File size: 24,607 Bytes
fa9a583
 
83c8d2b
fa9a583
83c8d2b
 
 
 
 
 
 
 
 
fa9a583
 
 
83c8d2b
 
fa9a583
83c8d2b
 
4e1f4a3
 
cd5e862
fa9a583
4e1f4a3
fa9a583
 
 
 
 
 
 
83c8d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
 
 
83c8d2b
fa9a583
 
83c8d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
83c8d2b
 
 
fa9a583
83c8d2b
fa9a583
83c8d2b
 
 
 
 
fa9a583
83c8d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
 
 
83c8d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
 
 
83c8d2b
fa9a583
 
83c8d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9a583
83c8d2b
 
 
 
 
 
 
 
 
 
fa9a583
83c8d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e1f4a3
83c8d2b
 
 
 
4e1f4a3
83c8d2b
 
 
 
 
 
 
 
4e1f4a3
 
 
 
 
 
 
 
 
 
 
 
83c8d2b
 
 
 
 
4e1f4a3
 
 
 
 
 
 
83c8d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# Website_scraping_tab.py
# Gradio UI for scraping websites
#
# Imports
import asyncio
import json
import logging
import os
import random
from concurrent.futures import ThreadPoolExecutor
from typing import Optional, List, Dict, Any
from urllib.parse import urlparse, urljoin

#
# External Imports
import gradio as gr
from playwright.async_api import TimeoutError, async_playwright
from playwright.sync_api import sync_playwright

#
# Local Imports
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_from_sitemap, scrape_by_url_level, scrape_article
from App_Function_Libraries.Web_Scraping.Article_Summarization_Lib import scrape_and_summarize_multiple
from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
from App_Function_Libraries.Gradio_UI.Chat_ui import update_user_prompt
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize


#
########################################################################################################################
#
# Functions:

def get_url_depth(url: str) -> int:
    return len(urlparse(url).path.strip('/').split('/'))


def sync_recursive_scrape(url_input, max_pages, max_depth, progress_callback, delay=1.0):
    def run_async_scrape():
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        return loop.run_until_complete(
            recursive_scrape(url_input, max_pages, max_depth, progress_callback, delay)
        )

    with ThreadPoolExecutor() as executor:
        future = executor.submit(run_async_scrape)
        return future.result()


async def recursive_scrape(

        base_url: str,

        max_pages: int,

        max_depth: int,

        progress_callback: callable,

        delay: float = 1.0,

        resume_file: str = 'scrape_progress.json',

        user_agent: str = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"

) -> List[Dict]:
    async def save_progress():
        temp_file = resume_file + ".tmp"
        with open(temp_file, 'w') as f:
            json.dump({
                'visited': list(visited),
                'to_visit': to_visit,
                'scraped_articles': scraped_articles,
                'pages_scraped': pages_scraped
            }, f)
        os.replace(temp_file, resume_file)  # Atomic replace

    def is_valid_url(url: str) -> bool:
        return url.startswith("http") and len(url) > 0

    # Load progress if resume file exists
    if os.path.exists(resume_file):
        with open(resume_file, 'r') as f:
            progress_data = json.load(f)
            visited = set(progress_data['visited'])
            to_visit = progress_data['to_visit']
            scraped_articles = progress_data['scraped_articles']
            pages_scraped = progress_data['pages_scraped']
    else:
        visited = set()
        to_visit = [(base_url, 0)]  # (url, depth)
        scraped_articles = []
        pages_scraped = 0

    try:
        async with async_playwright() as p:
            browser = await p.chromium.launch(headless=True)
            context = await browser.new_context(user_agent=user_agent)

            try:
                while to_visit and pages_scraped < max_pages:
                    current_url, current_depth = to_visit.pop(0)

                    if current_url in visited or current_depth > max_depth:
                        continue

                    visited.add(current_url)

                    # Update progress
                    progress_callback(f"Scraping page {pages_scraped + 1}/{max_pages}: {current_url}")

                    try:
                        await asyncio.sleep(random.uniform(delay * 0.8, delay * 1.2))

                        # This function should be implemented to handle asynchronous scraping
                        article_data = await scrape_article_async(context, current_url)

                        if article_data and article_data['extraction_successful']:
                            scraped_articles.append(article_data)
                            pages_scraped += 1

                        # If we haven't reached max depth, add child links to to_visit
                        if current_depth < max_depth:
                            page = await context.new_page()
                            await page.goto(current_url)
                            await page.wait_for_load_state("networkidle")

                            links = await page.eval_on_selector_all('a[href]',
                                                                    "(elements) => elements.map(el => el.href)")
                            for link in links:
                                child_url = urljoin(base_url, link)
                                if is_valid_url(child_url) and child_url.startswith(
                                        base_url) and child_url not in visited and should_scrape_url(child_url):
                                    to_visit.append((child_url, current_depth + 1))

                            await page.close()

                    except Exception as e:
                        logging.error(f"Error scraping {current_url}: {str(e)}")

                    # Save progress periodically (e.g., every 10 pages)
                    if pages_scraped % 10 == 0:
                        await save_progress()

            finally:
                await browser.close()

    finally:
        # These statements are now guaranteed to be reached after the scraping is done
        await save_progress()

        # Remove the progress file when scraping is completed successfully
        if os.path.exists(resume_file):
            os.remove(resume_file)

        # Final progress update
        progress_callback(f"Scraping completed. Total pages scraped: {pages_scraped}")

        return scraped_articles


async def scrape_article_async(context, url: str) -> Dict[str, Any]:
    page = await context.new_page()
    try:
        await page.goto(url)
        await page.wait_for_load_state("networkidle")

        title = await page.title()
        content = await page.content()

        return {
            'url': url,
            'title': title,
            'content': content,
            'extraction_successful': True
        }
    except Exception as e:
        logging.error(f"Error scraping article {url}: {str(e)}")
        return {
            'url': url,
            'extraction_successful': False,
            'error': str(e)
        }
    finally:
        await page.close()


def scrape_article_sync(url: str) -> Dict[str, Any]:
    with sync_playwright() as p:
        browser = p.chromium.launch(headless=True)
        page = browser.new_page()
        try:
            page.goto(url)
            page.wait_for_load_state("networkidle")

            title = page.title()
            content = page.content()

            return {
                'url': url,
                'title': title,
                'content': content,
                'extraction_successful': True
            }
        except Exception as e:
            logging.error(f"Error scraping article {url}: {str(e)}")
            return {
                'url': url,
                'extraction_successful': False,
                'error': str(e)
            }
        finally:
            browser.close()


def should_scrape_url(url: str) -> bool:
    parsed_url = urlparse(url)
    path = parsed_url.path.lower()

    # List of patterns to exclude
    exclude_patterns = [
        '/tag/', '/category/', '/author/', '/search/', '/page/',
        'wp-content', 'wp-includes', 'wp-json', 'wp-admin',
        'login', 'register', 'cart', 'checkout', 'account',
        '.jpg', '.png', '.gif', '.pdf', '.zip'
    ]

    # Check if the URL contains any exclude patterns
    if any(pattern in path for pattern in exclude_patterns):
        return False

    # Add more sophisticated checks here
    # For example, you might want to only include URLs with certain patterns
    include_patterns = ['/article/', '/post/', '/blog/']
    if any(pattern in path for pattern in include_patterns):
        return True

    # By default, return True if no exclusion or inclusion rules matched
    return True


async def scrape_with_retry(url: str, max_retries: int = 3, retry_delay: float = 5.0):
    for attempt in range(max_retries):
        try:
            return await scrape_article(url)
        except TimeoutError:
            if attempt < max_retries - 1:
                logging.warning(f"Timeout error scraping {url}. Retrying in {retry_delay} seconds...")
                await asyncio.sleep(retry_delay)
            else:
                logging.error(f"Failed to scrape {url} after {max_retries} attempts.")
                return None
        except Exception as e:
            logging.error(f"Error scraping {url}: {str(e)}")
            return None


def create_website_scraping_tab():
    with gr.TabItem("Website Scraping"):
        gr.Markdown("# Scrape Websites & Summarize Articles")
        with gr.Row():
            with gr.Column():
                scrape_method = gr.Radio(
                    ["Individual URLs", "Sitemap", "URL Level", "Recursive Scraping"],
                    label="Scraping Method",
                    value="Individual URLs"
                )
                url_input = gr.Textbox(
                    label="Article URLs or Base URL",
                    placeholder="Enter article URLs here, one per line, or base URL for sitemap/URL level/recursive scraping",
                    lines=5
                )
                url_level = gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    label="URL Level (for URL Level scraping)",
                    value=2,
                    visible=False
                )
                max_pages = gr.Slider(
                    minimum=1,
                    maximum=100,
                    step=1,
                    label="Maximum Pages to Scrape (for Recursive Scraping)",
                    value=10,
                    visible=False
                )
                max_depth = gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    label="Maximum Depth (for Recursive Scraping)",
                    value=3,
                    visible=False
                )
                custom_article_title_input = gr.Textbox(
                    label="Custom Article Titles (Optional, one per line)",
                    placeholder="Enter custom titles for the articles, one per line",
                    lines=5
                )
                with gr.Row():
                    summarize_checkbox = gr.Checkbox(label="Summarize Articles", value=False)
                    custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt", value=False, visible=True)
                    preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt", value=False, visible=True)
                with gr.Row():
                    temp_slider = gr.Slider(0.1, 2.0, 0.7, label="Temperature")
                with gr.Row():
                    preset_prompt = gr.Dropdown(
                        label="Select Preset Prompt",
                        choices=load_preset_prompts(),
                        visible=False
                    )
                with gr.Row():
                    website_custom_prompt_input = gr.Textbox(
                        label="Custom Prompt",
                        placeholder="Enter custom prompt here",
                        lines=3,
                        visible=False
                    )
                with gr.Row():
                    system_prompt_input = gr.Textbox(
                        label="System Prompt",
                        value="""<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]

                                **Bulleted Note Creation Guidelines**

                                

                                **Headings**:

                                - Based on referenced topics, not categories like quotes or terms

                                - Surrounded by **bold** formatting 

                                - Not listed as bullet points

                                - No space between headings and list items underneath

                                

                                **Emphasis**:

                                - **Important terms** set in bold font

                                - **Text ending in a colon**: also bolded

                                

                                **Review**:

                                - Ensure adherence to specified format

                                - Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]

                                """,
                        lines=3,
                        visible=False
                    )

                api_name_input = gr.Dropdown(
                    choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
                             "OpenRouter",
                             "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace",
                             "Custom-OpenAI-API"],
                    value=None,
                    label="API Name (Mandatory for Summarization)"
                )
                api_key_input = gr.Textbox(
                    label="API Key (Mandatory if API Name is specified)",
                    placeholder="Enter your API key here; Ignore if using Local API or Built-in API",
                    type="password"
                )
                keywords_input = gr.Textbox(
                    label="Keywords",
                    placeholder="Enter keywords here (comma-separated)",
                    value="default,no_keyword_set",
                    visible=True
                )

                scrape_button = gr.Button("Scrape and Summarize")
            with gr.Column():
                progress_output = gr.Textbox(label="Progress", lines=3)
                result_output = gr.Textbox(label="Result", lines=20)

        def update_ui_for_scrape_method(method):
            url_level_update = gr.update(visible=(method == "URL Level"))
            max_pages_update = gr.update(visible=(method == "Recursive Scraping"))
            max_depth_update = gr.update(visible=(method == "Recursive Scraping"))
            url_input_update = gr.update(
                label="Article URLs" if method == "Individual URLs" else "Base URL",
                placeholder="Enter article URLs here, one per line" if method == "Individual URLs" else "Enter the base URL for scraping"
            )
            return url_level_update, max_pages_update, max_depth_update, url_input_update

        scrape_method.change(
            fn=update_ui_for_scrape_method,
            inputs=[scrape_method],
            outputs=[url_level, max_pages, max_depth, url_input]
        )

        custom_prompt_checkbox.change(
            fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
            inputs=[custom_prompt_checkbox],
            outputs=[website_custom_prompt_input, system_prompt_input]
        )
        preset_prompt_checkbox.change(
            fn=lambda x: gr.update(visible=x),
            inputs=[preset_prompt_checkbox],
            outputs=[preset_prompt]
        )

        def update_prompts(preset_name):
            prompts = update_user_prompt(preset_name)
            return (
                gr.update(value=prompts["user_prompt"], visible=True),
                gr.update(value=prompts["system_prompt"], visible=True)
            )

        preset_prompt.change(
            update_prompts,
            inputs=preset_prompt,
            outputs=[website_custom_prompt_input, system_prompt_input]
        )

        async def scrape_and_summarize_wrapper(

                scrape_method: str,

                url_input: str,

                url_level: Optional[int],

                max_pages: int,

                max_depth: int,

                summarize_checkbox: bool,

                custom_prompt: Optional[str],

                api_name: Optional[str],

                api_key: Optional[str],

                keywords: str,

                custom_titles: Optional[str],

                system_prompt: Optional[str],

                temperature: float = 0.7,

                progress: gr.Progress = gr.Progress()

        ) -> str:
            try:
                result: List[Dict[str, Any]] = []

                if scrape_method == "Individual URLs":
                    result = await scrape_and_summarize_multiple(url_input, custom_prompt, api_name, api_key, keywords,
                                                                 custom_titles, system_prompt)
                elif scrape_method == "Sitemap":
                    result = await asyncio.to_thread(scrape_from_sitemap, url_input)
                elif scrape_method == "URL Level":
                    if url_level is None:
                        return convert_json_to_markdown(
                            json.dumps({"error": "URL level is required for URL Level scraping."}))
                    result = await asyncio.to_thread(scrape_by_url_level, url_input, url_level)
                elif scrape_method == "Recursive Scraping":
                    result = await recursive_scrape(url_input, max_pages, max_depth, progress.update, delay=1.0)
                else:
                    return convert_json_to_markdown(json.dumps({"error": f"Unknown scraping method: {scrape_method}"}))

                # Ensure result is always a list of dictionaries
                if isinstance(result, dict):
                    result = [result]
                elif isinstance(result, list):
                    if all(isinstance(item, str) for item in result):
                        # Convert list of strings to list of dictionaries
                        result = [{"content": item} for item in result]
                    elif not all(isinstance(item, dict) for item in result):
                        raise ValueError("Not all items in result are dictionaries or strings")
                else:
                    raise ValueError(f"Unexpected result type: {type(result)}")

                # Ensure all items in result are dictionaries
                if not all(isinstance(item, dict) for item in result):
                    raise ValueError("Not all items in result are dictionaries")

                if summarize_checkbox:
                    total_articles = len(result)
                    for i, article in enumerate(result):
                        progress.update(f"Summarizing article {i + 1}/{total_articles}")
                        content = article.get('content', '')
                        if content:
                            summary = await asyncio.to_thread(summarize, content, custom_prompt, api_name, api_key,
                                                              temperature, system_prompt)
                            article['summary'] = summary
                        else:
                            article['summary'] = "No content available to summarize."

                # Concatenate all content
                all_content = "\n\n".join(
                    [f"# {article.get('title', 'Untitled')}\n\n{article.get('content', '')}\n\n" +
                     (f"Summary: {article.get('summary', '')}" if summarize_checkbox else "")
                     for article in result])

                # Collect all unique URLs
                all_urls = list(set(article.get('url', '') for article in result if article.get('url')))

                # Structure the output for the entire website collection
                website_collection = {
                    "base_url": url_input,
                    "scrape_method": scrape_method,
                    "summarization_performed": summarize_checkbox,
                    "api_used": api_name if summarize_checkbox else None,
                    "keywords": keywords if summarize_checkbox else None,
                    "url_level": url_level if scrape_method == "URL Level" else None,
                    "max_pages": max_pages if scrape_method == "Recursive Scraping" else None,
                    "max_depth": max_depth if scrape_method == "Recursive Scraping" else None,
                    "total_articles_scraped": len(result),
                    "urls_scraped": all_urls,
                    "content": all_content
                }

                # Convert the JSON to markdown and return
                return convert_json_to_markdown(json.dumps(website_collection, indent=2))
            except Exception as e:
                return convert_json_to_markdown(json.dumps({"error": f"An error occurred: {str(e)}"}))

        # Update the scrape_button.click to include the temperature parameter
        scrape_button.click(
            fn=lambda *args: asyncio.run(scrape_and_summarize_wrapper(*args)),
            inputs=[scrape_method, url_input, url_level, max_pages, max_depth, summarize_checkbox,
                    website_custom_prompt_input, api_name_input, api_key_input, keywords_input,
                    custom_article_title_input, system_prompt_input, temp_slider],
            outputs=[result_output]
        )


def convert_json_to_markdown(json_str: str) -> str:
    """

    Converts the JSON output from the scraping process into a markdown format.



    Args:

        json_str (str): JSON-formatted string containing the website collection data



    Returns:

        str: Markdown-formatted string of the website collection data

    """
    try:
        # Parse the JSON string
        data = json.loads(json_str)

        # Check if there's an error in the JSON
        if "error" in data:
            return f"# Error\n\n{data['error']}"

        # Start building the markdown string
        markdown = f"# Website Collection: {data['base_url']}\n\n"

        # Add metadata
        markdown += "## Metadata\n\n"
        markdown += f"- **Scrape Method:** {data['scrape_method']}\n"
        markdown += f"- **API Used:** {data['api_used']}\n"
        markdown += f"- **Keywords:** {data['keywords']}\n"
        if data['url_level'] is not None:
            markdown += f"- **URL Level:** {data['url_level']}\n"
        markdown += f"- **Total Articles Scraped:** {data['total_articles_scraped']}\n\n"

        # Add URLs scraped
        markdown += "## URLs Scraped\n\n"
        for url in data['urls_scraped']:
            markdown += f"- {url}\n"
        markdown += "\n"

        # Add the content
        markdown += "## Content\n\n"
        markdown += data['content']

        return markdown

    except json.JSONDecodeError:
        return "# Error\n\nInvalid JSON string provided."
    except KeyError as e:
        return f"# Error\n\nMissing key in JSON data: {str(e)}"
    except Exception as e:
        return f"# Error\n\nAn unexpected error occurred: {str(e)}"
#
# End of File
########################################################################################################################