File size: 9,340 Bytes
fa9a583
 
 
 
 
 
 
 
 
 
4e1f4a3
cd5e862
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58290d
 
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c8d2b
fa9a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58290d
fa9a583
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Podcast_tab.py
# Description: Gradio UI for ingesting podcasts into the database
#
# Imports
#
#
# External Imports
import gradio as gr
#
# Local Imports
from App_Function_Libraries.Audio.Audio_Files import process_podcast
from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models, update_user_prompt


#
########################################################################################################################
#
# Functions:


def create_podcast_tab():
    with gr.TabItem("Podcast"):
        gr.Markdown("# Podcast Transcription and Ingestion")
        with gr.Row():
            with gr.Column():
                podcast_url_input = gr.Textbox(label="Podcast URL", placeholder="Enter the podcast URL here")
                podcast_title_input = gr.Textbox(label="Podcast Title", placeholder="Will be auto-detected if possible")
                podcast_author_input = gr.Textbox(label="Podcast Author", placeholder="Will be auto-detected if possible")

                podcast_keywords_input = gr.Textbox(
                    label="Keywords",
                    placeholder="Enter keywords here (comma-separated, include series name if applicable)",
                    value="podcast,audio",
                    elem_id="podcast-keywords-input"
                )

                keep_timestamps_input = gr.Checkbox(label="Keep Timestamps", value=True)

                with gr.Row():
                    podcast_custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt",
                                                     value=False,
                                                     visible=True)
                    preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt",
                                                     value=False,
                                                     visible=True)
                with gr.Row():
                    preset_prompt = gr.Dropdown(label="Select Preset Prompt",
                                                choices=load_preset_prompts(),
                                                visible=False)
                with gr.Row():
                    podcast_custom_prompt_input = gr.Textbox(label="Custom Prompt",
                                                     placeholder="Enter custom prompt here",
                                                     lines=3,
                                                     visible=False)
                with gr.Row():
                    system_prompt_input = gr.Textbox(label="System Prompt",
                                                     value="""<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]

**Bulleted Note Creation Guidelines**



**Headings**:

- Based on referenced topics, not categories like quotes or terms

- Surrounded by **bold** formatting 

- Not listed as bullet points

- No space between headings and list items underneath



**Emphasis**:

- **Important terms** set in bold font

- **Text ending in a colon**: also bolded



**Review**:

- Ensure adherence to specified format

- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]

""",
                                                     lines=3,
                                                     visible=False)

                podcast_custom_prompt_checkbox.change(
                    fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
                    inputs=[podcast_custom_prompt_checkbox],
                    outputs=[podcast_custom_prompt_input, system_prompt_input]
                )
                preset_prompt_checkbox.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=[preset_prompt_checkbox],
                    outputs=[preset_prompt]
                )

                def update_prompts(preset_name):
                    prompts = update_user_prompt(preset_name)
                    return (
                        gr.update(value=prompts["user_prompt"], visible=True),
                        gr.update(value=prompts["system_prompt"], visible=True)
                    )

                preset_prompt.change(
                    update_prompts,
                    inputs=preset_prompt,
                    outputs=[podcast_custom_prompt_input, system_prompt_input]
                )

                podcast_api_name_input = gr.Dropdown(
                    choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp",
                             "Kobold", "Ooba", "Tabbyapi", "VLLM","ollama", "HuggingFace", "Custom-OpenAI-API"],
                    value=None,
                    label="API Name for Summarization (Optional)"
                )
                podcast_api_key_input = gr.Textbox(label="API Key (if required)", type="password")
                podcast_whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")

                keep_original_input = gr.Checkbox(label="Keep original audio file", value=False)
                enable_diarization_input = gr.Checkbox(label="Enable speaker diarization", value=False)

                use_cookies_input = gr.Checkbox(label="Use cookies for yt-dlp", value=False)
                cookies_input = gr.Textbox(
                    label="yt-dlp Cookies",
                    placeholder="Paste your cookies here (JSON format)",
                    lines=3,
                    visible=False
                )

                use_cookies_input.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=[use_cookies_input],
                    outputs=[cookies_input]
                )

                chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
                with gr.Row(visible=False) as chunking_options_box:
                    gr.Markdown("### Chunking Options")
                    with gr.Column():
                        chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'], label="Chunking Method")
                        max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
                        chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
                        use_adaptive_chunking = gr.Checkbox(label="Use Adaptive Chunking")
                        use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
                        chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'], label="Chunking Language")

                chunking_options_checkbox.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=[chunking_options_checkbox],
                    outputs=[chunking_options_box]
                )

                podcast_process_button = gr.Button("Process Podcast")

            with gr.Column():
                podcast_progress_output = gr.Textbox(label="Progress")
                podcast_error_output = gr.Textbox(label="Error Messages")
                podcast_transcription_output = gr.Textbox(label="Transcription")
                podcast_summary_output = gr.Textbox(label="Summary")
                download_transcription = gr.File(label="Download Transcription as JSON")
                download_summary = gr.File(label="Download Summary as Text")

        podcast_process_button.click(
            fn=process_podcast,
            inputs=[podcast_url_input, podcast_title_input, podcast_author_input,
                    podcast_keywords_input, podcast_custom_prompt_input, podcast_api_name_input,
                    podcast_api_key_input, podcast_whisper_model_input, keep_original_input,
                    enable_diarization_input, use_cookies_input, cookies_input,
                    chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
                    use_multi_level_chunking, chunk_language, keep_timestamps_input],
            outputs=[podcast_progress_output, podcast_transcription_output, podcast_summary_output,
                     podcast_title_input, podcast_author_input, podcast_keywords_input, podcast_error_output,
                     download_transcription, download_summary]
        )