File size: 32,377 Bytes
9c56866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d354c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
# Chunk_Lib.py
#########################################
# Chunking Library
# This library is used to perform chunking of input files.
# Currently, uses naive approaches. Nothing fancy.
#
####
# Import necessary libraries
import hashlib
import logging
import re
from typing import Any, Dict, List, Optional, Tuple
#
# Import 3rd party
from openai import OpenAI
from tqdm import tqdm
from langdetect import detect
from transformers import GPT2Tokenizer
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
#
# Import Local
from App_Function_Libraries.Tokenization_Methods_Lib import openai_tokenize
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
#
#######################################################################################################################
# Config Settings
#
#
# FIXME - Make sure it only downloads if it already exists, and does a check first.
# Ensure NLTK data is downloaded
def ntlk_prep():
    nltk.download('punkt')
#
# Load GPT2 tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
#
# Load configuration
config = load_comprehensive_config()
# Embedding Chunking options
chunk_options = {
    'method': config.get('Chunking', 'method', fallback='words'),
    'max_size': config.getint('Chunking', 'max_size', fallback=400),
    'overlap': config.getint('Chunking', 'overlap', fallback=200),
    'adaptive': config.getboolean('Chunking', 'adaptive', fallback=False),
    'multi_level': config.getboolean('Chunking', 'multi_level', fallback=False),
    'language': config.get('Chunking', 'language', fallback='english')
}

openai_api_key = config.get('API', 'openai_api_key')
#
# End of settings
#######################################################################################################################
#
# Functions:

def detect_language(text: str) -> str:
    try:
        return detect(text)
    except:
        # Default to English if detection fails
        return 'en'


def load_document(file_path):
    with open(file_path, 'r') as file:
        text = file.read()
    return re.sub('\\s+', ' ', text).strip()


def improved_chunking_process(text: str, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
    logging.debug("Improved chunking process started...")
    options = chunk_options.copy()
    if custom_chunk_options:
        options.update(custom_chunk_options)

    chunk_method = options.get('method', 'words')
    base_size = options.get('base_size', 1000)
    min_size = options.get('min_size', 100)
    max_size = options.get('max_size', 2000)
    overlap = options.get('overlap', 0)
    language = options.get('language', None)
    adaptive = options.get('adaptive', False)
    multi_level = options.get('multi_level', False)

    if language is None:
        language = detect_language(text)

    if adaptive:
        max_chunk_size = adaptive_chunk_size(text, base_size, min_size, max_size)
    else:
        max_chunk_size = base_size

    if multi_level:
        chunks = multi_level_chunking(text, chunk_method, max_chunk_size, overlap, language)
    else:
        chunks = chunk_text(text, chunk_method, max_chunk_size, overlap, language)

    chunks_with_metadata = []
    for i, chunk in enumerate(chunks):
        metadata = get_chunk_metadata(
            chunk,
            text,
            chunk_type=chunk_method,
            language=language
        )
        metadata['chunk_index'] = i
        metadata['total_chunks'] = len(chunks)

        chunks_with_metadata.append({
            'text': chunk,
            'metadata': metadata
        })

    return chunks_with_metadata


def multi_level_chunking(text: str, method: str, max_size: int, overlap: int, language: str) -> List[str]:
    logging.debug("Multi-level chunking process started...")
    # First level: chunk by paragraphs
    paragraphs = chunk_text_by_paragraphs(text, max_size * 2, overlap)

    # Second level: chunk each paragraph further
    chunks = []
    for para in paragraphs:
        if method == 'words':
            chunks.extend(chunk_text_by_words(para, max_size, overlap, language))
        elif method == 'sentences':
            chunks.extend(chunk_text_by_sentences(para, max_size, overlap, language))
        else:
            chunks.append(para)

    return chunks



# FIXME - ensure language detection occurs in each chunk function
def chunk_text(text: str, method: str, max_size: int, overlap: int, language: str=None) -> List[str]:

    if method == 'words':
        logging.debug("Chunking by words...")
        return chunk_text_by_words(text, max_size, overlap, language)
    elif method == 'sentences':
        logging.debug("Chunking by sentences...")
        return chunk_text_by_sentences(text, max_size, overlap, language)
    elif method == 'paragraphs':
        logging.debug("Chunking by paragraphs...")
        return chunk_text_by_paragraphs(text, max_size, overlap)
    elif method == 'tokens':
        logging.debug("Chunking by tokens...")
        return chunk_text_by_tokens(text, max_size, overlap)
    elif method == 'semantic':
        logging.debug("Chunking by semantic similarity...")
        return semantic_chunking(text, max_size)
    else:
        return [text]

def determine_chunk_position(relative_position: float) -> str:
    if relative_position < 0.33:
        return "This chunk is from the beginning of the document"
    elif relative_position < 0.66:
        return "This chunk is from the middle of the document"
    else:
        return "This chunk is from the end of the document"


def chunk_text_by_words(text: str, max_words: int = 300, overlap: int = 0, language: str = None) -> List[str]:
    logging.debug("chunk_text_by_words...")
    if language is None:
        language = detect_language(text)

    if language.startswith('zh'):  # Chinese
        import jieba
        words = list(jieba.cut(text))
    elif language == 'ja':  # Japanese
        import fugashi
        tagger = fugashi.Tagger()
        words = [word.surface for word in tagger(text)]
    else:  # Default to simple splitting for other languages
        words = text.split()

    chunks = []
    for i in range(0, len(words), max_words - overlap):
        chunk = ' '.join(words[i:i + max_words])
        chunks.append(chunk)
    return post_process_chunks(chunks)


def chunk_text_by_sentences(text: str, max_sentences: int = 10, overlap: int = 0, language: str = None) -> List[str]:
    logging.debug("chunk_text_by_sentences...")
    if language is None:
        language = detect_language(text)

    nltk.download('punkt', quiet=True)

    if language.startswith('zh'):  # Chinese
        import jieba
        sentences = list(jieba.cut(text, cut_all=False))
    elif language == 'ja':  # Japanese
        import fugashi
        tagger = fugashi.Tagger()
        sentences = [word.surface for word in tagger(text) if word.feature.pos1 in ['記号', '補助記号'] and word.surface.strip()]
    else:  # Default to NLTK for other languages
        sentences = sent_tokenize(text, language=language)

    chunks = []
    for i in range(0, len(sentences), max_sentences - overlap):
        chunk = ' '.join(sentences[i:i + max_sentences])
        chunks.append(chunk)
    return post_process_chunks(chunks)


def chunk_text_by_paragraphs(text: str, max_paragraphs: int = 5, overlap: int = 0) -> List[str]:
    logging.debug("chunk_text_by_paragraphs...")
    paragraphs = re.split(r'\n\s*\n', text)
    chunks = []
    for i in range(0, len(paragraphs), max_paragraphs - overlap):
        chunk = '\n\n'.join(paragraphs[i:i + max_paragraphs])
        chunks.append(chunk)
    return post_process_chunks(chunks)


def chunk_text_by_tokens(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]:
    logging.debug("chunk_text_by_tokens...")
    # This is a simplified token-based chunking. For more accurate tokenization,
    # consider using a proper tokenizer like GPT-2 TokenizerFast
    words = text.split()
    chunks = []
    current_chunk = []
    current_token_count = 0

    for word in words:
        word_token_count = len(word) // 4 + 1  # Rough estimate of token count
        if current_token_count + word_token_count > max_tokens and current_chunk:
            chunks.append(' '.join(current_chunk))
            current_chunk = current_chunk[-overlap:] if overlap > 0 else []
            current_token_count = sum(len(w) // 4 + 1 for w in current_chunk)

        current_chunk.append(word)
        current_token_count += word_token_count

    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return post_process_chunks(chunks)


def post_process_chunks(chunks: List[str]) -> List[str]:
    return [chunk.strip() for chunk in chunks if chunk.strip()]


# FIXME - F
def get_chunk_metadata(chunk: str, full_text: str, chunk_type: str = "generic",

                       chapter_number: Optional[int] = None,

                       chapter_pattern: Optional[str] = None,

                       language: str = None) -> Dict[str, Any]:
    try:
        logging.debug("get_chunk_metadata...")
        start_index = full_text.index(chunk)
        end_index = start_index + len(chunk)
        # Calculate a hash for the chunk
        chunk_hash = hashlib.md5(chunk.encode()).hexdigest()

        metadata = {
            'start_index': start_index,
            'end_index': end_index,
            'word_count': len(chunk.split()),
            'char_count': len(chunk),
            'chunk_type': chunk_type,
            'language': language,
            'chunk_hash': chunk_hash,
            'relative_position': start_index / len(full_text)
        }

        if chunk_type == "chapter":
            metadata['chapter_number'] = chapter_number
            metadata['chapter_pattern'] = chapter_pattern

        return metadata
    except ValueError as e:
        logging.error(f"Chunk not found in full_text: {chunk[:50]}... Full text length: {len(full_text)}")
        raise


def process_document_with_metadata(text: str, chunk_options: Dict[str, Any],

                                   document_metadata: Dict[str, Any]) -> Dict[str, Any]:
    chunks = improved_chunking_process(text, chunk_options)

    return {
        'document_metadata': document_metadata,
        'chunks': chunks
    }


# Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number
def chunk_text_hybrid(text, max_tokens=1000):
    logging.debug("chunk_text_hybrid...")
    sentences = nltk.tokenize.sent_tokenize(text)
    chunks = []
    current_chunk = []
    current_length = 0

    for sentence in sentences:
        tokens = tokenizer.encode(sentence)
        if current_length + len(tokens) <= max_tokens:
            current_chunk.append(sentence)
            current_length += len(tokens)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [sentence]
            current_length = len(tokens)

    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks


# Thanks openai
def chunk_on_delimiter(input_string: str,

                       max_tokens: int,

                       delimiter: str) -> List[str]:
    logging.debug("chunk_on_delimiter...")
    chunks = input_string.split(delimiter)
    combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum(
        chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True)
    if dropped_chunk_count > 0:
        print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.")
    combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks]
    return combined_chunks




# ????FIXME
def recursive_summarize_chunks(chunks, summarize_func, custom_prompt, temp=None, system_prompt=None):
    logging.debug("recursive_summarize_chunks...")
    summarized_chunks = []
    current_summary = ""

    logging.debug(f"recursive_summarize_chunks: Summarizing {len(chunks)} chunks recursively...")
    logging.debug(f"recursive_summarize_chunks:  temperature is @ {temp}")
    for i, chunk in enumerate(chunks):
        if i == 0:
            current_summary = summarize_func(chunk, custom_prompt, temp, system_prompt)
        else:
            combined_text = current_summary + "\n\n" + chunk
            current_summary = summarize_func(combined_text, custom_prompt, temp, system_prompt)

        summarized_chunks.append(current_summary)

    return summarized_chunks


# Sample text for testing
sample_text = """

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence 

concerned with the interactions between computers and human language, in particular how to program computers 

to process and analyze large amounts of natural language data. The result is a computer capable of "understanding" 

the contents of documents, including the contextual nuances of the language within them. The technology can then 

accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.



Challenges in natural language processing frequently involve speech recognition, natural language understanding, 

and natural language generation.



Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled 

"Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence.

"""

# Example usage of different chunking methods
# print("Chunking by words:")
# print(chunk_text_by_words(sample_text, max_words=50))
#
# print("\nChunking by sentences:")
# print(chunk_text_by_sentences(sample_text, max_sentences=2))
#
# print("\nChunking by paragraphs:")
# print(chunk_text_by_paragraphs(sample_text, max_paragraphs=1))
#
# print("\nChunking by tokens:")
# print(chunk_text_by_tokens(sample_text, max_tokens=50))
#
# print("\nHybrid chunking:")
# print(chunk_text_hybrid(sample_text, max_tokens=50))



#######################################################################################################################
#
# Experimental Semantic Chunking
#

# Chunk text into segments based on semantic similarity
def count_units(text, unit='words'):
    if unit == 'words':
        return len(text.split())
    elif unit == 'tokens':
        return len(word_tokenize(text))
    elif unit == 'characters':
        return len(text)
    else:
        raise ValueError("Invalid unit. Choose 'words', 'tokens', or 'characters'.")


def semantic_chunking(text, max_chunk_size=2000, unit='words'):
    logging.debug("semantic_chunking...")
    nltk.download('punkt', quiet=True)
    sentences = sent_tokenize(text)
    vectorizer = TfidfVectorizer()
    sentence_vectors = vectorizer.fit_transform(sentences)

    chunks = []
    current_chunk = []
    current_size = 0

    for i, sentence in enumerate(sentences):
        sentence_size = count_units(sentence, unit)
        if current_size + sentence_size > max_chunk_size and current_chunk:
            chunks.append(' '.join(current_chunk))
            overlap_size = count_units(' '.join(current_chunk[-3:]), unit)  # Use last 3 sentences for overlap
            current_chunk = current_chunk[-3:]  # Keep last 3 sentences for overlap
            current_size = overlap_size

        current_chunk.append(sentence)
        current_size += sentence_size

        if i + 1 < len(sentences):
            current_vector = sentence_vectors[i]
            next_vector = sentence_vectors[i + 1]
            similarity = cosine_similarity(current_vector, next_vector)[0][0]
            if similarity < 0.5 and current_size >= max_chunk_size // 2:
                chunks.append(' '.join(current_chunk))
                overlap_size = count_units(' '.join(current_chunk[-3:]), unit)
                current_chunk = current_chunk[-3:]
                current_size = overlap_size

    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks


def semantic_chunk_long_file(file_path, max_chunk_size=1000, overlap=100, unit='words'):
    logging.debug("semantic_chunk_long_file...")
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            content = file.read()

        chunks = semantic_chunking(content, max_chunk_size, unit)
        return chunks
    except Exception as e:
        logging.error(f"Error chunking text file: {str(e)}")
        return None

#
#
#######################################################################################################################


#######################################################################################################################
#
#  Embedding Chunking

def chunk_for_embedding(text: str, file_name: str, full_summary: str, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
    options = chunk_options.copy()
    if custom_chunk_options:
        options.update(custom_chunk_options)

    chunks = improved_chunking_process(text, options)
    total_chunks = len(chunks)

    chunked_text_with_headers = []
    for i, chunk in enumerate(chunks, 1):
        chunk_text = chunk['text']
        chunk_position = determine_chunk_position(chunk['metadata']['relative_position'])

        chunk_header = f"""

        Original Document: {file_name}

        Full Document Summary: {full_summary or "Full document summary not available."}

        Chunk: {i} of {total_chunks}

        Position: {chunk_position}



        --- Chunk Content ---

        """

        full_chunk_text = chunk_header + chunk_text
        chunk['text'] = full_chunk_text
        chunk['metadata']['file_name'] = file_name
        chunked_text_with_headers.append(chunk)

    return chunked_text_with_headers

#
# End of Embedding Chunking
#######################################################################################################################


#######################################################################################################################
#
# OpenAI Rolling Summarization
#

client = OpenAI(api_key=openai_api_key)
def get_chat_completion(messages, model='gpt-4-turbo'):
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=0,
    )
    return response.choices[0].message.content


# This function combines text chunks into larger blocks without exceeding a specified token count.
#   It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow.
def combine_chunks_with_no_minimum(

        chunks: List[str],

        max_tokens: int,

        chunk_delimiter="\n\n",

        header: Optional[str] = None,

        add_ellipsis_for_overflow=False,

) -> Tuple[List[str], List[List[int]], int]:
    dropped_chunk_count = 0
    output = []  # list to hold the final combined chunks
    output_indices = []  # list to hold the indices of the final combined chunks
    candidate = (
        [] if header is None else [header]
    )  # list to hold the current combined chunk candidate
    candidate_indices = []
    for chunk_i, chunk in enumerate(chunks):
        chunk_with_header = [chunk] if header is None else [header, chunk]
        # FIXME MAKE NOT OPENAI SPECIFIC
        if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens:
            print(f"warning: chunk overflow")
            if (
                    add_ellipsis_for_overflow
                    # FIXME MAKE NOT OPENAI SPECIFIC
                    and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens
            ):
                candidate.append("...")
                dropped_chunk_count += 1
            continue  # this case would break downstream assumptions
        # estimate token count with the current chunk added
        # FIXME MAKE NOT OPENAI SPECIFIC
        extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk])))
        # If the token count exceeds max_tokens, add the current candidate to output and start a new candidate
        if extended_candidate_token_count > max_tokens:
            output.append(chunk_delimiter.join(candidate))
            output_indices.append(candidate_indices)
            candidate = chunk_with_header  # re-initialize candidate
            candidate_indices = [chunk_i]
        # otherwise keep extending the candidate
        else:
            candidate.append(chunk)
            candidate_indices.append(chunk_i)
    # add the remaining candidate to output if it's not empty
    if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0):
        output.append(chunk_delimiter.join(candidate))
        output_indices.append(candidate_indices)
    return output, output_indices, dropped_chunk_count


def rolling_summarize(text: str,

                      detail: float = 0,

                      model: str = 'gpt-4-turbo',

                      additional_instructions: Optional[str] = None,

                      minimum_chunk_size: Optional[int] = 500,

                      chunk_delimiter: str = ".",

                      summarize_recursively=False,

                      verbose=False):
    """

    Summarizes a given text by splitting it into chunks, each of which is summarized individually.

    The level of detail in the summary can be adjusted, and the process can optionally be made recursive.



    Parameters:

        - text (str): The text to be summarized.

        - detail (float, optional): A value between 0 and 1

            indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more

            detailed summary. Defaults to 0.

        - additional_instructions (Optional[str], optional): Additional instructions to provide to the

            model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text

            chunks. Defaults to 500.

        - chunk_delimiter (str, optional): The delimiter used to split the text into chunks. Defaults to ".".

        - summarize_recursively (bool, optional): If True, summaries are generated recursively, using previous summaries for context.

        - verbose (bool, optional): If True, prints detailed information about the chunking process.

    Returns:

    - str: The final compiled summary of the text.



    The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count

    based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If

    `summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the

    summarization process. The function returns a compiled summary of all chunks.

    """

    # check detail is set correctly
    assert 0 <= detail <= 1

    # interpolate the number of chunks based to get specified level of detail
    max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter))
    min_chunks = 1
    num_chunks = int(min_chunks + detail * (max_chunks - min_chunks))

    # adjust chunk_size based on interpolated number of chunks
    # FIXME MAKE NOT OPENAI SPECIFIC
    document_length = len(openai_tokenize(text))
    chunk_size = max(minimum_chunk_size, document_length // num_chunks)
    text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter)
    if verbose:
        print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.")
        # FIXME MAKE NOT OPENAI SPECIFIC
        print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}")

    # set system message - FIXME
    system_message_content = "Rewrite this text in summarized form."
    if additional_instructions is not None:
        system_message_content += f"\n\n{additional_instructions}"

    accumulated_summaries = []
    for i, chunk in enumerate(tqdm(text_chunks)):
        if summarize_recursively and accumulated_summaries:
            # Combine previous summary with current chunk for recursive summarization
            combined_text = accumulated_summaries[-1] + "\n\n" + chunk
            user_message_content = f"Previous summary and new content to summarize:\n\n{combined_text}"
        else:
            user_message_content = chunk

        messages = [
            {"role": "system", "content": system_message_content},
            {"role": "user", "content": user_message_content}
        ]

        response = get_chat_completion(messages, model=model)
        accumulated_summaries.append(response)

    final_summary = '\n\n'.join(accumulated_summaries)
    return final_summary

#
#
#######################################################################################################################
#
# Ebook Chapter Chunking


def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]:
    logging.debug("chunk_ebook_by_chapters")
    max_chunk_size = chunk_options.get('max_size', 300)
    overlap = chunk_options.get('overlap', 0)
    custom_pattern = chunk_options.get('custom_chapter_pattern', None)

    # List of chapter heading patterns to try, in order
    chapter_patterns = [
        custom_pattern,
        r'^#{1,2}\s+',  # Markdown style: '# ' or '## '
        r'^Chapter\s+\d+',  # 'Chapter ' followed by numbers
        r'^\d+\.\s+',  # Numbered chapters: '1. ', '2. ', etc.
        r'^[A-Z\s]+$'  # All caps headings
    ]

    chapter_positions = []
    used_pattern = None

    for pattern in chapter_patterns:
        if pattern is None:
            continue
        chapter_regex = re.compile(pattern, re.MULTILINE | re.IGNORECASE)
        chapter_positions = [match.start() for match in chapter_regex.finditer(text)]
        if chapter_positions:
            used_pattern = pattern
            break

    # If no chapters found, return the entire content as one chunk
    if not chapter_positions:
        return [{'text': text, 'metadata': get_chunk_metadata(text, text, chunk_type="whole_document")}]

    # Split content into chapters
    chunks = []
    for i in range(len(chapter_positions)):
        start = chapter_positions[i]
        end = chapter_positions[i + 1] if i + 1 < len(chapter_positions) else None
        chapter = text[start:end]

        # Apply overlap if specified
        if overlap > 0 and i > 0:
            overlap_start = max(0, start - overlap)
            chapter = text[overlap_start:end]

        chunks.append(chapter)

    # Post-process chunks
    processed_chunks = post_process_chunks(chunks)

    # Add metadata to chunks
    return [{'text': chunk, 'metadata': get_chunk_metadata(chunk, text, chunk_type="chapter", chapter_number=i + 1,
                                                           chapter_pattern=used_pattern)}
            for i, chunk in enumerate(processed_chunks)]


# # Example usage
# if __name__ == "__main__":
#     sample_ebook_content = """
# # Chapter 1: Introduction
#
# This is the introduction.
#
# ## Section 1.1
#
# Some content here.
#
# # Chapter 2: Main Content
#
# This is the main content.
#
# ## Section 2.1
#
# More content here.
#
# CHAPTER THREE
#
# This is the third chapter.
#
# 4. Fourth Chapter
#
# This is the fourth chapter.
# """
#
#     chunk_options = {
#         'method': 'chapters',
#         'max_size': 500,
#         'overlap': 50,
#         'custom_chapter_pattern': r'^CHAPTER\s+[A-Z]+'  # Custom pattern for 'CHAPTER THREE' style
#     }
#
#     chunked_chapters = improved_chunking_process(sample_ebook_content, chunk_options)
#
#     for i, chunk in enumerate(chunked_chapters, 1):
#         print(f"Chunk {i}:")
#         print(chunk['text'])
#         print(f"Metadata: {chunk['metadata']}\n")

#
# End of ebook chapter chunking
#######################################################################################################################

#######################################################################################################################
#
# Functions for adapative chunking:

# FIXME - punkt
def adaptive_chunk_size(text: str, base_size: int = 1000, min_size: int = 500, max_size: int = 2000) -> int:
    # Ensure NLTK data is downloaded
    nltk.download('punkt', quiet=True)

    # Tokenize the text into sentences
    sentences = sent_tokenize(text)

    # Calculate average sentence length
    avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)

    # Adjust chunk size based on average sentence length
    if avg_sentence_length < 10:
        size_factor = 1.2  # Increase chunk size for short sentences
    elif avg_sentence_length > 20:
        size_factor = 0.8  # Decrease chunk size for long sentences
    else:
        size_factor = 1.0

    # Calculate adaptive chunk size
    adaptive_size = int(base_size * size_factor)

    # Ensure chunk size is within bounds
    return max(min_size, min(adaptive_size, max_size))


def adaptive_chunk_size_non_punkt(text: str, base_size: int, min_size: int = 100, max_size: int = 2000) -> int:
    # Adaptive logic: adjust chunk size based on text complexity
    words = text.split()
    if not words:
        return base_size  # Return base_size if text is empty

    avg_word_length = sum(len(word) for word in words) / len(words)

    if avg_word_length > 6:  # Threshold for "complex" text
        adjusted_size = int(base_size * 0.8)  # Reduce chunk size for complex text
    elif avg_word_length < 4:  # Threshold for "simple" text
        adjusted_size = int(base_size * 1.2)  # Increase chunk size for simple text
    else:
        adjusted_size = base_size

    # Ensure the chunk size is within the specified range
    return max(min_size, min(adjusted_size, max_size))


def adaptive_chunking(text: str, base_size: int = 1000, min_size: int = 500, max_size: int = 2000) -> List[str]:
    logging.debug("adaptive_chunking...")
    chunk_size = adaptive_chunk_size(text, base_size, min_size, max_size)
    words = text.split()
    chunks = []
    current_chunk = []
    current_length = 0

    for word in words:
        if current_length + len(word) > chunk_size and current_chunk:
            chunks.append(' '.join(current_chunk))
            current_chunk = []
            current_length = 0
        current_chunk.append(word)
        current_length += len(word) + 1  # +1 for space

    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks

# FIXME - usage example
# chunk_options = {
#     'method': 'words',  # or any other method
#     'base_size': 1000,
#     'min_size': 100,
#     'max_size': 2000,
#     'adaptive': True,
#     'language': 'en'
# }
#chunks = improved_chunking_process(your_text, chunk_options)


# Example of chunking a document with metadata
# document_metadata = {
#     'title': 'Example Document',
#     'author': 'John Doe',
#     'creation_date': '2023-06-14',
#     'source': 'https://example.com/document',
#     'document_type': 'article'
# }
#
# chunk_options = {
#     'method': 'sentences',
#     'base_size': 1000,
#     'adaptive': True,
#     'language': 'en'
# }
#
# processed_document = process_document_with_metadata(your_text, chunk_options, document_metadata)


#
# End of Chunking Library
#######################################################################################################################