File size: 42,961 Bytes
644abaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed28876
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
# Summarization_General_Lib.py
#########################################
# General Summarization Library
# This library is used to perform summarization.
#
####
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
#
#
####################
#
# Import necessary libraries
import json
import logging
import os
import time
from typing import List

import requests
#
# Import 3rd-Party Libraries
from requests import RequestException
#
# Import Local libraries
from App_Function_Libraries.Utils.Utils import load_and_log_configs
#
#######################################################################################################################
# Function Definitions
#

#FIXME: Update to include full arguments

def extract_text_from_segments(segments):
    logging.debug(f"Segments received: {segments}")
    logging.debug(f"Type of segments: {type(segments)}")

    text = ""

    if isinstance(segments, list):
        for segment in segments:
            logging.debug(f"Current segment: {segment}")
            logging.debug(f"Type of segment: {type(segment)}")
            if 'Text' in segment:
                text += segment['Text'] + " "
            else:
                logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
    else:
        logging.warning(f"Unexpected type of 'segments': {type(segments)}")

    return text.strip()



def get_openai_embeddings(input_data: str, model: str) -> List[float]:
    """
    Get embeddings for the input text from OpenAI API.

    Args:
        input_data (str): The input text to get embeddings for.
        model (str): The model to use for generating embeddings.

    Returns:
        List[float]: The embeddings generated by the API.
    """
    loaded_config_data = load_and_log_configs()
    api_key = loaded_config_data['api_keys']['openai']

    if not api_key:
        logging.error("OpenAI: API key not found or is empty")
        raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty")

    logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
    logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
    logging.debug(f"OpenAI: Using model: {model}")

    headers = {
        'Authorization': f'Bearer {api_key}',
        'Content-Type': 'application/json'
    }

    request_data = {
        "input": input_data,
        "model": model,
    }

    try:
        logging.debug("OpenAI: Posting request to embeddings API")
        response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data)
        logging.debug(f"Full API response data: {response}")
        if response.status_code == 200:
            response_data = response.json()
            if 'data' in response_data and len(response_data['data']) > 0:
                embedding = response_data['data'][0]['embedding']
                logging.debug("OpenAI: Embeddings retrieved successfully")
                return embedding
            else:
                logging.warning("OpenAI: Embedding data not found in the response")
                raise ValueError("OpenAI: Embedding data not available in the response")
        else:
            logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}")
            logging.error(f"OpenAI: Error response: {response.text}")
            raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}")
    except requests.RequestException as e:
        logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
        raise ValueError(f"OpenAI: Error making API request: {str(e)}")
    except Exception as e:
        logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
        raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}")


def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    loaded_config_data = load_and_log_configs()
    openai_api_key = api_key
    try:
        # API key validation
        if not openai_api_key:
            logging.info("OpenAI: API key not provided as parameter")
            logging.info("OpenAI: Attempting to use API key from config file")
            openai_api_key = loaded_config_data['api_keys']['openai']

        if not openai_api_key:
            logging.error("OpenAI: API key not found or is empty")
            return "OpenAI: API Key Not Provided/Found in Config file or is empty"

        logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}")

        # Input data handling
        logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
        logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")

        if isinstance(input_data, str):
            if input_data.strip().startswith('{'):
                # It's likely a JSON string
                logging.debug("OpenAI: Parsing provided JSON string data for summarization")
                try:
                    data = json.loads(input_data)
                except json.JSONDecodeError as e:
                    logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
                    return f"OpenAI: Error parsing JSON input: {str(e)}"
            elif os.path.isfile(input_data):
                logging.debug("OpenAI: Loading JSON data from file for summarization")
                with open(input_data, 'r') as file:
                    data = json.load(file)
            else:
                logging.debug("OpenAI: Using provided string data for summarization")
                data = input_data
        else:
            data = input_data

        logging.debug(f"OpenAI: Processed data type: {type(data)}")
        logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")

        # Text extraction
        if isinstance(data, dict):
            if 'summary' in data:
                logging.debug("OpenAI: Summary already exists in the loaded data")
                return data['summary']
            elif 'segments' in data:
                text = extract_text_from_segments(data['segments'])
            else:
                text = json.dumps(data)  # Convert dict to string if no specific format
        elif isinstance(data, list):
            text = extract_text_from_segments(data)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")

        logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
        logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")

        openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
        logging.debug(f"OpenAI: Using model: {openai_model}")

        headers = {
            'Authorization': f'Bearer {openai_api_key}',
            'Content-Type': 'application/json'
        }

        logging.debug(
            f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
        logging.debug("openai: Preparing data + prompt for submittal")
        openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        if temp is None:
            temp = 0.7
        if system_message is None:
            system_message = "You are a helpful AI assistant who does whatever the user requests."
        temp = float(temp)
        data = {
            "model": openai_model,
            "messages": [
                {"role": "system", "content": system_message},
                {"role": "user", "content": openai_prompt}
            ],
            "max_tokens": 4096,
            "temperature": temp
        }

        logging.debug("OpenAI: Posting request")
        response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
        logging.debug(f"Full API response data: {response}")
        if response.status_code == 200:
            response_data = response.json()
            logging.debug(response_data)
            if 'choices' in response_data and len(response_data['choices']) > 0:
                chat_response = response_data['choices'][0]['message']['content'].strip()
                logging.debug("openai: Chat Sent successfully")
                logging.debug(f"openai: Chat response: {chat_response}")
                return chat_response
            else:
                logging.warning("openai: Chat response not found in the response data")
                return "openai: Chat not available"
        else:
            logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
            logging.error(f"OpenAI: Error response: {response.text}")
            return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
    except json.JSONDecodeError as e:
        logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
        return f"OpenAI: Error decoding JSON input: {str(e)}"
    except requests.RequestException as e:
        logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
        return f"OpenAI: Error making API request: {str(e)}"
    except Exception as e:
        logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
        return f"OpenAI: Unexpected error occurred: {str(e)}"


def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None):
    try:
        loaded_config_data = load_and_log_configs()
        global anthropic_api_key
        anthropic_api_key = api_key
        # API key validation
        if not api_key:
            logging.info("Anthropic: API key not provided as parameter")
            logging.info("Anthropic: Attempting to use API key from config file")
            anthropic_api_key = loaded_config_data['api_keys']['anthropic']

        if not api_key or api_key.strip() == "":
            logging.error("Anthropic: API key not found or is empty")
            return "Anthropic: API Key Not Provided/Found in Config file or is empty"

        logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")

        if system_prompt is not None:
            logging.debug("Anthropic: Using provided system prompt")
            pass
        else:
            system_prompt = "You are a helpful assistant"

        logging.debug(f"AnthropicAI: Loaded data: {input_data}")
        logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")

        anthropic_model = loaded_config_data['models']['anthropic']

        headers = {
            'x-api-key': anthropic_api_key,
            'anthropic-version': '2023-06-01',
            'Content-Type': 'application/json'
        }

        anthropic_user_prompt = custom_prompt_arg
        logging.debug(f"Anthropic: User Prompt is {anthropic_user_prompt}")
        user_message = {
            "role": "user",
            "content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
        }

        data = {
            "model": model,
            "max_tokens": 4096,  # max _possible_ tokens to return
            "messages": [user_message],
            "stop_sequences": ["\n\nHuman:"],
            "temperature": 0.1,
            "top_k": 0,
            "top_p": 1.0,
            "metadata": {
                "user_id": "example_user_id",
            },
            "stream": False,
            "system": f"{system_prompt}"
        }

        for attempt in range(max_retries):
            try:
                logging.debug("anthropic: Posting request to API")
                response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
                logging.debug(f"Full API response data: {response}")
                # Check if the status code indicates success
                if response.status_code == 200:
                    logging.debug("anthropic: Post submittal successful")
                    response_data = response.json()
                    try:
                        chat_response = response_data['content'][0]['text'].strip()
                        logging.debug("anthropic: Chat request successful")
                        print("Chat request processed successfully.")
                        return chat_response
                    except (IndexError, KeyError) as e:
                        logging.debug("anthropic: Unexpected data in response")
                        print("Unexpected response format from Anthropic API:", response.text)
                        return None
                elif response.status_code == 500:  # Handle internal server error specifically
                    logging.debug("anthropic: Internal server error")
                    print("Internal server error from API. Retrying may be necessary.")
                    time.sleep(retry_delay)
                else:
                    logging.debug(
                        f"anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
                    print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
                    return None

            except RequestException as e:
                logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
                if attempt < max_retries - 1:
                    time.sleep(retry_delay)
                else:
                    return f"anthropic: Network error: {str(e)}"
    except Exception as e:
        logging.error(f"anthropic: Error in processing: {str(e)}")
        return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"


# Summarize with Cohere
def chat_with_cohere(api_key, input_data, model, custom_prompt_arg, system_prompt=None):
    loaded_config_data = load_and_log_configs()
    if api_key is not None:
        logging.debug(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}")
    logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}")
    try:
        # API key validation
        if api_key is None:
            logging.info("Cohere Chat: API key not provided as parameter")
            logging.info("Cohere Chat: Attempting to use API key from config file")
            cohere_api_key = loaded_config_data.get('api_keys', {}).get('cohere')
            if not cohere_api_key:
                logging.error("Cohere Chat: API key not found or is empty")
                return "Cohere Chat: API Key Not Provided/Found in Config file or is empty"

        logging.debug(f"Cohere Chat: Using API Key: {cohere_api_key[:3]}...{cohere_api_key[-3:]}")

        logging.debug(f"Cohere Chat: Loaded data: {input_data}")
        logging.debug(f"Cohere Chat: Type of data: {type(input_data)}")

        # Ensure model is set
        if not model:
            model = loaded_config_data['models']['cohere']
        logging.debug(f"Cohere Chat: Using model: {model}")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
            'Authorization': f'Bearer {cohere_api_key}'
        }

        # Ensure system_prompt is set
        if not system_prompt:
            system_prompt = "You are a helpful assistant"
        logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'")

        cohere_prompt = input_data
        if custom_prompt_arg:
            cohere_prompt += f"\n\n{custom_prompt_arg}"
        logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'")

        data = {
            "chat_history": [
                {"role": "SYSTEM", "message": system_prompt},
            ],
            "message": cohere_prompt,
            "model": model,
            "connectors": [{"id": "web-search"}]
        }
        logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}")

        logging.debug("cohere chat: Submitting request to API endpoint")
        print("cohere chat: Submitting request to API endpoint")

        try:
            response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
            logging.debug(f"Cohere Chat: Raw API response: {response.text}")
        except requests.RequestException as e:
            logging.error(f"Cohere Chat: Error making API request: {str(e)}")
            return f"Cohere Chat: Error making API request: {str(e)}"

        if response.status_code == 200:
            try:
                response_data = response.json()
            except json.JSONDecodeError:
                logging.error("Cohere Chat: Failed to decode JSON response")
                return "Cohere Chat: Failed to decode JSON response"

            if response_data is None:
                logging.error("Cohere Chat: No response data received.")
                return "Cohere Chat: No response data received."

            logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}")

            if 'text' in response_data:
                chat_response = response_data['text'].strip()
                logging.debug("Cohere Chat: Chat request successful")
                print("Cohere Chat request processed successfully.")
                return chat_response
            else:
                logging.error("Cohere Chat: Expected 'text' key not found in API response.")
                return "Cohere Chat: Expected data not found in API response."
        else:
            logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}")
            print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}")
            return f"Cohere Chat: API request failed: {response.text}"

    except Exception as e:
        logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True)
        return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}"


# https://console.groq.com/docs/quickstart
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    logging.debug("Groq: Summarization process starting...")
    try:
        logging.debug("Groq: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            groq_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                groq_api_key = api_key
                logging.info("Groq: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                groq_api_key = loaded_config_data['api_keys'].get('groq')
                if groq_api_key:
                    logging.info("Groq: Using API key from config file")
                else:
                    logging.warning("Groq: No API key found in config file")

        # Final check to ensure we have a valid API key
        if not groq_api_key or not groq_api_key.strip():
            logging.error("Anthropic: No valid API key available")
            # You might want to raise an exception here or handle this case as appropriate for your application
            # For example: raise ValueError("No valid Anthropic API key available")

        logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")

        # Transcript data handling & Validation
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Groq: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("Groq: Using provided string data for summarization")
            data = input_data

        # DEBUG - Debug logging to identify sent data
        logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
        logging.debug(f"Groq: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Groq: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Groq: Invalid input data format")

        # Set the model to be used
        groq_model = loaded_config_data['models']['groq']

        if temp is None:
            temp = 0.2
        temp = float(temp)
        if system_message is None:
            system_message = "You are a helpful AI assistant who does whatever the user requests."

        headers = {
            'Authorization': f'Bearer {groq_api_key}',
            'Content-Type': 'application/json'
        }

        groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        logging.debug("groq: Prompt being sent is {groq_prompt}")

        data = {
            "messages": [
                {
                    "role": "system",
                    "content": system_message,
                },
                {
                    "role": "user",
                    "content": groq_prompt,
                }
            ],
            "model": groq_model,
            "temperature": temp
        }

        logging.debug("groq: Submitting request to API endpoint")
        print("groq: Submitting request to API endpoint")
        response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)

        response_data = response.json()
        logging.debug(f"Full API response data: {response_data}")

        if response.status_code == 200:
            logging.debug(response_data)
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("groq: Chat request successful")
                print("Groq: Chat request successful.")
                return summary
            else:
                logging.error("Groq(chat): Expected data not found in API response.")
                return "Groq(chat): Expected data not found in API response."
        else:
            logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
            return f"groq: API request failed: {response.text}"

    except Exception as e:
        logging.error("groq: Error in processing: %s", str(e))
        return f"groq: Error occurred while processing summary with groq: {str(e)}"


def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    import requests
    import json
    global openrouter_model, openrouter_api_key
    try:
        logging.debug("OpenRouter: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            openrouter_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                openrouter_api_key = api_key
                logging.info("OpenRouter: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
                if openrouter_api_key:
                    logging.info("OpenRouter: Using API key from config file")
                else:
                    logging.warning("OpenRouter: No API key found in config file")

        # Model Selection validation
        logging.debug("OpenRouter: Validating model selection")
        loaded_config_data = load_and_log_configs()
        openrouter_model = loaded_config_data['models']['openrouter']
        logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")

        # Final check to ensure we have a valid API key
        if not openrouter_api_key or not openrouter_api_key.strip():
            logging.error("OpenRouter: No valid API key available")
            raise ValueError("No valid Anthropic API key available")
    except Exception as e:
        logging.error("OpenRouter: Error in processing: %s", str(e))
        return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"

    logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")

    logging.debug(f"OpenRouter: Using Model: {openrouter_model}")

    if isinstance(input_data, str) and os.path.isfile(input_data):
        logging.debug("OpenRouter: Loading json data for summarization")
        with open(input_data, 'r') as file:
            data = json.load(file)
    else:
        logging.debug("OpenRouter: Using provided string data for summarization")
        data = input_data

    # DEBUG - Debug logging to identify sent data
    logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
    logging.debug(f"OpenRouter: Type of data: {type(data)}")

    if isinstance(data, dict) and 'summary' in data:
        # If the loaded data is a dictionary and already contains a summary, return it
        logging.debug("OpenRouter: Summary already exists in the loaded data")
        return data['summary']

    # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
    if isinstance(data, list):
        segments = data
        text = extract_text_from_segments(segments)
    elif isinstance(data, str):
        text = data
    else:
        raise ValueError("OpenRouter: Invalid input data format")

    openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
    logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")

    if temp is None:
        temp = 0.1
    temp = float(temp)
    if system_message is None:
        system_message = "You are a helpful AI assistant who does whatever the user requests."

    try:
        logging.debug("OpenRouter: Submitting request to API endpoint")
        print("OpenRouter: Submitting request to API endpoint")
        response = requests.post(
            url="https://openrouter.ai/api/v1/chat/completions",
            headers={
                "Authorization": f"Bearer {openrouter_api_key}",
            },
            data=json.dumps({
                "model": openrouter_model,
                "messages": [
                    {"role": "system", "content": system_message},
                    {"role": "user", "content": openrouter_prompt}
                ],
                "temperature": temp
            })
        )

        response_data = response.json()
        logging.debug("Full API Response Data: %s", response_data)

        if response.status_code == 200:
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("openrouter: Chat request successful")
                print("openrouter: Chat request successful.")
                return summary
            else:
                logging.error("openrouter: Expected data not found in API response.")
                return "openrouter: Expected data not found in API response."
        else:
            logging.error(f"openrouter:  API request failed with status code {response.status_code}: {response.text}")
            return f"openrouter: API request failed: {response.text}"
    except Exception as e:
        logging.error("openrouter: Error in processing: %s", str(e))
        return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"


# FIXME: This function is not yet implemented properly
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None):
    loaded_config_data = load_and_log_configs()
    logging.debug(f"huggingface Chat: Chat request process starting...")
    try:
        huggingface_api_key = global_huggingface_api_key
        
        headers = {
            "Authorization": f"Bearer {huggingface_api_key}"
        }

        # Setup model
        huggingface_model = loaded_config_data['models']['huggingface']

        API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}/v1/chat/completions"
        if temp is None:
            temp = 1.0
        temp = float(temp)
        huggingface_prompt = f"{custom_prompt_arg}\n\n\n{input_data}"
        logging.debug(f"HuggingFace chat: Prompt being sent is {huggingface_prompt}")
        data = {
            "model": f"{huggingface_model}",
            "messages": [{"role": "user", "content": f"{huggingface_prompt}"}],
            "max_tokens": 4096,
            "stream": False,
            "temperature": temp
        }

        logging.debug("HuggingFace Chat: Submitting request...")
        response = requests.post(API_URL, headers=headers, json=data)
        logging.debug(f"Full API response data: {response.text}")

        if response.status_code == 200:
            response_json = response.json()
            if "choices" in response_json and len(response_json["choices"]) > 0:
                generated_text = response_json["choices"][0]["message"]["content"]
                logging.debug("HuggingFace Chat: Chat request successful")
                print("HuggingFace Chat: Chat request successful.")
                return generated_text.strip()
            else:
                logging.error("HuggingFace Chat: No generated text in the response")
                return "HuggingFace Chat: No generated text in the response"
        else:
            logging.error(
                f"HuggingFace Chat: Chat request failed with status code {response.status_code}: {response.text}")
            return f"HuggingFace Chat: Failed to process chat request, status code {response.status_code}: {response.text}"
    except Exception as e:
        logging.error(f"HuggingFace Chat: Error in processing: {str(e)}")
        print(f"HuggingFace Chat: Error occurred while processing chat request with huggingface: {str(e)}")
        return None


def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    logging.debug("DeepSeek: Summarization process starting...")
    try:
        logging.debug("DeepSeek: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            deepseek_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                deepseek_api_key = api_key
                logging.info("DeepSeek: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
                if deepseek_api_key:
                    logging.info("DeepSeek: Using API key from config file")
                else:
                    logging.warning("DeepSeek: No API key found in config file")

        # Final check to ensure we have a valid API key
        if not deepseek_api_key or not deepseek_api_key.strip():
            logging.error("DeepSeek: No valid API key available")
            # You might want to raise an exception here or handle this case as appropriate for your application
            # For example: raise ValueError("No valid deepseek API key available")


        logging.debug(f"DeepSeek: Using API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:]}")

        # Input data handling
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("DeepSeek: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("DeepSeek: Using provided string data for summarization")
            data = input_data

        # DEBUG - Debug logging to identify sent data
        logging.debug(f"DeepSeek: Loaded data: {data[:500]}...(snipped to first 500 chars)")
        logging.debug(f"DeepSeek: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("DeepSeek: Summary already exists in the loaded data")
            return data['summary']

        # Text extraction
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("DeepSeek: Invalid input data format")

        deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat"

        if temp is None:
            temp = 0.1
        temp = float(temp)
        if system_message is None:
            system_message = "You are a helpful AI assistant who does whatever the user requests."

        headers = {
            'Authorization': f'Bearer {api_key}',
            'Content-Type': 'application/json'
        }

        logging.debug(
            f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}")
        logging.debug("DeepSeek: Preparing data + prompt for submittal")
        deepseek_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        data = {
            "model": deepseek_model,
            "messages": [
                {"role": "system", "content": system_message},
                {"role": "user", "content": deepseek_prompt}
            ],
            "stream": False,
            "temperature": temp
        }

        logging.debug("DeepSeek: Posting request")
        response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data)
        logging.debug(f"Full API response data: {response}")
        if response.status_code == 200:
            response_data = response.json()
            logging.debug(response_data)
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("DeepSeek: Chat request successful")
                return summary
            else:
                logging.warning("DeepSeek: Chat response not found in the response data")
                return "DeepSeek: Chat response not available"
        else:
            logging.error(f"DeepSeek: Chat request failed with status code {response.status_code}")
            logging.error(f"DeepSeek: Error response: {response.text}")
            return f"DeepSeek: Failed to chat request summary. Status code: {response.status_code}"
    except Exception as e:
        logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True)
        return f"DeepSeek: Error occurred while processing chat request: {str(e)}"


def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    logging.debug("Mistral: Chat request made")
    try:
        logging.debug("Mistral: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            mistral_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                mistral_api_key = api_key
                logging.info("Mistral: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                mistral_api_key = loaded_config_data['api_keys'].get('mistral')
                if mistral_api_key:
                    logging.info("Mistral: Using API key from config file")
                else:
                    logging.warning("Mistral: No API key found in config file")

        # Final check to ensure we have a valid API key
        if not mistral_api_key or not mistral_api_key.strip():
            logging.error("Mistral: No valid API key available")
            return "Mistral: No valid API key available"

        logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")

        logging.debug("Mistral: Using provided string data")
        data = input_data

        # Text extraction
        if isinstance(input_data, list):
            text = extract_text_from_segments(input_data)
        elif isinstance(input_data, str):
            text = input_data
        else:
            raise ValueError("Mistral: Invalid input data format")

        mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest")

        temp = float(temp) if temp is not None else 0.2
        if system_message is None:
            system_message = "You are a helpful AI assistant who does whatever the user requests."

        headers = {
            'Authorization': f'Bearer {mistral_api_key}',
            'Content-Type': 'application/json'
        }

        logging.debug(
            f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
        logging.debug("Mistral: Preparing data + prompt for submittal")
        mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
        data = {
            "model": mistral_model,
            "messages": [
                {"role": "system",
                 "content": system_message},
                {"role": "user",
                "content": mistral_prompt}
            ],
            "temperature": temp,
            "top_p": 1,
            "max_tokens": 4096,
            "stream": False,
            "safe_prompt": False
        }

        logging.debug("Mistral: Posting request")
        response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
        logging.debug(f"Full API response data: {response}")
        if response.status_code == 200:
            response_data = response.json()
            logging.debug(response_data)
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("Mistral: request successful")
                return summary
            else:
                logging.warning("Mistral: Chat response not found in the response data")
                return "Mistral: Chat response not available"
        else:
            logging.error(f"Mistral: Chat request failed with status code {response.status_code}")
            logging.error(f"Mistral: Error response: {response.text}")
            return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}"
    except Exception as e:
        logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
        return f"Mistral: Error occurred while processing Chat: {str(e)}"



# Stashed in here since OpenAI usage.... #FIXME
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
# def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
#     loaded_config_data = load_and_log_configs()
#     llm_model = loaded_config_data['models']['vllm']
#     # API key validation
#     if api_key is None:
#         logging.info("vLLM: API key not provided as parameter")
#         logging.info("vLLM: Attempting to use API key from config file")
#         api_key = loaded_config_data['api_keys']['llama']
#
#     if api_key is None or api_key.strip() == "":
#         logging.info("vLLM: API key not found or is empty")
#     vllm_client = OpenAI(
#         base_url=vllm_api_url,
#         api_key=custom_prompt_input
#     )
#
#     if isinstance(input_data, str) and os.path.isfile(input_data):
#         logging.debug("vLLM: Loading json data for summarization")
#         with open(input_data, 'r') as file:
#             data = json.load(file)
#     else:
#         logging.debug("vLLM: Using provided string data for summarization")
#         data = input_data
#
#     logging.debug(f"vLLM: Loaded data: {data}")
#     logging.debug(f"vLLM: Type of data: {type(data)}")
#
#     if isinstance(data, dict) and 'summary' in data:
#         # If the loaded data is a dictionary and already contains a summary, return it
#         logging.debug("vLLM: Summary already exists in the loaded data")
#         return data['summary']
#
#     # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
#     if isinstance(data, list):
#         segments = data
#         text = extract_text_from_segments(segments)
#     elif isinstance(data, str):
#         text = data
#     else:
#         raise ValueError("Invalid input data format")
#
#
#     custom_prompt = custom_prompt_input
#
#     completion = client.chat.completions.create(
#         model=llm_model,
#         messages=[
#             {"role": "system", "content": f"{system_prompt}"},
#             {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
#         ]
#     )
#     vllm_summary = completion.choices[0].message.content
#     return vllm_summary



#
#
#######################################################################################################################