File size: 13,689 Bytes
43cd37c
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
c5b0bb7
43cd37c
 
c5b0bb7
 
43cd37c
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
c5b0bb7
 
 
 
43cd37c
c5b0bb7
 
 
 
 
 
43cd37c
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
c5b0bb7
43cd37c
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
c5b0bb7
43cd37c
c5b0bb7
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Audio_ingestion_tab.py
# Description: Gradio UI for ingesting audio files into the database
#
# Imports
import logging
#
# External Imports
import gradio as gr
#
# Local Imports
from App_Function_Libraries.Audio.Audio_Files import process_audio_files
from App_Function_Libraries.DB.DB_Manager import list_prompts
from App_Function_Libraries.Gradio_UI.Chat_ui import update_user_prompt
from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models
from App_Function_Libraries.Utils.Utils import cleanup_temp_files, default_api_endpoint, global_api_endpoints, \
    format_api_name
# Import metrics logging
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
from App_Function_Libraries.Metrics.logger_config import logger
#
#######################################################################################################################
# Functions:

def create_audio_processing_tab():
    with gr.TabItem("Audio File Transcription + Summarization", visible=True):
        gr.Markdown("# Transcribe & Summarize Audio Files from URLs or Local Files!")
        # Get and validate default value
        try:
            default_value = None
            if default_api_endpoint:
                if default_api_endpoint in global_api_endpoints:
                    default_value = format_api_name(default_api_endpoint)
                else:
                    logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
        except Exception as e:
            logging.error(f"Error setting default API endpoint: {str(e)}")
            default_value = None

        with gr.Row():
            with gr.Column():
                audio_url_input = gr.Textbox(label="Audio File URL(s)", placeholder="Enter the URL(s) of the audio file(s), one per line")
                audio_file_input = gr.File(label="Upload Audio File", file_types=["audio/*"])
                custom_title_input = gr.Textbox(label="Custom Title/Name", placeholder="Enter a custom title or name for the audio file")
                use_cookies_input = gr.Checkbox(label="Use cookies for authenticated download", value=False)
                cookies_input = gr.Textbox(
                    label="Audio Download Cookies",
                    placeholder="Paste your cookies here (JSON format)",
                    lines=3,
                    visible=False
                )

                use_cookies_input.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=[use_cookies_input],
                    outputs=[cookies_input]
                )

                diarize_input = gr.Checkbox(label="Enable Speaker Diarization", value=False)
                whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
                keep_timestamps_input = gr.Checkbox(label="Keep Timestamps", value=True)

                with gr.Row():
                    custom_prompt_checkbox = gr.Checkbox(
                        label="Use a Custom Prompt",
                        value=False,
                        visible=True
                    )
                    preset_prompt_checkbox = gr.Checkbox(
                        label="Use a pre-set Prompt",
                        value=False,
                        visible=True
                    )

                # Initialize state variables for pagination
                current_page_state = gr.State(value=1)
                total_pages_state = gr.State(value=1)

                with gr.Row():
                    # Add pagination controls
                    preset_prompt = gr.Dropdown(
                        label="Select Preset Prompt",
                        choices=[],
                        visible=False
                    )
                with gr.Row():
                    prev_page_button = gr.Button("Previous Page", visible=False)
                    page_display = gr.Markdown("Page 1 of X", visible=False)
                    next_page_button = gr.Button("Next Page", visible=False)

                with gr.Row():
                    custom_prompt_input = gr.Textbox(
                        label="Custom Prompt",
                        placeholder="Enter custom prompt here",
                        lines=3,
                        visible=False
                    )
                with gr.Row():
                    system_prompt_input = gr.Textbox(
                        label="System Prompt",
                        value="""<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhere to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]

    **Bulleted Note Creation Guidelines**



    **Headings**:

    - Based on referenced topics, not categories like quotes or terms

    - Surrounded by **bold** formatting 

    - Not listed as bullet points

    - No space between headings and list items underneath



    **Emphasis**:

    - **Important terms** set in bold font

    - **Text ending in a colon**: also bolded



    **Review**:

    - Ensure adherence to specified format

    - Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]

    """,
                        lines=3,
                        visible=False
                    )

                custom_prompt_checkbox.change(
                    fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
                    inputs=[custom_prompt_checkbox],
                    outputs=[custom_prompt_input, system_prompt_input]
                )

                # Handle preset prompt checkbox change
                def on_preset_prompt_checkbox_change(is_checked):
                    if is_checked:
                        prompts, total_pages, current_page = list_prompts(page=1, per_page=10)
                        page_display_text = f"Page {current_page} of {total_pages}"
                        return (
                            gr.update(visible=True, interactive=True, choices=prompts),  # preset_prompt
                            gr.update(visible=True),  # prev_page_button
                            gr.update(visible=True),  # next_page_button
                            gr.update(value=page_display_text, visible=True),  # page_display
                            current_page,  # current_page_state
                            total_pages   # total_pages_state
                        )
                    else:
                        return (
                            gr.update(visible=False, interactive=False),  # preset_prompt
                            gr.update(visible=False),  # prev_page_button
                            gr.update(visible=False),  # next_page_button
                            gr.update(visible=False),  # page_display
                            1,  # current_page_state
                            1   # total_pages_state
                        )

                preset_prompt_checkbox.change(
                    fn=on_preset_prompt_checkbox_change,
                    inputs=[preset_prompt_checkbox],
                    outputs=[preset_prompt, prev_page_button, next_page_button, page_display, current_page_state, total_pages_state]
                )

                # Pagination button functions
                def on_prev_page_click(current_page, total_pages):
                    new_page = max(current_page - 1, 1)
                    prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
                    page_display_text = f"Page {current_page} of {total_pages}"
                    return (
                        gr.update(choices=prompts),
                        gr.update(value=page_display_text),
                        current_page
                    )

                prev_page_button.click(
                    fn=on_prev_page_click,
                    inputs=[current_page_state, total_pages_state],
                    outputs=[preset_prompt, page_display, current_page_state]
                )

                def on_next_page_click(current_page, total_pages):
                    new_page = min(current_page + 1, total_pages)
                    prompts, total_pages, current_page = list_prompts(page=new_page, per_page=10)
                    page_display_text = f"Page {current_page} of {total_pages}"
                    return (
                        gr.update(choices=prompts),
                        gr.update(value=page_display_text),
                        current_page
                    )

                next_page_button.click(
                    fn=on_next_page_click,
                    inputs=[current_page_state, total_pages_state],
                    outputs=[preset_prompt, page_display, current_page_state]
                )

                # Update prompts when a preset is selected
                def update_prompts(preset_name):
                    prompts = update_user_prompt(preset_name)
                    return (
                        gr.update(value=prompts["user_prompt"], visible=True),
                        gr.update(value=prompts["system_prompt"], visible=True)
                    )

                preset_prompt.change(
                    update_prompts,
                    inputs=[preset_prompt],
                    outputs=[custom_prompt_input, system_prompt_input]
                )
                # Refactored API selection dropdown
                api_name_input = gr.Dropdown(
                    choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
                    value=default_value,
                    label="API for Summarization/Analysis (Optional)"
                )
                api_key_input = gr.Textbox(label="API Key (if required)", placeholder="Enter your API key here", type="password")
                custom_keywords_input = gr.Textbox(label="Custom Keywords", placeholder="Enter custom keywords, comma-separated")
                keep_original_input = gr.Checkbox(label="Keep original audio file", value=False)

                chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
                with gr.Row(visible=False) as chunking_options_box:
                    gr.Markdown("### Chunking Options")
                    with gr.Column():
                        chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'], label="Chunking Method")
                        max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
                        chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
                        use_adaptive_chunking = gr.Checkbox(label="Use Adaptive Chunking")
                        use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
                        chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'], label="Chunking Language")

                chunking_options_checkbox.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=[chunking_options_checkbox],
                    outputs=[chunking_options_box]
                )

                process_audio_button = gr.Button("Process Audio File(s)")

            with gr.Column():
                audio_progress_output = gr.Textbox(label="Progress")
                audio_transcription_output = gr.Textbox(label="Transcription")
                audio_summary_output = gr.Textbox(label="Summary")
                download_transcription = gr.File(label="Download All Transcriptions as JSON")
                download_summary = gr.File(label="Download All Summaries as Text")

        process_audio_button.click(
            fn=process_audio_files,
            inputs=[audio_url_input, audio_file_input, whisper_model_input, api_name_input, api_key_input,
                    use_cookies_input, cookies_input, keep_original_input, custom_keywords_input, custom_prompt_input,
                    chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking, use_multi_level_chunking,
                    chunk_language, diarize_input, keep_timestamps_input, custom_title_input],
            outputs=[audio_progress_output, audio_transcription_output, audio_summary_output]
        )

        def on_file_clear(file):
            if file is None:
                cleanup_temp_files()

        audio_file_input.clear(
            fn=on_file_clear,
            inputs=[audio_file_input],
            outputs=[]
        )

#
# End of Audio_ingestion_tab.py
#######################################################################################################################