Spaces:
Running
Running
File size: 40,870 Bytes
43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
# RAG_Library_2.py
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
#
# Import necessary modules and functions
import configparser
import logging
import os
import time
from typing import Dict, Any, List, Optional
from App_Function_Libraries.DB.Character_Chat_DB import get_character_chats, perform_full_text_search_chat, \
fetch_keywords_for_chats, search_character_chat, search_character_cards, fetch_character_ids_by_keywords
from App_Function_Libraries.DB.RAG_QA_Chat_DB import search_rag_chat, search_rag_notes
#
# Local Imports
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
from App_Function_Libraries.RAG.RAG_Persona_Chat import perform_vector_search_chat
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_custom_openai
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article
from App_Function_Libraries.DB.DB_Manager import fetch_keywords_for_media, search_media_db, get_notes_by_keywords, \
search_conversations_by_keywords
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
#
# 3rd-Party Imports
import openai
from flashrank import Ranker, RerankRequest
#
########################################################################################################################
#
# Functions:
# Initialize OpenAI client (adjust this based on your API key management)
openai.api_key = "your-openai-api-key"
# Get the directory of the current script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the path to the config file
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
# Read the config file
config = configparser.ConfigParser()
# Read the configuration file
config.read('config.txt')
search_functions = {
"Media DB": search_media_db,
"RAG Chat": search_rag_chat,
"RAG Notes": search_rag_notes,
"Character Chat": search_character_chat,
"Character Cards": search_character_cards
}
# RAG pipeline function for web scraping
# def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
# try:
# # Extract content
# try:
# article_data = scrape_article(url)
# content = article_data['content']
# title = article_data['title']
# except Exception as e:
# logging.error(f"Error scraping article: {str(e)}")
# return {"error": "Failed to scrape article", "details": str(e)}
#
# # Store the article in the database and get the media_id
# try:
# media_id = add_media_to_database(url, title, 'article', content)
# except Exception as e:
# logging.error(f"Error adding article to database: {str(e)}")
# return {"error": "Failed to store article in database", "details": str(e)}
#
# # Process and store content
# collection_name = f"article_{media_id}"
# try:
# # Assuming you have a database object available, let's call it 'db'
# db = get_database_connection()
#
# process_and_store_content(
# database=db,
# content=content,
# collection_name=collection_name,
# media_id=media_id,
# file_name=title,
# create_embeddings=True,
# create_contextualized=True,
# api_name=api_choice
# )
# except Exception as e:
# logging.error(f"Error processing and storing content: {str(e)}")
# return {"error": "Failed to process and store content", "details": str(e)}
#
# # Perform searches
# try:
# vector_results = vector_search(collection_name, query, k=5)
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
# except Exception as e:
# logging.error(f"Error performing searches: {str(e)}")
# return {"error": "Failed to perform searches", "details": str(e)}
#
# # Combine results with error handling for missing 'content' key
# all_results = []
# for result in vector_results + fts_results:
# if isinstance(result, dict) and 'content' in result:
# all_results.append(result['content'])
# else:
# logging.warning(f"Unexpected result format: {result}")
# all_results.append(str(result))
#
# context = "\n".join(all_results)
#
# # Generate answer using the selected API
# try:
# answer = generate_answer(api_choice, context, query)
# except Exception as e:
# logging.error(f"Error generating answer: {str(e)}")
# return {"error": "Failed to generate answer", "details": str(e)}
#
# return {
# "answer": answer,
# "context": context
# }
#
# except Exception as e:
# logging.error(f"Unexpected error in rag_pipeline: {str(e)}")
# return {"error": "An unexpected error occurred", "details": str(e)}
# RAG Search with keyword filtering
# FIXME - Update each called function to support modifiable top-k results
def enhanced_rag_pipeline(query: str, api_choice: str, keywords: str = None, fts_top_k=10, apply_re_ranking=True, database_types: List[str] = "Media DB") -> Dict[str, Any]:
"""
Perform full text search across specified database type.
Args:
query: Search query string
api_choice: API to use for generating the response
fts_top_k: Maximum number of results to return
keywords: Optional list of media IDs to filter results
database_types: Type of database to search ("Media DB", "RAG Chat", or "Character Chat")
Returns:
Dictionary containing search results with content
"""
log_counter("enhanced_rag_pipeline_attempt", labels={"api_choice": api_choice})
start_time = time.time()
try:
# Load embedding provider from config, or fallback to 'openai'
embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
# Log the provider used
logging.debug(f"Using embedding provider: {embedding_provider}")
# Process keywords if provided
keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else []
logging.debug(f"\n\nenhanced_rag_pipeline - Keywords: {keyword_list}")
relevant_ids = {}
# Fetch relevant IDs based on keywords if keywords are provided
if keyword_list:
try:
for db_type in database_types:
if db_type == "Media DB":
relevant_media_ids = fetch_relevant_media_ids(keyword_list)
relevant_ids[db_type] = relevant_media_ids
logging.debug(f"enhanced_rag_pipeline - {db_type} relevant media IDs: {relevant_media_ids}")
elif db_type == "RAG Chat":
conversations, total_pages, total_count = search_conversations_by_keywords(
keywords=keyword_list)
relevant_conversation_ids = [conv['conversation_id'] for conv in conversations]
relevant_ids[db_type] = relevant_conversation_ids
logging.debug(
f"enhanced_rag_pipeline - {db_type} relevant conversation IDs: {relevant_conversation_ids}")
elif db_type == "RAG Notes":
notes, total_pages, total_count = get_notes_by_keywords(keyword_list)
relevant_note_ids = [note_id for note_id, _, _, _ in notes] # Unpack note_id from the tuple
relevant_ids[db_type] = relevant_note_ids
logging.debug(f"enhanced_rag_pipeline - {db_type} relevant note IDs: {relevant_note_ids}")
elif db_type == "Character Chat":
relevant_chat_ids = fetch_keywords_for_chats(keyword_list)
relevant_ids[db_type] = relevant_chat_ids
logging.debug(f"enhanced_rag_pipeline - {db_type} relevant chat IDs: {relevant_chat_ids}")
elif db_type == "Character Cards":
# Assuming we have a function to fetch character IDs by keywords
relevant_character_ids = fetch_character_ids_by_keywords(keyword_list)
relevant_ids[db_type] = relevant_character_ids
logging.debug(
f"enhanced_rag_pipeline - {db_type} relevant character IDs: {relevant_character_ids}")
else:
logging.error(f"Unsupported database type: {db_type}")
except Exception as e:
logging.error(f"Error fetching relevant IDs: {str(e)}")
else:
relevant_ids = None
# Extract relevant media IDs for each selected DB
# Prepare a dict to hold relevant_media_ids per DB
relevant_media_ids_dict = {}
if relevant_ids:
for db_type in database_types:
relevant_media_ids = relevant_ids.get(db_type, None)
if relevant_media_ids:
# Convert to List[str] if not None
relevant_media_ids_dict[db_type] = [str(media_id) for media_id in relevant_media_ids]
else:
relevant_media_ids_dict[db_type] = None
else:
relevant_media_ids_dict = {db_type: None for db_type in database_types}
# Perform vector search for all selected databases
vector_results = []
for db_type in database_types:
try:
db_relevant_ids = relevant_media_ids_dict.get(db_type)
results = perform_vector_search(query, db_relevant_ids, top_k=fts_top_k)
vector_results.extend(results)
logging.debug(f"\nenhanced_rag_pipeline - Vector search results for {db_type}: {results}")
except Exception as e:
logging.error(f"Error performing vector search on {db_type}: {str(e)}")
# Perform vector search
# FIXME
vector_results = perform_vector_search(query, relevant_media_ids)
logging.debug(f"\n\nenhanced_rag_pipeline - Vector search results: {vector_results}")
# Perform full-text search
#v1
#fts_results = perform_full_text_search(query, database_type, relevant_media_ids, fts_top_k)
# v2
# Perform full-text search across specified databases
fts_results = []
for db_type in database_types:
try:
db_relevant_ids = relevant_ids.get(db_type) if relevant_ids else None
db_results = perform_full_text_search(query, db_type, db_relevant_ids, fts_top_k)
fts_results.extend(db_results)
logging.debug(f"enhanced_rag_pipeline - FTS results for {db_type}: {db_results}")
except Exception as e:
logging.error(f"Error performing full-text search on {db_type}: {str(e)}")
logging.debug("\n\nenhanced_rag_pipeline - Full-text search results:")
logging.debug(
"\n\nenhanced_rag_pipeline - Full-text search results:\n" + "\n".join(
[str(item) for item in fts_results]) + "\n"
)
# Combine results
all_results = vector_results + fts_results
if apply_re_ranking:
logging.debug(f"\nenhanced_rag_pipeline - Applying Re-Ranking")
# FIXME - add option to use re-ranking at call time
# FIXME - specify model + add param to modify at call time
# FIXME - add option to set a custom top X results
# You can specify a model if necessary, e.g., model_name="ms-marco-MiniLM-L-12-v2"
if all_results:
ranker = Ranker()
# Prepare passages for re-ranking
passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)]
rerank_request = RerankRequest(query=query, passages=passages)
# Rerank the results
reranked_results = ranker.rerank(rerank_request)
# Sort results based on the re-ranking score
reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True)
# Log reranked results
logging.debug(f"\n\nenhanced_rag_pipeline - Reranked results: {reranked_results}")
# Update all_results based on reranking
all_results = [all_results[result['id']] for result in reranked_results]
# Extract content from results (top fts_top_k by default)
context = "\n".join([result['content'] for result in all_results[:fts_top_k]])
logging.debug(f"Context length: {len(context)}")
logging.debug(f"Context: {context[:200]}")
# Generate answer using the selected API
answer = generate_answer(api_choice, context, query)
if not all_results:
logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
return {
"answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
"context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
}
# Metrics
pipeline_duration = time.time() - start_time
log_histogram("enhanced_rag_pipeline_duration", pipeline_duration, labels={"api_choice": api_choice})
log_counter("enhanced_rag_pipeline_success", labels={"api_choice": api_choice})
return {
"answer": answer,
"context": context
}
except Exception as e:
# Metrics
log_counter("enhanced_rag_pipeline_error", labels={"api_choice": api_choice, "error": str(e)})
logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
return {
"answer": "An error occurred while processing your request.",
"context": ""
}
# Need to write a test for this function FIXME
def generate_answer(api_choice: str, context: str, query: str) -> str:
# Metrics
log_counter("generate_answer_attempt", labels={"api_choice": api_choice})
start_time = time.time()
logging.debug("Entering generate_answer function")
config = load_comprehensive_config()
logging.debug(f"Config sections: {config.sections()}")
prompt = f"Context: {context}\n\nQuestion: {query}"
try:
if api_choice == "OpenAI":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
elif api_choice == "Anthropic":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
elif api_choice == "Cohere":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
elif api_choice == "Groq":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
elif api_choice == "OpenRouter":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
elif api_choice == "HuggingFace":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
elif api_choice == "DeepSeek":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
elif api_choice == "Mistral":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
# Local LLM APIs
elif api_choice == "Local-LLM":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
# FIXME
return summarize_with_local_llm(config['Local-API']['local_llm_path'], prompt, "")
elif api_choice == "Llama.cpp":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_llama(prompt, "", config['Local-API']['llama_api_key'], None, None)
elif api_choice == "Kobold":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_kobold(prompt, config['Local-API']['kobold_api_key'], "", system_message=None, temp=None)
elif api_choice == "Ooba":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_oobabooga(prompt, config['Local-API']['ooba_api_key'], custom_prompt="", system_message=None, temp=None)
elif api_choice == "TabbyAPI":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_tabbyapi(prompt, None, None, None, None, )
elif api_choice == "vLLM":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_vllm(prompt, "", config['Local-API']['vllm_api_key'], None, None)
elif api_choice.lower() == "ollama":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama
answer_generation_duration = time.time() - start_time
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
log_counter("generate_answer_success", labels={"api_choice": api_choice})
return summarize_with_ollama(prompt, "", config['Local-API']['ollama_api_IP'], config['Local-API']['ollama_api_key'], None, None, None)
elif api_choice.lower() == "custom_openai_api":
logging.debug(f"RAG Answer Gen: Trying with Custom_OpenAI API")
summary = summarize_with_custom_openai(prompt, "", config['API']['custom_openai_api_key'], None,
None)
else:
log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str()})
raise ValueError(f"Unsupported API choice: {api_choice}")
except Exception as e:
log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str(e)})
logging.error(f"Error in generate_answer: {str(e)}")
return "An error occurred while generating the answer."
def perform_vector_search(query: str, relevant_media_ids: List[str] = None, top_k=10) -> List[Dict[str, Any]]:
log_counter("perform_vector_search_attempt")
start_time = time.time()
all_collections = chroma_client.list_collections()
vector_results = []
try:
for collection in all_collections:
collection_results = vector_search(collection.name, query, k=top_k)
if not collection_results:
continue # Skip empty results
filtered_results = [
result for result in collection_results
if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids
]
vector_results.extend(filtered_results)
search_duration = time.time() - start_time
log_histogram("perform_vector_search_duration", search_duration)
log_counter("perform_vector_search_success", labels={"result_count": len(vector_results)})
return vector_results
except Exception as e:
log_counter("perform_vector_search_error", labels={"error": str(e)})
logging.error(f"Error in perform_vector_search: {str(e)}")
raise
# V2
def perform_full_text_search(query: str, database_type: str, relevant_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]:
"""
Perform full-text search on a specified database type.
Args:
query: Search query string
database_type: Type of database to search ("Media DB", "RAG Chat", "RAG Notes", "Character Chat", "Character Cards")
relevant_ids: Optional list of media IDs to filter results
fts_top_k: Maximum number of results to return
Returns:
List of search results with content and metadata
"""
log_counter("perform_full_text_search_attempt", labels={"database_type": database_type})
start_time = time.time()
try:
# Set default for fts_top_k
if fts_top_k is None:
fts_top_k = 10
# Call appropriate search function based on database type
if database_type not in search_functions:
raise ValueError(f"Unsupported database type: {database_type}")
# Call the appropriate search function
results = search_functions[database_type](query, fts_top_k, relevant_ids)
search_duration = time.time() - start_time
log_histogram("perform_full_text_search_duration", search_duration,
labels={"database_type": database_type})
log_counter("perform_full_text_search_success",
labels={"database_type": database_type, "result_count": len(results)})
return results
except Exception as e:
log_counter("perform_full_text_search_error",
labels={"database_type": database_type, "error": str(e)})
logging.error(f"Error in perform_full_text_search ({database_type}): {str(e)}")
raise
# v1
# def perform_full_text_search(query: str, relevant_media_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]:
# log_counter("perform_full_text_search_attempt")
# start_time = time.time()
# try:
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=fts_top_k or 10)
# filtered_fts_results = [
# {
# "content": result['content'],
# "metadata": {"media_id": result['id']}
# }
# for result in fts_results
# if relevant_media_ids is None or result['id'] in relevant_media_ids
# ]
# search_duration = time.time() - start_time
# log_histogram("perform_full_text_search_duration", search_duration)
# log_counter("perform_full_text_search_success", labels={"result_count": len(filtered_fts_results)})
# return filtered_fts_results
# except Exception as e:
# log_counter("perform_full_text_search_error", labels={"error": str(e)})
# logging.error(f"Error in perform_full_text_search: {str(e)}")
# raise
def fetch_relevant_media_ids(keywords: List[str], top_k=10) -> List[int]:
log_counter("fetch_relevant_media_ids_attempt", labels={"keyword_count": len(keywords)})
start_time = time.time()
relevant_ids = set()
for keyword in keywords:
try:
media_ids = fetch_keywords_for_media(keyword)
relevant_ids.update(media_ids)
except Exception as e:
log_counter("fetch_relevant_media_ids_error", labels={"error": str(e)})
logging.error(f"Error fetching relevant media IDs for keyword '{keyword}': {str(e)}")
# Continue processing other keywords
fetch_duration = time.time() - start_time
log_histogram("fetch_relevant_media_ids_duration", fetch_duration)
log_counter("fetch_relevant_media_ids_success", labels={"result_count": len(relevant_ids)})
return list(relevant_ids)
def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]:
log_counter("filter_results_by_keywords_attempt", labels={"result_count": len(results), "keyword_count": len(keywords)})
start_time = time.time()
if not keywords:
return results
filtered_results = []
for result in results:
try:
metadata = result.get('metadata', {})
if metadata is None:
logging.warning(f"No metadata found for result: {result}")
continue
if not isinstance(metadata, dict):
logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.")
continue
media_id = metadata.get('media_id')
if media_id is None:
logging.warning(f"No media_id found in metadata: {metadata}")
continue
media_keywords = fetch_keywords_for_media(media_id)
if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords):
filtered_results.append(result)
except Exception as e:
logging.error(f"Error processing result: {result}. Error: {str(e)}")
filter_duration = time.time() - start_time
log_histogram("filter_results_by_keywords_duration", filter_duration)
log_counter("filter_results_by_keywords_success", labels={"filtered_count": len(filtered_results)})
return filtered_results
# FIXME: to be implememted
def extract_media_id_from_result(result: str) -> Optional[int]:
# Implement this function based on how you store the media_id in your results
# For example, if it's stored at the beginning of each result:
try:
return int(result.split('_')[0])
except (IndexError, ValueError):
logging.error(f"Failed to extract media_id from result: {result}")
return None
#
#
########################################################################################################################
############################################################################################################
#
# Chat RAG
def enhanced_rag_pipeline_chat(query: str, api_choice: str, character_id: int, keywords: Optional[str] = None) -> Dict[str, Any]:
"""
Enhanced RAG pipeline tailored for the Character Chat tab.
Args:
query (str): The user's input query.
api_choice (str): The API to use for generating the response.
character_id (int): The ID of the character being interacted with.
keywords (Optional[str]): Comma-separated keywords to filter search results.
Returns:
Dict[str, Any]: Contains the generated answer and the context used.
"""
log_counter("enhanced_rag_pipeline_chat_attempt", labels={"api_choice": api_choice, "character_id": character_id})
start_time = time.time()
try:
# Load embedding provider from config, or fallback to 'openai'
embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
logging.debug(f"Using embedding provider: {embedding_provider}")
# Process keywords if provided
keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else []
logging.debug(f"enhanced_rag_pipeline_chat - Keywords: {keyword_list}")
# Fetch relevant chat IDs based on character_id and keywords
if keyword_list:
relevant_chat_ids = fetch_keywords_for_chats(keyword_list)
else:
relevant_chat_ids = fetch_all_chat_ids(character_id)
logging.debug(f"enhanced_rag_pipeline_chat - Relevant chat IDs: {relevant_chat_ids}")
if not relevant_chat_ids:
logging.info(f"No chats found for the given keywords and character ID: {character_id}")
# Fallback to generating answer without context
answer = generate_answer(api_choice, "", query)
# Metrics
pipeline_duration = time.time() - start_time
log_histogram("enhanced_rag_pipeline_chat_duration", pipeline_duration, labels={"api_choice": api_choice})
log_counter("enhanced_rag_pipeline_chat_success",
labels={"api_choice": api_choice, "character_id": character_id})
return {
"answer": answer,
"context": ""
}
# Perform vector search within the relevant chats
vector_results = perform_vector_search_chat(query, relevant_chat_ids)
logging.debug(f"enhanced_rag_pipeline_chat - Vector search results: {vector_results}")
# Perform full-text search within the relevant chats
# FIXME - Update for DB Selection
fts_results = perform_full_text_search_chat(query, relevant_chat_ids)
logging.debug("enhanced_rag_pipeline_chat - Full-text search results:")
logging.debug("\n".join([str(item) for item in fts_results]))
# Combine results
all_results = vector_results + fts_results
apply_re_ranking = True
if apply_re_ranking:
logging.debug("enhanced_rag_pipeline_chat - Applying Re-Ranking")
ranker = Ranker()
# Prepare passages for re-ranking
passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)]
rerank_request = RerankRequest(query=query, passages=passages)
# Rerank the results
reranked_results = ranker.rerank(rerank_request)
# Sort results based on the re-ranking score
reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True)
# Log reranked results
logging.debug(f"enhanced_rag_pipeline_chat - Reranked results: {reranked_results}")
# Update all_results based on reranking
all_results = [all_results[result['id']] for result in reranked_results]
# Extract context from top results (limit to top 10)
context = "\n".join([result['content'] for result in all_results[:10]])
logging.debug(f"Context length: {len(context)}")
logging.debug(f"Context: {context[:200]}") # Log only the first 200 characters for brevity
# Generate answer using the selected API
answer = generate_answer(api_choice, context, query)
if not all_results:
logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
return {
"answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
"context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
}
return {
"answer": answer,
"context": context
}
except Exception as e:
log_counter("enhanced_rag_pipeline_chat_error", labels={"api_choice": api_choice, "character_id": character_id, "error": str(e)})
logging.error(f"Error in enhanced_rag_pipeline_chat: {str(e)}")
return {
"answer": "An error occurred while processing your request.",
"context": ""
}
def fetch_relevant_chat_ids(character_id: int, keywords: List[str]) -> List[int]:
"""
Fetch chat IDs associated with a character and filtered by keywords.
Args:
character_id (int): The ID of the character.
keywords (List[str]): List of keywords to filter chats.
Returns:
List[int]: List of relevant chat IDs.
"""
log_counter("fetch_relevant_chat_ids_attempt", labels={"character_id": character_id, "keyword_count": len(keywords)})
start_time = time.time()
relevant_ids = set()
try:
media_ids = fetch_keywords_for_chats(keywords)
fetch_duration = time.time() - start_time
log_histogram("fetch_relevant_chat_ids_duration", fetch_duration)
log_counter("fetch_relevant_chat_ids_success",
labels={"character_id": character_id, "result_count": len(relevant_ids)})
relevant_ids.update(media_ids)
return list(relevant_ids)
except Exception as e:
log_counter("fetch_relevant_chat_ids_error", labels={"character_id": character_id, "error": str(e)})
logging.error(f"Error fetching relevant chat IDs: {str(e)}")
return []
def fetch_all_chat_ids(character_id: int) -> List[int]:
"""
Fetch all chat IDs associated with a specific character.
Args:
character_id (int): The ID of the character.
Returns:
List[int]: List of all chat IDs for the character.
"""
log_counter("fetch_all_chat_ids_attempt", labels={"character_id": character_id})
start_time = time.time()
try:
chats = get_character_chats(character_id=character_id)
chat_ids = [chat['id'] for chat in chats]
fetch_duration = time.time() - start_time
log_histogram("fetch_all_chat_ids_duration", fetch_duration)
log_counter("fetch_all_chat_ids_success", labels={"character_id": character_id, "chat_count": len(chat_ids)})
return chat_ids
except Exception as e:
log_counter("fetch_all_chat_ids_error", labels={"character_id": character_id, "error": str(e)})
logging.error(f"Error fetching all chat IDs for character {character_id}: {str(e)}")
return []
#
# End of Chat RAG
############################################################################################################
# Function to preprocess and store all existing content in the database
# def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"):
# unprocessed_media = get_unprocessed_media()
# total_media = len(unprocessed_media)
#
# for index, row in enumerate(unprocessed_media, 1):
# media_id, content, media_type, file_name = row
# collection_name = f"{media_type}_{media_id}"
#
# logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}")
#
# try:
# process_and_store_content(
# database=database,
# content=content,
# collection_name=collection_name,
# media_id=media_id,
# file_name=file_name or f"{media_type}_{media_id}",
# create_embeddings=True,
# create_contextualized=create_contextualized,
# api_name=api_name
# )
#
# # Mark the media as processed in the database
# mark_media_as_processed(database, media_id)
#
# logger.info(f"Successfully processed media ID {media_id}")
# except Exception as e:
# logger.error(f"Error processing media ID {media_id}: {str(e)}")
#
# logger.info("Finished preprocessing all unprocessed content")
############################################################################################################
#
# ElasticSearch Retriever
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
#
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
#
# End of RAG_Library_2.py
############################################################################################################
|