File size: 24,054 Bytes
cb782bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71d2e6
cb782bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71d2e6
cb782bd
 
 
 
f71d2e6
cb782bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Character_Interaction_tab.py
# Description: This file contains the functions that are used for Character Interactions in the Gradio UI.
#
# Imports
import base64
import io
import uuid
from datetime import datetime as datetime
import logging
import json
import os
from typing import List, Dict, Tuple, Union

#
# External Imports
import gradio as gr
from PIL import Image
#
# Local Imports
from App_Function_Libraries.Chat import chat, load_characters, save_chat_history_to_db_wrapper
from App_Function_Libraries.Gradio_UI.Chat_ui import chat_wrapper
from App_Function_Libraries.Gradio_UI.Writing_tab import generate_writing_feedback
#
########################################################################################################################
#
# Single-Character chat Functions:
# FIXME - add these functions to the Personas library

def chat_with_character(user_message, history, char_data, api_name_input, api_key):
    if char_data is None:
        return history, "Please import a character card first."

    bot_message = generate_writing_feedback(user_message, char_data['name'], "Overall", api_name_input,
                                            api_key)
    history.append((user_message, bot_message))
    return history, ""


def import_character_card(file):
    if file is None:
        logging.warning("No file provided for character card import")
        return None
    try:
        if file.name.lower().endswith(('.png', '.webp')):
            logging.info(f"Attempting to import character card from image: {file.name}")
            json_data = extract_json_from_image(file)
            if json_data:
                logging.info("JSON data extracted from image, attempting to parse")
                card_data = import_character_card_json(json_data)
                if card_data:
                    # Save the image data
                    with Image.open(file) as img:
                        img_byte_arr = io.BytesIO()
                        img.save(img_byte_arr, format='PNG')
                        card_data['image'] = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
                return card_data
            else:
                logging.warning("No JSON data found in the image")
        else:
            logging.info(f"Attempting to import character card from JSON file: {file.name}")
            content = file.read().decode('utf-8')
            return import_character_card_json(content)
    except Exception as e:
        logging.error(f"Error importing character card: {e}")
    return None


def import_character_card_json(json_content):
    try:
        # Remove any leading/trailing whitespace
        json_content = json_content.strip()

        # Log the first 100 characters of the content
        logging.debug(f"JSON content (first 100 chars): {json_content[:100]}...")

        card_data = json.loads(json_content)
        logging.debug(f"Parsed JSON data keys: {list(card_data.keys())}")
        if 'spec' in card_data and card_data['spec'] == 'chara_card_v2':
            logging.info("Detected V2 character card")
            return card_data['data']
        else:
            logging.info("Assuming V1 character card")
            return card_data
    except json.JSONDecodeError as e:
        logging.error(f"JSON decode error: {e}")
        logging.error(f"Problematic JSON content: {json_content[:500]}...")
    except Exception as e:
        logging.error(f"Unexpected error parsing JSON: {e}")
    return None


def extract_json_from_image(image_file):
    logging.debug(f"Attempting to extract JSON from image: {image_file.name}")
    try:
        with Image.open(image_file) as img:
            logging.debug("Image opened successfully")
            metadata = img.info
            if 'chara' in metadata:
                logging.debug("Found 'chara' in image metadata")
                chara_content = metadata['chara']
                logging.debug(f"Content of 'chara' metadata (first 100 chars): {chara_content[:100]}...")
                try:
                    decoded_content = base64.b64decode(chara_content).decode('utf-8')
                    logging.debug(f"Decoded content (first 100 chars): {decoded_content[:100]}...")
                    return decoded_content
                except Exception as e:
                    logging.error(f"Error decoding base64 content: {e}")

            logging.debug("'chara' not found in metadata, checking for base64 encoded data")
            raw_data = img.tobytes()
            possible_json = raw_data.split(b'{', 1)[-1].rsplit(b'}', 1)[0]
            if possible_json:
                try:
                    decoded = base64.b64decode(possible_json).decode('utf-8')
                    if decoded.startswith('{') and decoded.endswith('}'):
                        logging.debug("Found and decoded base64 JSON data")
                        return '{' + decoded + '}'
                except Exception as e:
                    logging.error(f"Error decoding base64 data: {e}")

            logging.warning("No JSON data found in the image")
    except Exception as e:
        logging.error(f"Error extracting JSON from image: {e}")
    return None


def load_chat_history(file):
    try:
        content = file.read().decode('utf-8')
        chat_data = json.loads(content)
        return chat_data['history'], chat_data['character']
    except Exception as e:
        logging.error(f"Error loading chat history: {e}")
        return None, None


#
# End of X
######################################################################################################################
#
# Multi-Character Chat Interface

# FIXME - refactor and move these functions to the Character_Chat library so that it uses the same functions
def character_interaction_setup():
    characters = load_characters()
    return characters, [], None, None


def extract_character_response(response: Union[str, Tuple]) -> str:
    if isinstance(response, tuple):
        # If it's a tuple, try to extract the first string element
        for item in response:
            if isinstance(item, str):
                return item.strip()
        # If no string found, return a default message
        return "I'm not sure how to respond."
    elif isinstance(response, str):
        # If it's already a string, just return it
        return response.strip()
    else:
        # For any other type, return a default message
        return "I'm having trouble forming a response."

# def process_character_response(response: str) -> str:
#     # Remove any leading explanatory text before the first '---'
#     parts = response.split('---')
#     if len(parts) > 1:
#         return '---' + '---'.join(parts[1:])
#     return response.strip()
def process_character_response(response: Union[str, Tuple]) -> str:
    if isinstance(response, tuple):
        response = ' '.join(str(item) for item in response if isinstance(item, str))

    if isinstance(response, str):
        # Remove any leading explanatory text before the first '---'
        parts = response.split('---')
        if len(parts) > 1:
            return '---' + '---'.join(parts[1:])
        return response.strip()
    else:
        return "I'm having trouble forming a response."

def character_turn(characters: Dict, conversation: List[Tuple[str, str]],

                   current_character: str, other_characters: List[str],

                   api_endpoint: str, api_key: str, temperature: float,

                   scenario: str = "") -> Tuple[List[Tuple[str, str]], str]:
    if not current_character or current_character not in characters:
        return conversation, current_character

    if not conversation and scenario:
        conversation.append(("Scenario", scenario))

    current_char = characters[current_character]
    other_chars = [characters[char] for char in other_characters if char in characters and char != current_character]

    prompt = f"{current_char['name']}'s personality: {current_char['personality']}\n"
    for char in other_chars:
        prompt += f"{char['name']}'s personality: {char['personality']}\n"
    prompt += "Conversation so far:\n" + "\n".join([f"{sender}: {message}" for sender, message in conversation])
    prompt += f"\n\nHow would {current_char['name']} respond?"

    try:
        response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "")
        processed_response = process_character_response(response)
        conversation.append((current_char['name'], processed_response))
    except Exception as e:
        error_message = f"Error generating response: {str(e)}"
        conversation.append((current_char['name'], error_message))

    return conversation, current_character


def character_interaction(character1: str, character2: str, api_endpoint: str, api_key: str,

                          num_turns: int, scenario: str, temperature: float,

                          user_interjection: str = "") -> List[str]:
    characters = load_characters()
    char1 = characters[character1]
    char2 = characters[character2]
    conversation = []
    current_speaker = char1
    other_speaker = char2

    # Add scenario to the conversation start
    if scenario:
        conversation.append(f"Scenario: {scenario}")

    for turn in range(num_turns):
        # Construct the prompt for the current speaker
        prompt = f"{current_speaker['name']}'s personality: {current_speaker['personality']}\n"
        prompt += f"{other_speaker['name']}'s personality: {other_speaker['personality']}\n"
        prompt += f"Conversation so far:\n" + "\n".join(
            [msg if isinstance(msg, str) else f"{msg[0]}: {msg[1]}" for msg in conversation])

        # Add user interjection if provided
        if user_interjection and turn == num_turns // 2:
            prompt += f"\n\nUser interjection: {user_interjection}\n"
            conversation.append(f"User: {user_interjection}")

        prompt += f"\n\nHow would {current_speaker['name']} respond?"

        # FIXME - figure out why the double print is happening
        # Get response from the LLM
        response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "")

        # Add the response to the conversation
        conversation.append((current_speaker['name'], response))

        # Switch speakers
        current_speaker, other_speaker = other_speaker, current_speaker

    # Convert the conversation to a list of strings for output
    return [f"{msg[0]}: {msg[1]}" if isinstance(msg, tuple) else msg for msg in conversation]


def create_multiple_character_chat_tab():
    with gr.TabItem("Multi-Character Chat"):
        characters, conversation, current_character, other_character = character_interaction_setup()

        with gr.Blocks() as character_interaction:
            gr.Markdown("# Multi-Character Chat")

            with gr.Row():
                num_characters = gr.Dropdown(label="Number of Characters", choices=["2", "3", "4"], value="2")
                character_selectors = [gr.Dropdown(label=f"Character {i + 1}", choices=list(characters.keys())) for i in
                                       range(4)]

            api_endpoint = gr.Dropdown(label="API Endpoint",
                                       choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek",
                                                "Mistral",
                                                "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM",
                                                "ollama", "HuggingFace",
                                                "Custom-OpenAI-API"],
                                        value="HuggingFace")
            api_key = gr.Textbox(label="API Key (if required)", type="password")
            temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)
            scenario = gr.Textbox(label="Scenario (optional)", lines=3)

            chat_display = gr.Chatbot(label="Character Interaction")
            current_index = gr.State(0)

            next_turn_btn = gr.Button("Next Turn")
            narrator_input = gr.Textbox(label="Narrator Input", placeholder="Add a narration or description...")
            add_narration_btn = gr.Button("Add Narration")
            error_box = gr.Textbox(label="Error Messages", visible=False)
            reset_btn = gr.Button("Reset Conversation")
            chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True)
            save_chat_history_to_db = gr.Button("Save Chat History to DataBase")

            def update_character_selectors(num):
                return [gr.update(visible=True) if i < int(num) else gr.update(visible=False) for i in range(4)]

            num_characters.change(
                update_character_selectors,
                inputs=[num_characters],
                outputs=character_selectors
            )

            def reset_conversation():
                return [], 0, gr.update(value=""), gr.update(value="")

            def take_turn(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature,

                          scenario):
                char_selectors = [char for char in [char1, char2, char3, char4] if char]  # Remove None values
                num_chars = len(char_selectors)

                if num_chars == 0:
                    return conversation, current_index  # No characters selected, return without changes

                if not conversation:
                    conversation = []
                    if scenario:
                        conversation.append(("Scenario", scenario))

                current_character = char_selectors[current_index % num_chars]
                next_index = (current_index + 1) % num_chars

                prompt = f"Character speaking: {current_character}\nOther characters: {', '.join(char for char in char_selectors if char != current_character)}\n"
                prompt += "Generate the next part of the conversation, including character dialogues and actions. Characters should speak in first person."

                response, new_conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "",
                                                             None, False, temperature, "")

                # Format the response
                formatted_lines = []
                for line in response.split('\n'):
                    if ':' in line:
                        speaker, text = line.split(':', 1)
                        formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}")
                    else:
                        formatted_lines.append(line)

                formatted_response = '\n'.join(formatted_lines)

                # Update the last message in the conversation with the formatted response
                if new_conversation:
                    new_conversation[-1] = (new_conversation[-1][0], formatted_response)
                else:
                    new_conversation.append((current_character, formatted_response))

                return new_conversation, next_index

            def add_narration(narration, conversation):
                if narration:
                    conversation.append(("Narrator", narration))
                return conversation, ""

            def take_turn_with_error_handling(conversation, current_index, char1, char2, char3, char4, api_endpoint,

                                              api_key, temperature, scenario):
                try:
                    new_conversation, next_index = take_turn(conversation, current_index, char1, char2, char3, char4,
                                                             api_endpoint, api_key, temperature, scenario)
                    return new_conversation, next_index, gr.update(visible=False, value="")
                except Exception as e:
                    error_message = f"An error occurred: {str(e)}"
                    return conversation, current_index, gr.update(visible=True, value=error_message)

            # Define States for conversation_id and media_content, which are required for saving chat history
            media_content = gr.State({})
            conversation_id = gr.State(str(uuid.uuid4()))

            next_turn_btn.click(
                take_turn_with_error_handling,
                inputs=[chat_display, current_index] + character_selectors + [api_endpoint, api_key, temperature,
                                                                              scenario],
                outputs=[chat_display, current_index, error_box]
            )

            add_narration_btn.click(
                add_narration,
                inputs=[narrator_input, chat_display],
                outputs=[chat_display, narrator_input]
            )

            reset_btn.click(
                reset_conversation,
                outputs=[chat_display, current_index, scenario, narrator_input]
            )

        # FIXME - Implement saving chat history to database; look at Chat_UI.py for reference
        save_chat_history_to_db.click(
            save_chat_history_to_db_wrapper,
            inputs=[chat_display, conversation_id, media_content, chat_media_name],
            outputs=[conversation_id, gr.Textbox(label="Save Status")]
        )

        return character_interaction

#
# End of Multi-Character chat tab
########################################################################################################################
#
# Narrator-Controlled Conversation Tab

# From `Fuzzlewumper` on Reddit.
def create_narrator_controlled_conversation_tab():
    with gr.TabItem("Narrator-Controlled Conversation"):
        gr.Markdown("# Narrator-Controlled Conversation")

        with gr.Row():
            with gr.Column(scale=1):
                api_endpoint = gr.Dropdown(
                    label="API Endpoint",
                    choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
                             "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace",
                             "Custom-OpenAI-API"],
                    value="HuggingFace"
                )
                api_key = gr.Textbox(label="API Key (if required)", type="password")
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)

            with gr.Column(scale=2):
                narrator_input = gr.Textbox(
                    label="Narrator Input",
                    placeholder="Set the scene or provide context...",
                    lines=3
                )

        character_inputs = []
        for i in range(4):  # Allow up to 4 characters
            with gr.Row():
                name = gr.Textbox(label=f"Character {i + 1} Name")
                description = gr.Textbox(label=f"Character {i + 1} Description", lines=3)
                character_inputs.append((name, description))

        conversation_display = gr.Chatbot(label="Conversation", height=400)
        user_input = gr.Textbox(label="Your Input (optional)", placeholder="Add your own dialogue or action...")

        with gr.Row():
            generate_btn = gr.Button("Generate Next Interaction")
            reset_btn = gr.Button("Reset Conversation")
            chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True)
            save_chat_history_to_db = gr.Button("Save Chat History to DataBase")

        error_box = gr.Textbox(label="Error Messages", visible=False)

        # Define States for conversation_id and media_content, which are required for saving chat history
        conversation_id = gr.State(str(uuid.uuid4()))
        media_content = gr.State({})

        def generate_interaction(conversation, narrator_text, user_text, api_endpoint, api_key, temperature,

                                 *character_data):
            try:
                characters = [{"name": name.strip(), "description": desc.strip()}
                              for name, desc in zip(character_data[::2], character_data[1::2])
                              if name.strip() and desc.strip()]

                if not characters:
                    raise ValueError("At least one character must be defined.")

                prompt = f"Narrator: {narrator_text}\n\n"
                for char in characters:
                    prompt += f"Character '{char['name']}': {char['description']}\n"
                prompt += "\nGenerate the next part of the conversation, including character dialogues and actions. "
                prompt += "Characters should speak in first person. "
                if user_text:
                    prompt += f"\nIncorporate this user input: {user_text}"
                prompt += "\nResponse:"

                response, conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None,
                                                         False, temperature, "")

                # Format the response
                formatted_lines = []
                for line in response.split('\n'):
                    if ':' in line:
                        speaker, text = line.split(':', 1)
                        formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}")
                    else:
                        formatted_lines.append(line)

                formatted_response = '\n'.join(formatted_lines)

                # Update the last message in the conversation with the formatted response
                if conversation:
                    conversation[-1] = (conversation[-1][0], formatted_response)
                else:
                    conversation.append((None, formatted_response))

                return conversation, gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="")
            except Exception as e:
                error_message = f"An error occurred: {str(e)}"
                return conversation, gr.update(), gr.update(), gr.update(visible=True, value=error_message)

        def reset_conversation():
            return [], gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="")

        generate_btn.click(
            generate_interaction,
            inputs=[conversation_display, narrator_input, user_input, api_endpoint, api_key, temperature] +
                   [input for char_input in character_inputs for input in char_input],
            outputs=[conversation_display, narrator_input, user_input, error_box]
        )

        reset_btn.click(
            reset_conversation,
            outputs=[conversation_display, narrator_input, user_input, error_box]
        )

        # FIXME - Implement saving chat history to database; look at Chat_UI.py for reference
        save_chat_history_to_db.click(
            save_chat_history_to_db_wrapper,
            inputs=[conversation_display, conversation_id, media_content, chat_media_name],
            outputs=[conversation_id, gr.Textbox(label="Save Status")]
        )


    return api_endpoint, api_key, temperature, narrator_input, conversation_display, user_input, generate_btn, reset_btn, error_box

#
# End of Narrator-Controlled Conversation tab
########################################################################################################################