Spaces:
Running
Running
File size: 2,842 Bytes
41ba402 4e1f4a3 a58290d 41ba402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# Rag_Chat_tab.py
# Description: This file contains the code for the RAG Chat tab in the Gradio UI
#
# Imports
import logging
#
# External Imports
import gradio as gr
#
# Local Imports
from App_Function_Libraries.RAG.RAG_Library_2 import enhanced_rag_pipeline
#
########################################################################################################################
#
# Functions:
def create_rag_tab():
with gr.TabItem("RAG Search"):
gr.Markdown("# Retrieval-Augmented Generation (RAG) Search")
with gr.Row():
with gr.Column():
search_query = gr.Textbox(label="Enter your question", placeholder="What would you like to know?")
keyword_filtering_checkbox = gr.Checkbox(label="Enable Keyword Filtering", value=False)
keywords_input = gr.Textbox(
label="Enter keywords (comma-separated)",
value="keyword1, keyword2, ...",
visible=False
)
keyword_instructions = gr.Markdown(
"Enter comma-separated keywords to filter your search results.",
visible=False
)
api_choice = gr.Dropdown(
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
label="Select API for RAG",
value="OpenAI"
)
search_button = gr.Button("Search")
with gr.Column():
result_output = gr.Textbox(label="Answer", lines=10)
context_output = gr.Textbox(label="Context", lines=10, visible=True)
def toggle_keyword_filtering(checkbox_value):
return {
keywords_input: gr.update(visible=checkbox_value),
keyword_instructions: gr.update(visible=checkbox_value)
}
keyword_filtering_checkbox.change(
toggle_keyword_filtering,
inputs=[keyword_filtering_checkbox],
outputs=[keywords_input, keyword_instructions]
)
def perform_rag_search(query, keywords, api_choice):
if keywords == "keyword1, keyword2, ...":
keywords = None
result = enhanced_rag_pipeline(query, api_choice, keywords)
return result['answer'], result['context']
search_button.click(perform_rag_search, inputs=[search_query, keywords_input, api_choice], outputs=[result_output, context_output])
#
# End of file
########################################################################################################################
|