Spaces:
Running
Running
File size: 24,054 Bytes
cb782bd f71d2e6 cb782bd f71d2e6 cb782bd f71d2e6 cb782bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
# Character_Interaction_tab.py
# Description: This file contains the functions that are used for Character Interactions in the Gradio UI.
#
# Imports
import base64
import io
import uuid
from datetime import datetime as datetime
import logging
import json
import os
from typing import List, Dict, Tuple, Union
#
# External Imports
import gradio as gr
from PIL import Image
#
# Local Imports
from App_Function_Libraries.Chat import chat, load_characters, save_chat_history_to_db_wrapper
from App_Function_Libraries.Gradio_UI.Chat_ui import chat_wrapper
from App_Function_Libraries.Gradio_UI.Writing_tab import generate_writing_feedback
#
########################################################################################################################
#
# Single-Character chat Functions:
# FIXME - add these functions to the Personas library
def chat_with_character(user_message, history, char_data, api_name_input, api_key):
if char_data is None:
return history, "Please import a character card first."
bot_message = generate_writing_feedback(user_message, char_data['name'], "Overall", api_name_input,
api_key)
history.append((user_message, bot_message))
return history, ""
def import_character_card(file):
if file is None:
logging.warning("No file provided for character card import")
return None
try:
if file.name.lower().endswith(('.png', '.webp')):
logging.info(f"Attempting to import character card from image: {file.name}")
json_data = extract_json_from_image(file)
if json_data:
logging.info("JSON data extracted from image, attempting to parse")
card_data = import_character_card_json(json_data)
if card_data:
# Save the image data
with Image.open(file) as img:
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
card_data['image'] = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
return card_data
else:
logging.warning("No JSON data found in the image")
else:
logging.info(f"Attempting to import character card from JSON file: {file.name}")
content = file.read().decode('utf-8')
return import_character_card_json(content)
except Exception as e:
logging.error(f"Error importing character card: {e}")
return None
def import_character_card_json(json_content):
try:
# Remove any leading/trailing whitespace
json_content = json_content.strip()
# Log the first 100 characters of the content
logging.debug(f"JSON content (first 100 chars): {json_content[:100]}...")
card_data = json.loads(json_content)
logging.debug(f"Parsed JSON data keys: {list(card_data.keys())}")
if 'spec' in card_data and card_data['spec'] == 'chara_card_v2':
logging.info("Detected V2 character card")
return card_data['data']
else:
logging.info("Assuming V1 character card")
return card_data
except json.JSONDecodeError as e:
logging.error(f"JSON decode error: {e}")
logging.error(f"Problematic JSON content: {json_content[:500]}...")
except Exception as e:
logging.error(f"Unexpected error parsing JSON: {e}")
return None
def extract_json_from_image(image_file):
logging.debug(f"Attempting to extract JSON from image: {image_file.name}")
try:
with Image.open(image_file) as img:
logging.debug("Image opened successfully")
metadata = img.info
if 'chara' in metadata:
logging.debug("Found 'chara' in image metadata")
chara_content = metadata['chara']
logging.debug(f"Content of 'chara' metadata (first 100 chars): {chara_content[:100]}...")
try:
decoded_content = base64.b64decode(chara_content).decode('utf-8')
logging.debug(f"Decoded content (first 100 chars): {decoded_content[:100]}...")
return decoded_content
except Exception as e:
logging.error(f"Error decoding base64 content: {e}")
logging.debug("'chara' not found in metadata, checking for base64 encoded data")
raw_data = img.tobytes()
possible_json = raw_data.split(b'{', 1)[-1].rsplit(b'}', 1)[0]
if possible_json:
try:
decoded = base64.b64decode(possible_json).decode('utf-8')
if decoded.startswith('{') and decoded.endswith('}'):
logging.debug("Found and decoded base64 JSON data")
return '{' + decoded + '}'
except Exception as e:
logging.error(f"Error decoding base64 data: {e}")
logging.warning("No JSON data found in the image")
except Exception as e:
logging.error(f"Error extracting JSON from image: {e}")
return None
def load_chat_history(file):
try:
content = file.read().decode('utf-8')
chat_data = json.loads(content)
return chat_data['history'], chat_data['character']
except Exception as e:
logging.error(f"Error loading chat history: {e}")
return None, None
#
# End of X
######################################################################################################################
#
# Multi-Character Chat Interface
# FIXME - refactor and move these functions to the Character_Chat library so that it uses the same functions
def character_interaction_setup():
characters = load_characters()
return characters, [], None, None
def extract_character_response(response: Union[str, Tuple]) -> str:
if isinstance(response, tuple):
# If it's a tuple, try to extract the first string element
for item in response:
if isinstance(item, str):
return item.strip()
# If no string found, return a default message
return "I'm not sure how to respond."
elif isinstance(response, str):
# If it's already a string, just return it
return response.strip()
else:
# For any other type, return a default message
return "I'm having trouble forming a response."
# def process_character_response(response: str) -> str:
# # Remove any leading explanatory text before the first '---'
# parts = response.split('---')
# if len(parts) > 1:
# return '---' + '---'.join(parts[1:])
# return response.strip()
def process_character_response(response: Union[str, Tuple]) -> str:
if isinstance(response, tuple):
response = ' '.join(str(item) for item in response if isinstance(item, str))
if isinstance(response, str):
# Remove any leading explanatory text before the first '---'
parts = response.split('---')
if len(parts) > 1:
return '---' + '---'.join(parts[1:])
return response.strip()
else:
return "I'm having trouble forming a response."
def character_turn(characters: Dict, conversation: List[Tuple[str, str]],
current_character: str, other_characters: List[str],
api_endpoint: str, api_key: str, temperature: float,
scenario: str = "") -> Tuple[List[Tuple[str, str]], str]:
if not current_character or current_character not in characters:
return conversation, current_character
if not conversation and scenario:
conversation.append(("Scenario", scenario))
current_char = characters[current_character]
other_chars = [characters[char] for char in other_characters if char in characters and char != current_character]
prompt = f"{current_char['name']}'s personality: {current_char['personality']}\n"
for char in other_chars:
prompt += f"{char['name']}'s personality: {char['personality']}\n"
prompt += "Conversation so far:\n" + "\n".join([f"{sender}: {message}" for sender, message in conversation])
prompt += f"\n\nHow would {current_char['name']} respond?"
try:
response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "")
processed_response = process_character_response(response)
conversation.append((current_char['name'], processed_response))
except Exception as e:
error_message = f"Error generating response: {str(e)}"
conversation.append((current_char['name'], error_message))
return conversation, current_character
def character_interaction(character1: str, character2: str, api_endpoint: str, api_key: str,
num_turns: int, scenario: str, temperature: float,
user_interjection: str = "") -> List[str]:
characters = load_characters()
char1 = characters[character1]
char2 = characters[character2]
conversation = []
current_speaker = char1
other_speaker = char2
# Add scenario to the conversation start
if scenario:
conversation.append(f"Scenario: {scenario}")
for turn in range(num_turns):
# Construct the prompt for the current speaker
prompt = f"{current_speaker['name']}'s personality: {current_speaker['personality']}\n"
prompt += f"{other_speaker['name']}'s personality: {other_speaker['personality']}\n"
prompt += f"Conversation so far:\n" + "\n".join(
[msg if isinstance(msg, str) else f"{msg[0]}: {msg[1]}" for msg in conversation])
# Add user interjection if provided
if user_interjection and turn == num_turns // 2:
prompt += f"\n\nUser interjection: {user_interjection}\n"
conversation.append(f"User: {user_interjection}")
prompt += f"\n\nHow would {current_speaker['name']} respond?"
# FIXME - figure out why the double print is happening
# Get response from the LLM
response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "")
# Add the response to the conversation
conversation.append((current_speaker['name'], response))
# Switch speakers
current_speaker, other_speaker = other_speaker, current_speaker
# Convert the conversation to a list of strings for output
return [f"{msg[0]}: {msg[1]}" if isinstance(msg, tuple) else msg for msg in conversation]
def create_multiple_character_chat_tab():
with gr.TabItem("Multi-Character Chat"):
characters, conversation, current_character, other_character = character_interaction_setup()
with gr.Blocks() as character_interaction:
gr.Markdown("# Multi-Character Chat")
with gr.Row():
num_characters = gr.Dropdown(label="Number of Characters", choices=["2", "3", "4"], value="2")
character_selectors = [gr.Dropdown(label=f"Character {i + 1}", choices=list(characters.keys())) for i in
range(4)]
api_endpoint = gr.Dropdown(label="API Endpoint",
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek",
"Mistral",
"OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM",
"ollama", "HuggingFace",
"Custom-OpenAI-API"],
value="HuggingFace")
api_key = gr.Textbox(label="API Key (if required)", type="password")
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)
scenario = gr.Textbox(label="Scenario (optional)", lines=3)
chat_display = gr.Chatbot(label="Character Interaction")
current_index = gr.State(0)
next_turn_btn = gr.Button("Next Turn")
narrator_input = gr.Textbox(label="Narrator Input", placeholder="Add a narration or description...")
add_narration_btn = gr.Button("Add Narration")
error_box = gr.Textbox(label="Error Messages", visible=False)
reset_btn = gr.Button("Reset Conversation")
chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True)
save_chat_history_to_db = gr.Button("Save Chat History to DataBase")
def update_character_selectors(num):
return [gr.update(visible=True) if i < int(num) else gr.update(visible=False) for i in range(4)]
num_characters.change(
update_character_selectors,
inputs=[num_characters],
outputs=character_selectors
)
def reset_conversation():
return [], 0, gr.update(value=""), gr.update(value="")
def take_turn(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature,
scenario):
char_selectors = [char for char in [char1, char2, char3, char4] if char] # Remove None values
num_chars = len(char_selectors)
if num_chars == 0:
return conversation, current_index # No characters selected, return without changes
if not conversation:
conversation = []
if scenario:
conversation.append(("Scenario", scenario))
current_character = char_selectors[current_index % num_chars]
next_index = (current_index + 1) % num_chars
prompt = f"Character speaking: {current_character}\nOther characters: {', '.join(char for char in char_selectors if char != current_character)}\n"
prompt += "Generate the next part of the conversation, including character dialogues and actions. Characters should speak in first person."
response, new_conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "",
None, False, temperature, "")
# Format the response
formatted_lines = []
for line in response.split('\n'):
if ':' in line:
speaker, text = line.split(':', 1)
formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}")
else:
formatted_lines.append(line)
formatted_response = '\n'.join(formatted_lines)
# Update the last message in the conversation with the formatted response
if new_conversation:
new_conversation[-1] = (new_conversation[-1][0], formatted_response)
else:
new_conversation.append((current_character, formatted_response))
return new_conversation, next_index
def add_narration(narration, conversation):
if narration:
conversation.append(("Narrator", narration))
return conversation, ""
def take_turn_with_error_handling(conversation, current_index, char1, char2, char3, char4, api_endpoint,
api_key, temperature, scenario):
try:
new_conversation, next_index = take_turn(conversation, current_index, char1, char2, char3, char4,
api_endpoint, api_key, temperature, scenario)
return new_conversation, next_index, gr.update(visible=False, value="")
except Exception as e:
error_message = f"An error occurred: {str(e)}"
return conversation, current_index, gr.update(visible=True, value=error_message)
# Define States for conversation_id and media_content, which are required for saving chat history
media_content = gr.State({})
conversation_id = gr.State(str(uuid.uuid4()))
next_turn_btn.click(
take_turn_with_error_handling,
inputs=[chat_display, current_index] + character_selectors + [api_endpoint, api_key, temperature,
scenario],
outputs=[chat_display, current_index, error_box]
)
add_narration_btn.click(
add_narration,
inputs=[narrator_input, chat_display],
outputs=[chat_display, narrator_input]
)
reset_btn.click(
reset_conversation,
outputs=[chat_display, current_index, scenario, narrator_input]
)
# FIXME - Implement saving chat history to database; look at Chat_UI.py for reference
save_chat_history_to_db.click(
save_chat_history_to_db_wrapper,
inputs=[chat_display, conversation_id, media_content, chat_media_name],
outputs=[conversation_id, gr.Textbox(label="Save Status")]
)
return character_interaction
#
# End of Multi-Character chat tab
########################################################################################################################
#
# Narrator-Controlled Conversation Tab
# From `Fuzzlewumper` on Reddit.
def create_narrator_controlled_conversation_tab():
with gr.TabItem("Narrator-Controlled Conversation"):
gr.Markdown("# Narrator-Controlled Conversation")
with gr.Row():
with gr.Column(scale=1):
api_endpoint = gr.Dropdown(
label="API Endpoint",
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
"OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace",
"Custom-OpenAI-API"],
value="HuggingFace"
)
api_key = gr.Textbox(label="API Key (if required)", type="password")
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)
with gr.Column(scale=2):
narrator_input = gr.Textbox(
label="Narrator Input",
placeholder="Set the scene or provide context...",
lines=3
)
character_inputs = []
for i in range(4): # Allow up to 4 characters
with gr.Row():
name = gr.Textbox(label=f"Character {i + 1} Name")
description = gr.Textbox(label=f"Character {i + 1} Description", lines=3)
character_inputs.append((name, description))
conversation_display = gr.Chatbot(label="Conversation", height=400)
user_input = gr.Textbox(label="Your Input (optional)", placeholder="Add your own dialogue or action...")
with gr.Row():
generate_btn = gr.Button("Generate Next Interaction")
reset_btn = gr.Button("Reset Conversation")
chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True)
save_chat_history_to_db = gr.Button("Save Chat History to DataBase")
error_box = gr.Textbox(label="Error Messages", visible=False)
# Define States for conversation_id and media_content, which are required for saving chat history
conversation_id = gr.State(str(uuid.uuid4()))
media_content = gr.State({})
def generate_interaction(conversation, narrator_text, user_text, api_endpoint, api_key, temperature,
*character_data):
try:
characters = [{"name": name.strip(), "description": desc.strip()}
for name, desc in zip(character_data[::2], character_data[1::2])
if name.strip() and desc.strip()]
if not characters:
raise ValueError("At least one character must be defined.")
prompt = f"Narrator: {narrator_text}\n\n"
for char in characters:
prompt += f"Character '{char['name']}': {char['description']}\n"
prompt += "\nGenerate the next part of the conversation, including character dialogues and actions. "
prompt += "Characters should speak in first person. "
if user_text:
prompt += f"\nIncorporate this user input: {user_text}"
prompt += "\nResponse:"
response, conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None,
False, temperature, "")
# Format the response
formatted_lines = []
for line in response.split('\n'):
if ':' in line:
speaker, text = line.split(':', 1)
formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}")
else:
formatted_lines.append(line)
formatted_response = '\n'.join(formatted_lines)
# Update the last message in the conversation with the formatted response
if conversation:
conversation[-1] = (conversation[-1][0], formatted_response)
else:
conversation.append((None, formatted_response))
return conversation, gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="")
except Exception as e:
error_message = f"An error occurred: {str(e)}"
return conversation, gr.update(), gr.update(), gr.update(visible=True, value=error_message)
def reset_conversation():
return [], gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="")
generate_btn.click(
generate_interaction,
inputs=[conversation_display, narrator_input, user_input, api_endpoint, api_key, temperature] +
[input for char_input in character_inputs for input in char_input],
outputs=[conversation_display, narrator_input, user_input, error_box]
)
reset_btn.click(
reset_conversation,
outputs=[conversation_display, narrator_input, user_input, error_box]
)
# FIXME - Implement saving chat history to database; look at Chat_UI.py for reference
save_chat_history_to_db.click(
save_chat_history_to_db_wrapper,
inputs=[conversation_display, conversation_id, media_content, chat_media_name],
outputs=[conversation_id, gr.Textbox(label="Save Status")]
)
return api_endpoint, api_key, temperature, narrator_input, conversation_display, user_input, generate_btn, reset_btn, error_box
#
# End of Narrator-Controlled Conversation tab
######################################################################################################################## |