Spaces:
Running
Running
File size: 12,116 Bytes
7b625ae e15e1c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# Audio_Transcription_Lib.py
#########################################
# Transcription Library
# This library is used to perform transcription of audio files.
# Currently, uses faster_whisper for transcription.
#
####################
# Function List
#
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
#
####################
#
# Import necessary libraries to run solo for testing
import gc
import json
import logging
import multiprocessing
import os
import queue
import sys
import subprocess
import tempfile
import threading
import time
# DEBUG Imports
#from memory_profiler import profile
#import pyaudio
from faster_whisper import WhisperModel as OriginalWhisperModel
from typing import Optional, Union, List, Dict, Any
#
# Import Local
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
#
#######################################################################################################################
# Function Definitions
#
# Convert video .m4a into .wav using ffmpeg
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
# https://www.gyan.dev/ffmpeg/builds/
#
whisper_model_instance = None
config = load_comprehensive_config()
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
total_thread_count = multiprocessing.cpu_count()
class WhisperModel(OriginalWhisperModel):
tldw_dir = os.path.dirname(os.path.dirname(__file__))
default_download_root = os.path.join(tldw_dir, 'models', 'Whisper')
valid_model_sizes = [
"tiny.en", "tiny", "base.en", "base", "small.en", "small", "medium.en", "medium",
"large-v1", "large-v2", "large-v3", "large", "distil-large-v2", "distil-medium.en",
"distil-small.en", "distil-large-v3",
]
def __init__(
self,
model_size_or_path: str,
device: str = processing_choice,
device_index: Union[int, List[int]] = 0,
compute_type: str = "default",
cpu_threads: int = 0,#total_thread_count, FIXME - I think this should be 0
num_workers: int = 1,
download_root: Optional[str] = None,
local_files_only: bool = False,
files: Optional[Dict[str, Any]] = None,
**model_kwargs: Any
):
if download_root is None:
download_root = self.default_download_root
os.makedirs(download_root, exist_ok=True)
# FIXME - validate....
# Also write an integration test...
# Check if model_size_or_path is a valid model size
if model_size_or_path in self.valid_model_sizes:
# It's a model size, so we'll use the download_root
model_path = os.path.join(download_root, model_size_or_path)
if not os.path.isdir(model_path):
# If it doesn't exist, we'll let the parent class download it
model_size_or_path = model_size_or_path # Keep the original model size
else:
# If it exists, use the full path
model_size_or_path = model_path
else:
# It's not a valid model size, so assume it's a path
model_size_or_path = os.path.abspath(model_size_or_path)
super().__init__(
model_size_or_path,
device=device,
device_index=device_index,
compute_type=compute_type,
cpu_threads=cpu_threads,
num_workers=num_workers,
download_root=download_root,
local_files_only=local_files_only,
# Maybe? idk, FIXME
# files=files,
# **model_kwargs
)
def get_whisper_model(model_name, device):
global whisper_model_instance
if whisper_model_instance is None:
logging.info(f"Initializing new WhisperModel with size {model_name} on device {device}")
whisper_model_instance = WhisperModel(model_name, device=device)
return whisper_model_instance
# os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
#DEBUG
#@profile
def convert_to_wav(video_file_path, offset=0, overwrite=False):
log_counter("convert_to_wav_attempt", labels={"file_path": video_file_path})
start_time = time.time()
out_path = os.path.splitext(video_file_path)[0] + ".wav"
if os.path.exists(out_path) and not overwrite:
print(f"File '{out_path}' already exists. Skipping conversion.")
logging.info(f"Skipping conversion as file already exists: {out_path}")
log_counter("convert_to_wav_skipped", labels={"file_path": video_file_path})
return out_path
print("Starting conversion process of .m4a to .WAV")
out_path = os.path.splitext(video_file_path)[0] + ".wav"
try:
if os.name == "nt":
logging.debug("ffmpeg being ran on windows")
if sys.platform.startswith('win'):
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}")
else:
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
command = [
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists
"-ss", "00:00:00", # Start at the beginning of the video
"-i", video_file_path,
"-ar", "16000", # Audio sample rate
"-ac", "1", # Number of audio channels
"-c:a", "pcm_s16le", # Audio codec
out_path
]
try:
# Redirect stdin from null device to prevent ffmpeg from waiting for input
with open(os.devnull, 'rb') as null_file:
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
if result.returncode == 0:
logging.info("FFmpeg executed successfully")
logging.debug("FFmpeg output: %s", result.stdout)
else:
logging.error("Error in running FFmpeg")
logging.error("FFmpeg stderr: %s", result.stderr)
raise RuntimeError(f"FFmpeg error: {result.stderr}")
except Exception as e:
logging.error("Error occurred - ffmpeg doesn't like windows")
raise RuntimeError("ffmpeg failed")
elif os.name == "posix":
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
else:
raise RuntimeError("Unsupported operating system")
logging.info("Conversion to WAV completed: %s", out_path)
log_counter("convert_to_wav_success", labels={"file_path": video_file_path})
except Exception as e:
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
log_counter("convert_to_wav_error", labels={"file_path": video_file_path, "error": str(e)})
return {"error": str(e)}
conversion_time = time.time() - start_time
log_histogram("convert_to_wav_duration", conversion_time, labels={"file_path": video_file_path})
gc.collect()
return out_path
# Transcribe .wav into .segments.json
#DEBUG
#@profile
# FIXME - I feel like the `vad_filter` shoudl be enabled by default....
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='medium.en', vad_filter=False, diarize=False):
log_counter("speech_to_text_attempt", labels={"file_path": audio_file_path, "model": whisper_model})
time_start = time.time()
if audio_file_path is None:
log_counter("speech_to_text_error", labels={"error": "No audio file provided"})
raise ValueError("speech-to-text: No audio file provided")
logging.info("speech-to-text: Audio file path: %s", audio_file_path)
try:
_, file_ending = os.path.splitext(audio_file_path)
out_file = audio_file_path.replace(file_ending, "-whisper_model-"+whisper_model+".segments.json")
prettified_out_file = audio_file_path.replace(file_ending, "-whisper_model-"+whisper_model+".segments_pretty.json")
if os.path.exists(out_file):
logging.info("speech-to-text: Segments file already exists: %s", out_file)
with open(out_file) as f:
global segments
segments = json.load(f)
return segments
logging.info('speech-to-text: Starting transcription...')
# FIXME - revisit this
options = dict(language=selected_source_lang, beam_size=10, best_of=10, vad_filter=vad_filter)
transcribe_options = dict(task="transcribe", **options)
# use function and config at top of file
logging.debug("speech-to-text: Using whisper model: %s", whisper_model)
whisper_model_instance = get_whisper_model(whisper_model, processing_choice)
# faster_whisper transcription right here - FIXME -test batching - ha
segments_raw, info = whisper_model_instance.transcribe(audio_file_path, **transcribe_options)
segments = []
for segment_chunk in segments_raw:
chunk = {
"Time_Start": segment_chunk.start,
"Time_End": segment_chunk.end,
"Text": segment_chunk.text
}
logging.debug("Segment: %s", chunk)
segments.append(chunk)
# Print to verify its working
logging.info(f"{segment_chunk.start:.2f}s - {segment_chunk.end:.2f}s | {segment_chunk.text}")
# Log it as well.
logging.debug(
f"Transcribed Segment: {segment_chunk.start:.2f}s - {segment_chunk.end:.2f}s | {segment_chunk.text}")
if segments:
segments[0]["Text"] = f"This text was transcribed using whisper model: {whisper_model}\n\n" + segments[0]["Text"]
if not segments:
log_counter("speech_to_text_error", labels={"error": "No transcription produced"})
raise RuntimeError("No transcription produced. The audio file may be invalid or empty.")
transcription_time = time.time() - time_start
logging.info("speech-to-text: Transcription completed in %.2f seconds", transcription_time)
log_histogram("speech_to_text_duration", transcription_time, labels={"file_path": audio_file_path, "model": whisper_model})
log_counter("speech_to_text_success", labels={"file_path": audio_file_path, "model": whisper_model})
# Save the segments to a JSON file - prettified and non-prettified
# FIXME refactor so this is an optional flag to save either the prettified json file or the normal one
save_json = True
if save_json:
logging.info("speech-to-text: Saving segments to JSON file")
output_data = {'segments': segments}
logging.info("speech-to-text: Saving prettified JSON to %s", prettified_out_file)
with open(prettified_out_file, 'w') as f:
json.dump(output_data, f, indent=2)
logging.info("speech-to-text: Saving JSON to %s", out_file)
with open(out_file, 'w') as f:
json.dump(output_data, f)
logging.debug(f"speech-to-text: returning {segments[:500]}")
gc.collect()
return segments
except Exception as e:
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
log_counter("speech_to_text_error", labels={"file_path": audio_file_path, "model": whisper_model, "error": str(e)})
raise RuntimeError("speech-to-text: Error transcribing audio")
def record_audio(duration, sample_rate=16000, chunk_size=1024):
pass
def stop_recording(p, stream, audio_queue, stop_recording_event, audio_thread):
pass
def save_audio_temp(audio_data, sample_rate=16000):
pass
#
#
####################################################################################################################### |