File size: 7,219 Bytes
45e1f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a324812
45e1f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Embeddings_Create.py
# Description: Functions for Creating and managing Embeddings in ChromaDB with LLama.cpp/OpenAI/Transformers
#
# Imports:
import logging
import time
from functools import wraps
from threading import Lock, Timer
from typing import List
#
# 3rd-Party Imports:
import requests
from transformers import AutoTokenizer, AutoModel
import torch
#
# Local Imports:
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
#
#######################################################################################################################
#
# Functions:

# FIXME - Add all globals to summarize.py
loaded_config = load_comprehensive_config()
embedding_provider = loaded_config['Embeddings']['embedding_provider']
embedding_model = loaded_config['Embeddings']['embedding_model']
embedding_api_url = loaded_config['Embeddings']['embedding_api_url']
embedding_api_key = loaded_config['Embeddings']['embedding_api_key']

# Embedding Chunking Settings
chunk_size = loaded_config['Embeddings']['chunk_size']
overlap = loaded_config['Embeddings']['overlap']


# FIXME - Add logging

class HuggingFaceEmbedder:
    def __init__(self, model_name, timeout_seconds=120):  # Default timeout of 2 minutes
        self.model_name = model_name
        self.tokenizer = None
        self.model = None
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.timeout_seconds = timeout_seconds
        self.last_used_time = 0
        self.unload_timer = None

    def load_model(self):
        if self.model is None:
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            self.model = AutoModel.from_pretrained(self.model_name)
            self.model.to(self.device)
        self.last_used_time = time.time()
        self.reset_timer()

    def unload_model(self):
        if self.model is not None:
            del self.model
            del self.tokenizer
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            self.model = None
            self.tokenizer = None
        if self.unload_timer:
            self.unload_timer.cancel()

    def reset_timer(self):
        if self.unload_timer:
            self.unload_timer.cancel()
        self.unload_timer = Timer(self.timeout_seconds, self.unload_model)
        self.unload_timer.start()

    def create_embeddings(self, texts):
        self.load_model()
        inputs = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512)
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = self.model(**inputs)
        embeddings = outputs.last_hidden_state.mean(dim=1)
        return embeddings.cpu().numpy()

# Global variable to hold the embedder
huggingface_embedder = None


class RateLimiter:
    def __init__(self, max_calls, period):
        self.max_calls = max_calls
        self.period = period
        self.calls = []
        self.lock = Lock()

    def __call__(self, func):
        def wrapper(*args, **kwargs):
            with self.lock:
                now = time.time()
                self.calls = [call for call in self.calls if call > now - self.period]
                if len(self.calls) >= self.max_calls:
                    sleep_time = self.calls[0] - (now - self.period)
                    time.sleep(sleep_time)
                self.calls.append(time.time())
            return func(*args, **kwargs)
        return wrapper


def exponential_backoff(max_retries=5, base_delay=1):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            for attempt in range(max_retries):
                try:
                    return func(*args, **kwargs)
                except Exception as e:
                    if attempt == max_retries - 1:
                        raise
                    delay = base_delay * (2 ** attempt)
                    logging.warning(f"Attempt {attempt + 1} failed. Retrying in {delay} seconds. Error: {str(e)}")
                    time.sleep(delay)
        return wrapper
    return decorator


# FIXME - refactor/setup to use config file & perform chunking
@exponential_backoff()
@RateLimiter(max_calls=50, period=60)  # Adjust these values based on API limits
def create_embeddings_batch(texts: List[str], provider: str, model: str, api_url: str, timeout_seconds: int = 300) -> \
List[List[float]]:
    global huggingface_embedder

    if provider.lower() == 'huggingface':
        if huggingface_embedder is None or huggingface_embedder.model_name != model:
            if huggingface_embedder is not None:
                huggingface_embedder.unload_model()
            huggingface_embedder = HuggingFaceEmbedder(model, timeout_seconds)

        embeddings = huggingface_embedder.create_embeddings(texts).tolist()
        return embeddings

    elif provider.lower() == 'openai':
        logging.debug(f"Creating embeddings for {len(texts)} texts using OpenAI API")
        return [create_openai_embedding(text, model) for text in texts]

    elif provider.lower() == 'local':
        response = requests.post(
            api_url,
            json={"texts": texts, "model": model},
            headers={"Authorization": f"Bearer {embedding_api_key}"}
        )
        if response.status_code == 200:
            return response.json()['embeddings']
        else:
            raise Exception(f"Error from local API: {response.text}")
    else:
        raise ValueError(f"Unsupported embedding provider: {provider}")


def create_embedding(text: str, provider: str, model: str, api_url: str) -> List[float]:
    return create_embeddings_batch([text], provider, model, api_url)[0]

# FIXME
def create_stella_embeddings(text: str) -> List[float]:
    if embedding_provider == 'local':
        # Load the model and tokenizer
        tokenizer = AutoTokenizer.from_pretrained("dunzhang/stella_en_400M_v5")
        model = AutoModel.from_pretrained("dunzhang/stella_en_400M_v5")

        # Tokenize and encode the text
        inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)

        # Generate embeddings
        with torch.no_grad():
            outputs = model(**inputs)

        # Use the mean of the last hidden state as the sentence embedding
        embeddings = outputs.last_hidden_state.mean(dim=1)

        return embeddings[0].tolist()  # Convert to list for consistency
    elif embedding_provider == 'openai':
        return get_openai_embeddings(text, embedding_model)
    else:
        raise ValueError(f"Unsupported embedding provider: {embedding_provider}")


def create_openai_embedding(text: str, model: str) -> List[float]:
    embedding = get_openai_embeddings(text, model)
    return embedding

#
# End of File.
#######################################################################################################################