File size: 50,296 Bytes
6165b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381a1e2
6165b58
 
 
 
381a1e2
6165b58
 
 
 
 
b3b2a0b
6165b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
# Summarization_General_Lib.py
#########################################
# General Summarization Library
# This library is used to perform summarization.
#
####
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
#
#
####################
#
# Import necessary libraries
import json
import logging
import os
import time
from typing import List

import requests
#
# Import 3rd-Party Libraries
#
# Import Local libraries
from App_Function_Libraries.Utils.Utils import load_and_log_configs
#
#######################################################################################################################
# Function Definitions
#

#FIXME: Update to include full arguments

def extract_text_from_segments(segments):
    logging.debug(f"Segments received: {segments}")
    logging.debug(f"Type of segments: {type(segments)}")

    text = ""

    if isinstance(segments, list):
        for segment in segments:
            logging.debug(f"Current segment: {segment}")
            logging.debug(f"Type of segment: {type(segment)}")
            if 'Text' in segment:
                text += segment['Text'] + " "
            else:
                logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
    else:
        logging.warning(f"Unexpected type of 'segments': {type(segments)}")

    return text.strip()



def get_openai_embeddings(input_data: str, model: str) -> List[float]:
    """
    Get embeddings for the input text from OpenAI API.

    Args:
        input_data (str): The input text to get embeddings for.
        model (str): The model to use for generating embeddings.

    Returns:
        List[float]: The embeddings generated by the API.
    """
    loaded_config_data = load_and_log_configs()
    api_key = loaded_config_data['api_keys']['openai']

    if not api_key:
        logging.error("OpenAI: API key not found or is empty")
        raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty")

    logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
    logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
    logging.debug(f"OpenAI: Using model: {model}")

    headers = {
        'Authorization': f'Bearer {api_key}',
        'Content-Type': 'application/json'
    }

    request_data = {
        "input": input_data,
        "model": model,
    }

    try:
        logging.debug("OpenAI: Posting request to embeddings API")
        response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data)
        logging.debug(f"Full API response data: {response}")
        if response.status_code == 200:
            response_data = response.json()
            if 'data' in response_data and len(response_data['data']) > 0:
                embedding = response_data['data'][0]['embedding']
                logging.debug("OpenAI: Embeddings retrieved successfully")
                return embedding
            else:
                logging.warning("OpenAI: Embedding data not found in the response")
                raise ValueError("OpenAI: Embedding data not available in the response")
        else:
            logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}")
            logging.error(f"OpenAI: Error response: {response.text}")
            raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}")
    except requests.RequestException as e:
        logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
        raise ValueError(f"OpenAI: Error making API request: {str(e)}")
    except Exception as e:
        logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
        raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}")


def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    loaded_config_data = load_and_log_configs()
    openai_api_key = api_key
    try:
        # API key validation
        if not openai_api_key:
            logging.info("OpenAI: API key not provided as parameter")
            logging.info("OpenAI: Attempting to use API key from config file")
            openai_api_key = loaded_config_data['api_keys']['openai']

        if not openai_api_key:
            logging.error("OpenAI: API key not found or is empty")
            return "OpenAI: API Key Not Provided/Found in Config file or is empty"

        logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}")

        # Input data handling
        logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
        logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")

        if isinstance(input_data, str):
            if input_data.strip().startswith('{'):
                # It's likely a JSON string
                logging.debug("OpenAI: Parsing provided JSON string data for summarization")
                try:
                    data = json.loads(input_data)
                except json.JSONDecodeError as e:
                    logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
                    return f"OpenAI: Error parsing JSON input: {str(e)}"
            elif os.path.isfile(input_data):
                logging.debug("OpenAI: Loading JSON data from file for summarization")
                with open(input_data, 'r') as file:
                    data = json.load(file)
            else:
                logging.debug("OpenAI: Using provided string data for summarization")
                data = input_data
        else:
            data = input_data

        logging.debug(f"OpenAI: Processed data type: {type(data)}")
        logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")

        # Text extraction
        if isinstance(data, dict):
            if 'summary' in data:
                logging.debug("OpenAI: Summary already exists in the loaded data")
                return data['summary']
            elif 'segments' in data:
                text = extract_text_from_segments(data['segments'])
            else:
                text = json.dumps(data)  # Convert dict to string if no specific format
        elif isinstance(data, list):
            text = extract_text_from_segments(data)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")

        logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
        logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")

        openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
        logging.debug(f"OpenAI: Using model: {openai_model}")

        headers = {
            'Authorization': f'Bearer {openai_api_key}',
            'Content-Type': 'application/json'
        }

        logging.debug(
            f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
        logging.debug("openai: Preparing data + prompt for submittal")
        openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        if temp is None:
            temp = 0.7
        if system_message is None:
            system_message = "You are a helpful AI assistant who does whatever the user requests."
        temp = float(temp)
        data = {
            "model": openai_model,
            "messages": [
                {"role": "system", "content": system_message},
                {"role": "user", "content": openai_prompt}
            ],
            "max_tokens": 4096,
            "temperature": temp
        }

        logging.debug("OpenAI: Posting request")
        response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
        logging.debug(f"Full API response data: {response}")
        if response.status_code == 200:
            response_data = response.json()
            logging.debug(response_data)
            if 'choices' in response_data and len(response_data['choices']) > 0:
                chat_response = response_data['choices'][0]['message']['content'].strip()
                logging.debug("openai: Chat Sent successfully")
                logging.debug(f"openai: Chat response: {chat_response}")
                return chat_response
            else:
                logging.warning("openai: Chat response not found in the response data")
                return "openai: Chat not available"
        else:
            logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
            logging.error(f"OpenAI: Error response: {response.text}")
            return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
    except json.JSONDecodeError as e:
        logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
        return f"OpenAI: Error decoding JSON input: {str(e)}"
    except requests.RequestException as e:
        logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
        return f"OpenAI: Error making API request: {str(e)}"
    except Exception as e:
        logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
        return f"OpenAI: Unexpected error occurred: {str(e)}"


def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None, temp=None):
    try:
        loaded_config_data = load_and_log_configs()

        # Check if config was loaded successfully
        if loaded_config_data is None:
            logging.error("Anthropic: Failed to load configuration data.")
            return "Anthropic: Failed to load configuration data."

        # Initialize the API key
        anthropic_api_key = api_key

        # API key validation
        if not api_key:
            logging.info("Anthropic: API key not provided as parameter")
            logging.info("Anthropic: Attempting to use API key from config file")
            # Ensure 'api_keys' and 'anthropic' keys exist
            try:
                anthropic_api_key = loaded_config_data['api_keys']['anthropic']
                logging.debug(f"Anthropic: Loaded API Key from config: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
            except (KeyError, TypeError) as e:
                logging.error(f"Anthropic: Error accessing API key from config: {str(e)}")
                return "Anthropic: API Key Not Provided/Found in Config file or is empty"

        if not anthropic_api_key or anthropic_api_key == "":
            logging.error("Anthropic: API key not found or is empty")
            return "Anthropic: API Key Not Provided/Found in Config file or is empty"

        if anthropic_api_key:
            logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
        else:
            logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")

        if system_prompt is not None:
            logging.debug("Anthropic: Using provided system prompt")
            pass
        else:
            system_prompt = "You are a helpful assistant"
            logging.debug("Anthropic: Using default system prompt")

        logging.debug(f"AnthropicAI: Loaded data: {input_data}")
        logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")

        # Retrieve the model from config if not provided
        if not model:
            try:
                anthropic_model = loaded_config_data['models']['anthropic']
                logging.debug(f"Anthropic: Loaded model from config: {anthropic_model}")
            except (KeyError, TypeError) as e:
                logging.error(f"Anthropic: Error accessing model from config: {str(e)}")
                return "Anthropic: Model configuration not found."
        else:
            anthropic_model = model
            logging.debug(f"Anthropic: Using provided model: {anthropic_model}")

        if temp is None:
            temp = 1.0
            logging.debug(f"Anthropic: Using default temperature: {temp}")

        headers = {
            'x-api-key': anthropic_api_key,
            'anthropic-version': '2023-06-01',
            'Content-Type': 'application/json'
        }

        anthropic_user_prompt = custom_prompt_arg if custom_prompt_arg else ""
        logging.debug(f"Anthropic: User Prompt is '{anthropic_user_prompt}'")
        user_message = {
            "role": "user",
            "content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
        }

        data = {
            "model": anthropic_model,
            "max_tokens": 4096,  # max possible tokens to return
            "messages": [user_message],
            "stop_sequences": ["\n\nHuman:"],
            "temperature": temp,
            "top_k": 0,
            "top_p": 1.0,
            "metadata": {
                "user_id": "example_user_id",
            },
            "stream": False,
            "system": system_prompt
        }

        for attempt in range(max_retries):
            try:
                logging.debug("Anthropic: Posting request to API")
                response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
                logging.debug(f"Anthropic: Full API response data: {response}")

                # Check if the status code indicates success
                if response.status_code == 200:
                    logging.debug("Anthropic: Post submittal successful")
                    response_data = response.json()

                    # Corrected path to access the assistant's reply
                    if 'content' in response_data and isinstance(response_data['content'], list) and len(response_data['content']) > 0:
                        chat_response = response_data['content'][0]['text'].strip()
                        logging.debug("Anthropic: Chat request successful")
                        print("Chat request processed successfully.")
                        return chat_response
                    else:
                        logging.error("Anthropic: Unexpected data structure in response.")
                        print("Unexpected response format from Anthropic API:", response.text)
                        return "Anthropic: Unexpected response format from API."
                elif response.status_code == 500:  # Handle internal server error specifically
                    logging.debug("Anthropic: Internal server error")
                    print("Internal server error from API. Retrying may be necessary.")
                    time.sleep(retry_delay)
                else:
                    logging.debug(
                        f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
                    print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
                    return f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}"

            except requests.RequestException as e:
                logging.error(f"Anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
                if attempt < max_retries - 1:
                    logging.debug(f"Anthropic: Retrying in {retry_delay} seconds...")
                    time.sleep(retry_delay)
                else:
                    return f"Anthropic: Network error: {str(e)}"

    except Exception as e:
        logging.error(f"Anthropic: Error in processing: {str(e)}")
        return f"Anthropic: Error occurred while processing summary with Anthropic: {str(e)}"


# Summarize with Cohere
def chat_with_cohere(api_key, input_data, model=None, custom_prompt_arg=None, system_prompt=None, temp=None):
    loaded_config_data = load_and_log_configs()
    cohere_api_key = None

    try:
        # API key validation
        if api_key:
            logging.info(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}")
            cohere_api_key = api_key
        else:
            logging.info("Cohere Chat: API key not provided as parameter")
            logging.info("Cohere Chat: Attempting to use API key from config file")
            logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}")
            cohere_api_key = loaded_config_data['api_keys']['cohere']
            if cohere_api_key:
                logging.debug(f"Cohere Chat: Cohere API Key from config: {cohere_api_key[:3]}...{cohere_api_key[-3:]}")
            else:
                logging.error("Cohere Chat: API key not found or is empty")
                return "Cohere Chat: API Key Not Provided/Found in Config file or is empty"

        logging.debug(f"Cohere Chat: Loaded data: {input_data}")
        logging.debug(f"Cohere Chat: Type of data: {type(input_data)}")

        # Ensure model is set
        if not model:
            model = loaded_config_data['models']['cohere']
        logging.debug(f"Cohere Chat: Using model: {model}")

        if temp is None:
            temp = 0.3
        else:
            try:
                temp = float(temp)
            except ValueError:
                logging.warning(f"Cohere Chat: Invalid temperature value '{temp}', defaulting to 0.3")
                temp = 0.3

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
            'Authorization': f'Bearer {cohere_api_key}'
        }

        # Ensure system_prompt is set
        if not system_prompt:
            system_prompt = "You are a helpful assistant"
        logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'")

        cohere_prompt = input_data
        if custom_prompt_arg:
            cohere_prompt += f"\n\n{custom_prompt_arg}"
        logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'")

        data = {
            "model" : model,
            "temperature": temp,
            "messages": [
                {
                    "role": "system",
                    "content":  system_prompt
                },
                {
                    "role": "user",
                    "content": cohere_prompt,
                }
            ],
        }
        logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}")

        logging.debug("cohere chat: Submitting request to API endpoint")
        print("cohere chat: Submitting request to API endpoint")

        try:
            response = requests.post('https://api.cohere.ai/v2/chat', headers=headers, json=data)
            logging.debug(f"Cohere Chat: Raw API response: {response.text}")
        except requests.RequestException as e:
            logging.error(f"Cohere Chat: Error making API request: {str(e)}")
            return f"Cohere Chat: Error making API request: {str(e)}"

        if response.status_code == 200:
            try:
                response_data = response.json()
            except json.JSONDecodeError:
                logging.error("Cohere Chat: Failed to decode JSON response")
                return "Cohere Chat: Failed to decode JSON response"

            if response_data is None:
                logging.error("Cohere Chat: No response data received.")
                return "Cohere Chat: No response data received."

            logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}")

            if 'message' in response_data and 'content' in response_data['message']:
                content = response_data['message']['content']
                if isinstance(content, list) and len(content) > 0:
                    # Extract text from the first content block
                    text = content[0].get('text', '').strip()
                    if text:
                        logging.debug("Cohere Chat: Chat request successful")
                        print("Cohere Chat request processed successfully.")
                        return text
                    else:
                        logging.error("Cohere Chat: 'text' field is empty in response content.")
                        return "Cohere Chat: 'text' field is empty in response content."
                else:
                    logging.error("Cohere Chat: 'content' field is not a list or is empty.")
                    return "Cohere Chat: 'content' field is not a list or is empty."
            else:
                logging.error("Cohere Chat: 'message' or 'content' field not found in API response.")
                return "Cohere Chat: 'message' or 'content' field not found in API response."

        elif response.status_code == 401:
            error_message = "Cohere Chat: Unauthorized - Invalid API key"
            logging.warning(error_message)
            print(error_message)
            return error_message

        else:
            logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}")
            print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}")
            return f"Cohere Chat: API request failed: {response.text}"

    except Exception as e:
        logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True)
        return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}"


# https://console.groq.com/docs/quickstart
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    logging.debug("Groq: Summarization process starting...")
    try:
        logging.debug("Groq: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            groq_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                groq_api_key = api_key
                logging.info("Groq: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                groq_api_key = loaded_config_data['api_keys'].get('groq')
                if groq_api_key:
                    logging.info("Groq: Using API key from config file")
                else:
                    logging.warning("Groq: No API key found in config file")

        # Final check to ensure we have a valid API key
        if not groq_api_key or not groq_api_key.strip():
            logging.error("Anthropic: No valid API key available")
            # You might want to raise an exception here or handle this case as appropriate for your application
            # For example: raise ValueError("No valid Anthropic API key available")

        logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")

        # Transcript data handling & Validation
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Groq: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("Groq: Using provided string data for summarization")
            data = input_data

        # DEBUG - Debug logging to identify sent data
        logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
        logging.debug(f"Groq: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Groq: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Groq: Invalid input data format")

        # Set the model to be used
        groq_model = loaded_config_data['models']['groq']

        if temp is None:
            temp = 0.2
        temp = float(temp)
        if system_message is None:
            system_message = "You are a helpful AI assistant who does whatever the user requests."

        headers = {
            'Authorization': f'Bearer {groq_api_key}',
            'Content-Type': 'application/json'
        }

        groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        logging.debug("groq: Prompt being sent is {groq_prompt}")

        data = {
            "messages": [
                {
                    "role": "system",
                    "content": system_message,
                },
                {
                    "role": "user",
                    "content": groq_prompt,
                }
            ],
            "model": groq_model,
            "temperature": temp
        }

        logging.debug("groq: Submitting request to API endpoint")
        print("groq: Submitting request to API endpoint")
        response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)

        response_data = response.json()
        logging.debug(f"Full API response data: {response_data}")

        if response.status_code == 200:
            logging.debug(response_data)
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("groq: Chat request successful")
                print("Groq: Chat request successful.")
                return summary
            else:
                logging.error("Groq(chat): Expected data not found in API response.")
                return "Groq(chat): Expected data not found in API response."
        else:
            logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
            return f"groq: API request failed: {response.text}"

    except Exception as e:
        logging.error("groq: Error in processing: %s", str(e))
        return f"groq: Error occurred while processing summary with groq: {str(e)}"


def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    import requests
    import json
    global openrouter_model, openrouter_api_key
    try:
        logging.debug("OpenRouter: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            openrouter_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                openrouter_api_key = api_key
                logging.info("OpenRouter: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
                if openrouter_api_key:
                    logging.info("OpenRouter: Using API key from config file")
                else:
                    logging.warning("OpenRouter: No API key found in config file")

        # Model Selection validation
        logging.debug("OpenRouter: Validating model selection")
        loaded_config_data = load_and_log_configs()
        openrouter_model = loaded_config_data['models']['openrouter']
        logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")

        # Final check to ensure we have a valid API key
        if not openrouter_api_key or not openrouter_api_key.strip():
            logging.error("OpenRouter: No valid API key available")
            raise ValueError("No valid Anthropic API key available")
    except Exception as e:
        logging.error("OpenRouter: Error in processing: %s", str(e))
        return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"

    logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")

    logging.debug(f"OpenRouter: Using Model: {openrouter_model}")

    if isinstance(input_data, str) and os.path.isfile(input_data):
        logging.debug("OpenRouter: Loading json data for summarization")
        with open(input_data, 'r') as file:
            data = json.load(file)
    else:
        logging.debug("OpenRouter: Using provided string data for summarization")
        data = input_data

    # DEBUG - Debug logging to identify sent data
    logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
    logging.debug(f"OpenRouter: Type of data: {type(data)}")

    if isinstance(data, dict) and 'summary' in data:
        # If the loaded data is a dictionary and already contains a summary, return it
        logging.debug("OpenRouter: Summary already exists in the loaded data")
        return data['summary']

    # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
    if isinstance(data, list):
        segments = data
        text = extract_text_from_segments(segments)
    elif isinstance(data, str):
        text = data
    else:
        raise ValueError("OpenRouter: Invalid input data format")

    openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
    logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")

    if temp is None:
        temp = 0.1
    temp = float(temp)
    if system_message is None:
        system_message = "You are a helpful AI assistant who does whatever the user requests."

    try:
        logging.debug("OpenRouter: Submitting request to API endpoint")
        print("OpenRouter: Submitting request to API endpoint")
        response = requests.post(
            url="https://openrouter.ai/api/v1/chat/completions",
            headers={
                "Authorization": f"Bearer {openrouter_api_key}",
            },
            data=json.dumps({
                "model": openrouter_model,
                "messages": [
                    {"role": "system", "content": system_message},
                    {"role": "user", "content": openrouter_prompt}
                ],
                "temperature": temp
            })
        )

        response_data = response.json()
        logging.debug("Full API Response Data: %s", response_data)

        if response.status_code == 200:
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("openrouter: Chat request successful")
                print("openrouter: Chat request successful.")
                return summary
            else:
                logging.error("openrouter: Expected data not found in API response.")
                return "openrouter: Expected data not found in API response."
        else:
            logging.error(f"openrouter:  API request failed with status code {response.status_code}: {response.text}")
            return f"openrouter: API request failed: {response.text}"
    except Exception as e:
        logging.error("openrouter: Error in processing: %s", str(e))
        return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"


def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None):
    logging.debug(f"huggingface Chat: Chat request process starting...")
    try:
        huggingface_api_key = os.getenv('HF_TOKEN')
        if huggingface_api_key is None or huggingface_api_key.strip() == "":
            logging.error("HuggingFace Chat: API key not found or is empty")
            return "HuggingFace Chat: API Key Not Provided/Found in Config file or is empty"
        if huggingface_api_key:
            logging.info("HuggingFace Chat: Using API key from ENV")
        headers = {
            "Authorization": f"Bearer {huggingface_api_key}"
        }

        # Setup model
        huggingface_model = "meta-llama/Llama-3.1-70B-Instruct"

        API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}/v1/chat/completions"
        if temp is None:
            temp = 1.0
        temp = float(temp)
        huggingface_prompt = f"{custom_prompt_arg}\n\n\n{input_data}"
        logging.debug(f"HuggingFace chat: Prompt being sent is {huggingface_prompt}")
        data = {
            "model": f"{huggingface_model}",
            "messages": [{"role": "user", "content": f"{huggingface_prompt}"}],
            "max_tokens": 4096,
            "stream": False,
            "temperature": temp
        }

        logging.debug("HuggingFace Chat: Submitting request...")
        response = requests.post(API_URL, headers=headers, json=data)
        logging.debug(f"Full API response data: {response.text}")

        if response.status_code == 200:
            response_json = response.json()
            if "choices" in response_json and len(response_json["choices"]) > 0:
                generated_text = response_json["choices"][0]["message"]["content"]
                logging.debug("HuggingFace Chat: Chat request successful")
                print("HuggingFace Chat: Chat request successful.")
                return generated_text.strip()
            else:
                logging.error("HuggingFace Chat: No generated text in the response")
                return "HuggingFace Chat: No generated text in the response"
        else:
            logging.error(
                f"HuggingFace Chat: Chat request failed with status code {response.status_code}: {response.text}")
            return f"HuggingFace Chat: Failed to process chat request, status code {response.status_code}: {response.text}"
    except Exception as e:
        logging.error(f"HuggingFace Chat: Error in processing: {str(e)}")
        print(f"HuggingFace Chat: Error occurred while processing chat request with huggingface: {str(e)}")
        return None


def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=0.1, system_message="You are a helpful AI assistant who does whatever the user requests.", max_retries=3, retry_delay=5):
    """
    Interacts with the DeepSeek API to generate summaries based on input data.

    Parameters:
        api_key (str): DeepSeek API key. If not provided, the key from the config is used.
        input_data (str or list): The data to summarize. Can be a string or a list of segments.
        custom_prompt_arg (str): Custom prompt to append to the input data.
        temp (float, optional): Temperature setting for the model. Defaults to 0.1.
        system_message (str, optional): System prompt for the assistant. Defaults to a helpful assistant message.
        max_retries (int, optional): Maximum number of retries for failed API calls. Defaults to 3.
        retry_delay (int, optional): Delay between retries in seconds. Defaults to 5.

    Returns:
        str: The summary generated by DeepSeek or an error message.
    """
    logging.debug("DeepSeek: Summarization process starting...")
    try:
        logging.debug("DeepSeek: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("DeepSeek: Failed to load configuration data")
            return "DeepSeek: Failed to load configuration data."

        # Prioritize the API key passed as a parameter
        if api_key and api_key.strip():
            deepseek_api_key = api_key.strip()
            logging.info("DeepSeek: Using API key provided as parameter")
        else:
            # If no parameter is provided, use the key from the config
            deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
            if deepseek_api_key and deepseek_api_key.strip():
                deepseek_api_key = deepseek_api_key.strip()
                logging.info("DeepSeek: Using API key from config file")
            else:
                logging.error("DeepSeek: No valid API key available")
                return "DeepSeek: API Key Not Provided/Found in Config file or is empty"

        logging.debug("DeepSeek: Using API Key")

        # Input data handling
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("DeepSeek: Loading JSON data for summarization")
            with open(input_data, 'r', encoding='utf-8') as file:
                try:
                    data = json.load(file)
                except json.JSONDecodeError as e:
                    logging.error(f"DeepSeek: JSON decoding failed: {str(e)}")
                    return f"DeepSeek: Invalid JSON file. Error: {str(e)}"
        else:
            logging.debug("DeepSeek: Using provided string data for summarization")
            data = input_data

        # DEBUG - Debug logging to identify sent data
        if isinstance(data, str):
            snipped_data = data[:500] + "..." if len(data) > 500 else data
            logging.debug(f"DeepSeek: Loaded data (snipped to first 500 chars): {snipped_data}")
        elif isinstance(data, list):
            snipped_data = json.dumps(data[:2], indent=2) + "..." if len(data) > 2 else json.dumps(data, indent=2)
            logging.debug(f"DeepSeek: Loaded data (snipped to first 2 segments): {snipped_data}")
        else:
            logging.debug(f"DeepSeek: Loaded data: {data}")

        logging.debug(f"DeepSeek: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("DeepSeek: Summary already exists in the loaded data")
            return data['summary']

        # Text extraction
        if isinstance(data, list):
            segments = data
            try:
                text = extract_text_from_segments(segments)
                logging.debug("DeepSeek: Extracted text from segments")
            except Exception as e:
                logging.error(f"DeepSeek: Error extracting text from segments: {str(e)}")
                return f"DeepSeek: Error extracting text from segments: {str(e)}"
        elif isinstance(data, str):
            text = data
            logging.debug("DeepSeek: Using string data directly")
        else:
            raise ValueError("DeepSeek: Invalid input data format")

        # Retrieve the model from config if not provided
        deepseek_model = loaded_config_data['models'].get('deepseek', "deepseek-chat")
        logging.debug(f"DeepSeek: Using model: {deepseek_model}")

        # Ensure temperature is a float within acceptable range
        try:
            temp = float(temp)
            if not (0.0 <= temp <= 1.0):
                logging.warning("DeepSeek: Temperature out of bounds (0.0 - 1.0). Setting to default 0.1")
                temp = 0.1
        except (ValueError, TypeError):
            logging.warning("DeepSeek: Invalid temperature value. Setting to default 0.1")
            temp = 0.1

        # Set default system prompt if not provided
        if system_message is not None:
            logging.debug("DeepSeek: Using provided system prompt")
        else:
            system_message = "You are a helpful AI assistant who does whatever the user requests."
            logging.debug("DeepSeek: Using default system prompt")

        headers = {
            'Authorization': f'Bearer {deepseek_api_key}',
            'Content-Type': 'application/json'
        }

        logging.debug("DeepSeek: Preparing data and prompt for submittal")
        deepseek_prompt = f"{text}\n\n\n\n{custom_prompt_arg}"
        payload = {
            "model": deepseek_model,
            "messages": [
                {"role": "system", "content": system_message},
                {"role": "user", "content": deepseek_prompt}
            ],
            "stream": False,
            "temperature": temp
        }

        logging.debug("DeepSeek: Posting request to API")
        for attempt in range(1, max_retries + 1):
            try:
                response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=payload, timeout=30)
                logging.debug(f"DeepSeek: Full API response: {response.status_code} - {response.text}")

                if response.status_code == 200:
                    response_data = response.json()
                    logging.debug(f"DeepSeek: Response JSON: {json.dumps(response_data, indent=2)}")

                    # Adjust parsing based on actual API response structure
                    if 'choices' in response_data:
                        if len(response_data['choices']) > 0:
                            summary = response_data['choices'][0]['message']['content'].strip()
                            logging.debug("DeepSeek: Chat request successful")
                            return summary
                        else:
                            logging.error("DeepSeek: 'choices' key is empty in response")
                    else:
                        logging.error("DeepSeek: 'choices' key missing in response")
                    return "DeepSeek: Unexpected response format from API."
                elif 500 <= response.status_code < 600:
                    logging.error(f"DeepSeek: Server error (status code {response.status_code}). Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
                else:
                    logging.error(f"DeepSeek: Request failed with status code {response.status_code}. Response: {response.text}")
                    return f"DeepSeek: Failed to process chat request. Status code: {response.status_code}"

            except requests.Timeout:
                logging.error(f"DeepSeek: Request timed out. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
            except requests.RequestException as e:
                logging.error(f"DeepSeek: Request exception occurred: {str(e)}. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")

            if attempt < max_retries:
                time.sleep(retry_delay)
            else:
                logging.error("DeepSeek: Max retries reached. Failed to get a successful response.")
                return "DeepSeek: Failed to get a successful response from API after multiple attempts."

    except Exception as e:
        logging.error(f"DeepSeek: Unexpected error in processing: {str(e)}", exc_info=True)
        return f"DeepSeek: Error occurred while processing chat request: {str(e)}"




def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    logging.debug("Mistral: Chat request made")
    try:
        logging.debug("Mistral: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            mistral_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                mistral_api_key = api_key
                logging.info("Mistral: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                mistral_api_key = loaded_config_data['api_keys'].get('mistral')
                if mistral_api_key:
                    logging.info("Mistral: Using API key from config file")
                else:
                    logging.warning("Mistral: No API key found in config file")

        # Final check to ensure we have a valid API key
        if not mistral_api_key or not mistral_api_key.strip():
            logging.error("Mistral: No valid API key available")
            return "Mistral: No valid API key available"

        logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")

        logging.debug("Mistral: Using provided string data")
        data = input_data

        # Text extraction
        if isinstance(input_data, list):
            text = extract_text_from_segments(input_data)
        elif isinstance(input_data, str):
            text = input_data
        else:
            raise ValueError("Mistral: Invalid input data format")

        mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest")

        temp = float(temp) if temp is not None else 0.2
        if system_message is None:
            system_message = "You are a helpful AI assistant who does whatever the user requests."

        headers = {
            'Authorization': f'Bearer {mistral_api_key}',
            'Content-Type': 'application/json'
        }

        logging.debug(
            f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
        logging.debug("Mistral: Preparing data + prompt for submittal")
        mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
        data = {
            "model": mistral_model,
            "messages": [
                {"role": "system",
                 "content": system_message},
                {"role": "user",
                "content": mistral_prompt}
            ],
            "temperature": temp,
            "top_p": 1,
            "max_tokens": 4096,
            "stream": False,
            "safe_prompt": False
        }

        logging.debug("Mistral: Posting request")
        response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
        logging.debug(f"Full API response data: {response}")
        if response.status_code == 200:
            response_data = response.json()
            logging.debug(response_data)
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("Mistral: request successful")
                return summary
            else:
                logging.warning("Mistral: Chat response not found in the response data")
                return "Mistral: Chat response not available"
        else:
            logging.error(f"Mistral: Chat request failed with status code {response.status_code}")
            logging.error(f"Mistral: Error response: {response.text}")
            return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}"
    except Exception as e:
        logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
        return f"Mistral: Error occurred while processing Chat: {str(e)}"



# Stashed in here since OpenAI usage.... #FIXME
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
# def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
#     loaded_config_data = load_and_log_configs()
#     llm_model = loaded_config_data['models']['vllm']
#     # API key validation
#     if api_key is None:
#         logging.info("vLLM: API key not provided as parameter")
#         logging.info("vLLM: Attempting to use API key from config file")
#         api_key = loaded_config_data['api_keys']['llama']
#
#     if api_key is None or api_key.strip() == "":
#         logging.info("vLLM: API key not found or is empty")
#     vllm_client = OpenAI(
#         base_url=vllm_api_url,
#         api_key=custom_prompt_input
#     )
#
#     if isinstance(input_data, str) and os.path.isfile(input_data):
#         logging.debug("vLLM: Loading json data for summarization")
#         with open(input_data, 'r') as file:
#             data = json.load(file)
#     else:
#         logging.debug("vLLM: Using provided string data for summarization")
#         data = input_data
#
#     logging.debug(f"vLLM: Loaded data: {data}")
#     logging.debug(f"vLLM: Type of data: {type(data)}")
#
#     if isinstance(data, dict) and 'summary' in data:
#         # If the loaded data is a dictionary and already contains a summary, return it
#         logging.debug("vLLM: Summary already exists in the loaded data")
#         return data['summary']
#
#     # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
#     if isinstance(data, list):
#         segments = data
#         text = extract_text_from_segments(segments)
#     elif isinstance(data, str):
#         text = data
#     else:
#         raise ValueError("Invalid input data format")
#
#
#     custom_prompt = custom_prompt_input
#
#     completion = client.chat.completions.create(
#         model=llm_model,
#         messages=[
#             {"role": "system", "content": f"{system_prompt}"},
#             {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
#         ]
#     )
#     vllm_summary = completion.choices[0].message.content
#     return vllm_summary



#
#
#######################################################################################################################