File size: 19,208 Bytes
4e1f4a3
 
 
 
 
 
 
 
 
02b34b4
4e1f4a3
02b34b4
4e1f4a3
 
 
 
02b34b4
 
 
 
4e1f4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b34b4
4e1f4a3
 
 
02b34b4
4e1f4a3
 
 
 
 
 
02b34b4
 
 
 
 
cb782bd
 
 
 
02b34b4
4e1f4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb782bd
 
4e1f4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b34b4
 
4e1f4a3
 
 
 
 
 
02b34b4
4e1f4a3
02b34b4
 
 
 
4e1f4a3
 
02b34b4
 
cb782bd
 
 
 
 
 
 
 
02b34b4
4e1f4a3
 
 
 
 
 
 
 
 
 
 
02b34b4
cb782bd
02b34b4
4e1f4a3
 
 
02b34b4
 
 
 
 
 
 
 
 
 
 
 
cb782bd
02b34b4
cb782bd
 
 
 
 
 
 
 
 
02b34b4
4e1f4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb782bd
 
4e1f4a3
 
 
 
 
 
 
 
cb782bd
 
 
 
4e1f4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Embeddings_tabc.py
# Description: This file contains the code for the RAG Chat tab in the Gradio UI
#
# Imports
import json
import logging
#
# External Imports
import gradio as gr
from tqdm import tqdm

from App_Function_Libraries.Chunk_Lib import improved_chunking_process, chunk_for_embedding
#
# Local Imports
from App_Function_Libraries.DB.DB_Manager import get_all_content_from_database
from App_Function_Libraries.RAG.ChromaDB_Library import chroma_client, \
    store_in_chroma, situate_context
from App_Function_Libraries.RAG.Embeddings_Create import create_embedding, create_embeddings_batch


#
########################################################################################################################
#
# Functions:

# FIXME - under construction
def create_embeddings_tab():
    with gr.TabItem("Create Embeddings"):
        gr.Markdown("# Create Embeddings for All Content")

        with gr.Row():
            with gr.Column():
                embedding_provider = gr.Radio(
                    choices=["huggingface", "local", "openai"],
                    label="Select Embedding Provider",
                    value="huggingface"
                )
                gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
                gr.Markdown("OpenAI provider requires a valid API key. ")
                gr.Markdown("OpenAI Embeddings models: `text-embedding-3-small`, `text-embedding-3-large`")
                gr.Markdown("HuggingFace provider requires a valid model name, i.e. `dunzhang/stella_en_400M_v5`")
                embedding_model = gr.Textbox(
                    label="Embedding Model",
                    value="Enter your embedding model name here", lines=3
                )
                embedding_api_url = gr.Textbox(
                    label="API URL (for local provider)",
                    value="http://localhost:8080/embedding",
                    visible=False
                )

                # Add chunking options
                chunking_method = gr.Dropdown(
                    choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
                    label="Chunking Method",
                    value="words"
                )
                max_chunk_size = gr.Slider(
                    minimum=1, maximum=8000, step=1, value=500,
                    label="Max Chunk Size"
                )
                chunk_overlap = gr.Slider(
                    minimum=0, maximum=4000, step=1, value=200,
                    label="Chunk Overlap"
                )
                adaptive_chunking = gr.Checkbox(
                    label="Use Adaptive Chunking",
                    value=False
                )

                create_button = gr.Button("Create Embeddings")

            with gr.Column():
                status_output = gr.Textbox(label="Status", lines=10)

        def update_provider_options(provider):
            return gr.update(visible=provider == "local")

        embedding_provider.change(
            fn=update_provider_options,
            inputs=[embedding_provider],
            outputs=[embedding_api_url]
        )

        def create_all_embeddings(provider, model, api_url, method, max_size, overlap, adaptive):
            try:
                all_content = get_all_content_from_database()
                if not all_content:
                    return "No content found in the database."

                chunk_options = {
                    'method': method,
                    'max_size': max_size,
                    'overlap': overlap,
                    'adaptive': adaptive
                }

                collection_name = "all_content_embeddings"
                collection = chroma_client.get_or_create_collection(name=collection_name)

                for item in all_content:
                    media_id = item['id']
                    text = item['content']

                    chunks = improved_chunking_process(text, chunk_options)
                    for i, chunk in enumerate(chunks):
                        chunk_text = chunk['text']
                        chunk_id = f"doc_{media_id}_chunk_{i}"

                        existing = collection.get(ids=[chunk_id])
                        if existing['ids']:
                            continue

                        embedding = create_embedding(chunk_text, provider, model, api_url)
                        metadata = {
                            "media_id": str(media_id),
                            "chunk_index": i,
                            "total_chunks": len(chunks),
                            "chunking_method": method,
                            "max_chunk_size": max_size,
                            "chunk_overlap": overlap,
                            "adaptive_chunking": adaptive,
                            "embedding_model": model,
                            "embedding_provider": provider,
                            **chunk['metadata']
                        }
                        store_in_chroma(collection_name, [chunk_text], [embedding], [chunk_id], [metadata])

                return "Embeddings created and stored successfully for all content."
            except Exception as e:
                logging.error(f"Error during embedding creation: {str(e)}")
                return f"Error: {str(e)}"

        create_button.click(
            fn=create_all_embeddings,
            inputs=[embedding_provider, embedding_model, embedding_api_url,
                    chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking],
            outputs=status_output
        )


def create_view_embeddings_tab():
    with gr.TabItem("View/Update Embeddings"):
        gr.Markdown("# View and Update Embeddings")
        item_mapping = gr.State({})
        with gr.Row():
            with gr.Column():
                item_dropdown = gr.Dropdown(label="Select Item", choices=[], interactive=True)
                refresh_button = gr.Button("Refresh Item List")
                embedding_status = gr.Textbox(label="Embedding Status", interactive=False)
                embedding_preview = gr.Textbox(label="Embedding Preview", interactive=False, lines=5)
                embedding_metadata = gr.Textbox(label="Embedding Metadata", interactive=False, lines=10)

            with gr.Column():
                create_new_embedding_button = gr.Button("Create New Embedding")
                embedding_provider = gr.Radio(
                    choices=["huggingface", "local", "openai"],
                    label="Select Embedding Provider",
                    value="huggingface"
                )
                gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
                gr.Markdown("OpenAI provider requires a valid API key. ")
                gr.Markdown("OpenAI Embeddings models: `text-embedding-3-small`, `text-embedding-3-large`")
                gr.Markdown("HuggingFace provider requires a valid model name, i.e. `dunzhang/stella_en_400M_v5`")
                embedding_model = gr.Textbox(
                    label="Embedding Model",
                    value="Enter your embedding model name here", lines=3
                )
                embedding_api_url = gr.Textbox(
                    label="API URL (for local provider)",
                    value="http://localhost:8080/embedding",
                    visible=False
                )
                chunking_method = gr.Dropdown(
                    choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
                    label="Chunking Method",
                    value="words"
                )
                max_chunk_size = gr.Slider(
                    minimum=1, maximum=8000, step=5, value=500,
                    label="Max Chunk Size"
                )
                chunk_overlap = gr.Slider(
                    minimum=0, maximum=5000, step=5, value=200,
                    label="Chunk Overlap"
                )
                adaptive_chunking = gr.Checkbox(
                    label="Use Adaptive Chunking",
                    value=False
                )
                contextual_api_choice = gr.Dropdown(
                    choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
                    label="Select API for Contextualized Embeddings",
                    value="OpenAI"
                )
                use_contextual_embeddings = gr.Checkbox(
                    label="Use Contextual Embeddings",
                    value=True
                )
                contextual_api_key = gr.Textbox(label="API Key", lines=1)

        def get_items_with_embedding_status():
            try:
                items = get_all_content_from_database()
                collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
                choices = []
                new_item_mapping = {}
                for item in items:
                    try:
                        result = collection.get(ids=[f"doc_{item['id']}_chunk_0"])
                        embedding_exists = result is not None and result.get('ids') and len(result['ids']) > 0
                        status = "Embedding exists" if embedding_exists else "No embedding"
                    except Exception as e:
                        print(f"Error checking embedding for item {item['id']}: {str(e)}")
                        status = "Error checking"
                    choice = f"{item['title']} ({status})"
                    choices.append(choice)
                    new_item_mapping[choice] = item['id']
                return gr.update(choices=choices), new_item_mapping
            except Exception as e:
                print(f"Error in get_items_with_embedding_status: {str(e)}")
                return gr.update(choices=["Error: Unable to fetch items"]), {}

        def update_provider_options(provider):
            return gr.update(visible=provider == "local")

        def check_embedding_status(selected_item, item_mapping):
            if not selected_item:
                return "Please select an item", "", ""

            try:
                item_id = item_mapping.get(selected_item)
                if item_id is None:
                    return f"Invalid item selected: {selected_item}", "", ""

                item_title = selected_item.rsplit(' (', 1)[0]
                collection = chroma_client.get_or_create_collection(name="all_content_embeddings")

                result = collection.get(ids=[f"doc_{item_id}_chunk_0"], include=["embeddings", "metadatas"])
                logging.info(f"ChromaDB result for item '{item_title}' (ID: {item_id}): {result}")

                if not result['ids']:
                    return f"No embedding found for item '{item_title}' (ID: {item_id})", "", ""

                if not result['embeddings'] or not result['embeddings'][0]:
                    return f"Embedding data missing for item '{item_title}' (ID: {item_id})", "", ""

                embedding = result['embeddings'][0]
                metadata = result['metadatas'][0] if result['metadatas'] else {}
                embedding_preview = str(embedding[:50])
                status = f"Embedding exists for item '{item_title}' (ID: {item_id})"
                return status, f"First 50 elements of embedding:\n{embedding_preview}", json.dumps(metadata, indent=2)

            except Exception as e:
                logging.error(f"Error in check_embedding_status: {str(e)}")
                return f"Error processing item: {selected_item}. Details: {str(e)}", "", ""

        def create_new_embedding_for_item(selected_item, provider, model, api_url, method, max_size, overlap, adaptive,

                                          item_mapping, use_contextual, contextual_api_choice=None):
            if not selected_item:
                return "Please select an item", "", ""

            try:
                item_id = item_mapping.get(selected_item)
                if item_id is None:
                    return f"Invalid item selected: {selected_item}", "", ""

                items = get_all_content_from_database()
                item = next((item for item in items if item['id'] == item_id), None)
                if not item:
                    return f"Item not found: {item_id}", "", ""

                chunk_options = {
                    'method': method,
                    'max_size': max_size,
                    'overlap': overlap,
                    'adaptive': adaptive
                }

                logging.info(f"Chunking content for item: {item['title']} (ID: {item_id})")
                chunks = chunk_for_embedding(item['content'], item['title'], chunk_options)
                collection_name = "all_content_embeddings"
                collection = chroma_client.get_or_create_collection(name=collection_name)

                # Delete existing embeddings for this item
                existing_ids = [f"doc_{item_id}_chunk_{i}" for i in range(len(chunks))]
                collection.delete(ids=existing_ids)
                logging.info(f"Deleted {len(existing_ids)} existing embeddings for item {item_id}")

                texts, ids, metadatas = [], [], []
                chunk_count = 0
                logging.info("Generating contextual summaries and preparing chunks for embedding")
                for i, chunk in tqdm(enumerate(chunks), total=len(chunks), desc="Processing chunks"):
                    chunk_text = chunk['text']
                    chunk_metadata = chunk['metadata']
                    if chunk_count == 0:
                        chunk_count = 1
                    if use_contextual:
                        # Generate contextual summary
                        logging.debug(f"Generating contextual summary for chunk {chunk_count}")
                        context = situate_context(contextual_api_choice, item['content'], chunk_text)
                        contextualized_text = f"{chunk_text}\n\nContextual Summary: {context}"
                    else:
                        contextualized_text = chunk_text
                        context = None

                    chunk_id = f"doc_{item_id}_chunk_{i}"
                    metadata = {
                        "media_id": str(item_id),
                        "chunk_index": i,
                        "total_chunks": len(chunks),
                        "chunking_method": method,
                        "max_chunk_size": max_size,
                        "chunk_overlap": overlap,
                        "adaptive_chunking": adaptive,
                        "embedding_model": model,
                        "embedding_provider": provider,
                        "original_text": chunk_text,
                        "use_contextual_embeddings": use_contextual,
                        "contextual_summary": context,
                        **chunk_metadata
                    }

                    texts.append(contextualized_text)
                    ids.append(chunk_id)
                    metadatas.append(metadata)
                    chunk_count = chunk_count+1

                # Create embeddings in batch
                logging.info(f"Creating embeddings for {len(texts)} chunks")
                embeddings = create_embeddings_batch(texts, provider, model, api_url)

                # Store in Chroma
                store_in_chroma(collection_name, texts, embeddings, ids, metadatas)

                # Create a preview of the first embedding
                embedding_preview = str(embeddings[0][:50]) if embeddings else "No embeddings created"

                # Return status message
                status = f"New embeddings created and stored for item: {item['title']} (ID: {item_id})"

                # Add contextual summaries to status message if enabled
                if use_contextual:
                    status += " (with contextual summaries)"

                # Return status message, embedding preview, and metadata
                return status, f"First 50 elements of new embedding:\n{embedding_preview}", json.dumps(metadatas[0], indent=2)
            except Exception as e:
                logging.error(f"Error in create_new_embedding_for_item: {str(e)}")
                return f"Error creating embedding: {str(e)}", "", ""

        refresh_button.click(
            get_items_with_embedding_status,
            outputs=[item_dropdown, item_mapping]
        )
        item_dropdown.change(
            check_embedding_status,
            inputs=[item_dropdown, item_mapping],
            outputs=[embedding_status, embedding_preview, embedding_metadata]
        )
        create_new_embedding_button.click(
            create_new_embedding_for_item,
            inputs=[item_dropdown, embedding_provider, embedding_model, embedding_api_url,
                    chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, item_mapping,
                    use_contextual_embeddings, contextual_api_choice],
            outputs=[embedding_status, embedding_preview, embedding_metadata]
        )
        embedding_provider.change(
            update_provider_options,
            inputs=[embedding_provider],
            outputs=[embedding_api_url]
        )

    return (item_dropdown, refresh_button, embedding_status, embedding_preview, embedding_metadata,
            create_new_embedding_button, embedding_provider, embedding_model, embedding_api_url,
            chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking,
            use_contextual_embeddings, contextual_api_choice, contextual_api_key)


def create_purge_embeddings_tab():
    with gr.TabItem("Purge Embeddings"):
        gr.Markdown("# Purge Embeddings")

        with gr.Row():
            with gr.Column():
                purge_button = gr.Button("Purge All Embeddings")
            with gr.Column():
                status_output = gr.Textbox(label="Status", lines=10)

    def purge_all_embeddings():
        try:
            collection_name = "all_content_embeddings"
            chroma_client.delete_collection(collection_name)
            chroma_client.create_collection(collection_name)
            return "All embeddings have been purged successfully."
        except Exception as e:
            logging.error(f"Error during embedding purge: {str(e)}")
            return f"Error: {str(e)}"

    purge_button.click(
        fn=purge_all_embeddings,
        outputs=status_output
    )



#
# End of file
########################################################################################################################