title}' (ID: {item_id})", "", ""
if not result['embeddings'] or not result['embeddings'][0]:
return f"Embedding data missing for item '{item_title}' (ID: {item_id})", "", ""
embedding = result['embeddings'][0]
metadata = result['metadatas'][0] if result['metadatas'] else {}
embedding_preview = str(embedding[:50])
status = f"Embedding exists for item '{item_title}' (ID: {item_id})"
return status, f"First 50 elements of embedding:\n{embedding_preview}", json.dumps(metadata, indent=2)
except Exception as e:
logging.error(f"Error in check_embedding_status: {str(e)}")
return f"Error processing item: {selected_item}. Details: {str(e)}", "", ""
def create_new_embedding_for_item(selected_item, provider, model, api_url, method, max_size, overlap, adaptive,
item_mapping, use_contextual, contextual_api_choice=None):
if not selected_item:
return "Please select an item", "", ""
try:
item_id = item_mapping.get(selected_item)
if item_id is None:
return f"Invalid item selected: {selected_item}", "", ""
items = get_all_content_from_database()
item = next((item for item in items if item['id'] == item_id), None)
if not item:
return f"Item not found: {item_id}", "", ""
chunk_options = {
'method': method,
'max_size': max_size,
'overlap': overlap,
'adaptive': adaptive
}
logging.info(f"Chunking content for item: {item['title']} (ID: {item_id})")
chunks = chunk_for_embedding(item['content'], item['title'], chunk_options)
collection_name = "all_content_embeddings"
collection = chroma_client.get_or_create_collection(name=collection_name)
# Delete existing embeddings for this item
existing_ids = [f"doc_{item_id}_chunk_{i}" for i in range(len(chunks))]
collection.delete(ids=existing_ids)
logging.info(f"Deleted {len(existing_ids)} existing embeddings for item {item_id}")
texts, ids, metadatas = [], [], []
chunk_count = 0
logging.info("Generating contextual summaries and preparing chunks for embedding")
for i, chunk in tqdm(enumerate(chunks), total=len(chunks), desc="Processing chunks"):
chunk_text = chunk['text']
chunk_metadata = chunk['metadata']
if chunk_count == 0:
chunk_count = 1
if use_contextual:
# Generate contextual summary
logging.debug(f"Generating contextual summary for chunk {chunk_count}")
context = situate_context(contextual_api_choice, item['content'], chunk_text)
contextualized_text = f"{chunk_text}\n\nContextual Summary: {context}"
else:
contextualized_text = chunk_text
context = None
chunk_id = f"doc_{item_id}_chunk_{i}"
metadata = {
"media_id": str(item_id),
"chunk_index": i,
"total_chunks": len(chunks),
"chunking_method": method,
"max_chunk_size": max_size,
"chunk_overlap": overlap,
"adaptive_chunking": adaptive,
"embedding_model": model,
"embedding_provider": provider,
"original_text": chunk_text,
"use_contextual_embeddings": use_contextual,
"contextual_summary": context,
**chunk_metadata
}
texts.append(contextualized_text)
ids.append(chunk_id)
metadatas.append(metadata)
chunk_count = chunk_count+1
# Create embeddings in batch
logging.info(f"Creating embeddings for {len(texts)} chunks")
embeddings = create_embeddings_batch(texts, provider, model, api_url)
# Store in Chroma
store_in_chroma(collection_name, texts, embeddings, ids, metadatas)
# Create a preview of the first embedding
embedding_preview = str(embeddings[0][:50]) if embeddings else "No embeddings created"
# Return status message
status = f"New embeddings created and stored for item: {item['title']} (ID: {item_id})"
# Add contextual summaries to status message if enabled
if use_contextual:
status += " (with contextual summaries)"
# Return status message, embedding preview, and metadata
return status, f"First 50 elements of new embedding:\n{embedding_preview}", json.dumps(metadatas[0], indent=2)
except Exception as e:
logging.error(f"Error in create_new_embedding_for_item: {str(e)}")
return f"Error creating embedding: {str(e)}", "", ""
refresh_button.click(
get_items_with_embedding_status,
outputs=[item_dropdown, item_mapping]
)
item_dropdown.change(
check_embedding_status,
inputs=[item_dropdown, item_mapping],
outputs=[embedding_status, embedding_preview, embedding_metadata]
)
create_new_embedding_button.click(
create_new_embedding_for_item,
inputs=[item_dropdown, embedding_provider, embedding_model, embedding_api_url,
chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, item_mapping,
use_contextual_embeddings, contextual_api_choice],
outputs=[embedding_status, embedding_preview, embedding_metadata]
)
embedding_provider.change(
update_provider_options,
inputs=[embedding_provider],
outputs=[embedding_api_url]
)
return (item_dropdown, refresh_button, embedding_status, embedding_preview, embedding_metadata,
create_new_embedding_button, embedding_provider, embedding_model, embedding_api_url,
chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking,
use_contextual_embeddings, contextual_api_choice, contextual_api_key)
def create_purge_embeddings_tab():
with gr.TabItem("Purge Embeddings"):
gr.Markdown("# Purge Embeddings")
with gr.Row():
with gr.Column():
purge_button = gr.Button("Purge All Embeddings")
with gr.Column():
status_output = gr.Textbox(label="Status", lines=10)
def purge_all_embeddings():
try:
collection_name = "all_content_embeddings"
chroma_client.delete_collection(collection_name)
chroma_client.create_collection(collection_name)
return "All embeddings have been purged successfully."
except Exception as e:
logging.error(f"Error during embedding purge: {str(e)}")
return f"Error: {str(e)}"
purge_button.click(
fn=purge_all_embeddings,
outputs=status_output
)
#
# End of file
########################################################################################################################
|