Spaces:
Sleeping
Sleeping
# RAG_Library_2.py | |
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline. | |
# | |
# Import necessary modules and functions | |
import configparser | |
import logging | |
import os | |
from typing import Dict, Any, List, Optional | |
# Local Imports | |
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client | |
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article | |
from App_Function_Libraries.DB.DB_Manager import search_db, fetch_keywords_for_media | |
from App_Function_Libraries.Utils.Utils import load_comprehensive_config | |
# | |
# 3rd-Party Imports | |
import openai | |
# | |
######################################################################################################################## | |
# | |
# Functions: | |
# Initialize OpenAI client (adjust this based on your API key management) | |
openai.api_key = "your-openai-api-key" | |
# Get the directory of the current script | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
# Construct the path to the config file | |
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt') | |
# Read the config file | |
config = configparser.ConfigParser() | |
# Read the configuration file | |
config.read('config.txt') | |
# RAG pipeline function for web scraping | |
# def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]: | |
# try: | |
# # Extract content | |
# try: | |
# article_data = scrape_article(url) | |
# content = article_data['content'] | |
# title = article_data['title'] | |
# except Exception as e: | |
# logging.error(f"Error scraping article: {str(e)}") | |
# return {"error": "Failed to scrape article", "details": str(e)} | |
# | |
# # Store the article in the database and get the media_id | |
# try: | |
# media_id = add_media_to_database(url, title, 'article', content) | |
# except Exception as e: | |
# logging.error(f"Error adding article to database: {str(e)}") | |
# return {"error": "Failed to store article in database", "details": str(e)} | |
# | |
# # Process and store content | |
# collection_name = f"article_{media_id}" | |
# try: | |
# # Assuming you have a database object available, let's call it 'db' | |
# db = get_database_connection() | |
# | |
# process_and_store_content( | |
# database=db, | |
# content=content, | |
# collection_name=collection_name, | |
# media_id=media_id, | |
# file_name=title, | |
# create_embeddings=True, | |
# create_contextualized=True, | |
# api_name=api_choice | |
# ) | |
# except Exception as e: | |
# logging.error(f"Error processing and storing content: {str(e)}") | |
# return {"error": "Failed to process and store content", "details": str(e)} | |
# | |
# # Perform searches | |
# try: | |
# vector_results = vector_search(collection_name, query, k=5) | |
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=5) | |
# except Exception as e: | |
# logging.error(f"Error performing searches: {str(e)}") | |
# return {"error": "Failed to perform searches", "details": str(e)} | |
# | |
# # Combine results with error handling for missing 'content' key | |
# all_results = [] | |
# for result in vector_results + fts_results: | |
# if isinstance(result, dict) and 'content' in result: | |
# all_results.append(result['content']) | |
# else: | |
# logging.warning(f"Unexpected result format: {result}") | |
# all_results.append(str(result)) | |
# | |
# context = "\n".join(all_results) | |
# | |
# # Generate answer using the selected API | |
# try: | |
# answer = generate_answer(api_choice, context, query) | |
# except Exception as e: | |
# logging.error(f"Error generating answer: {str(e)}") | |
# return {"error": "Failed to generate answer", "details": str(e)} | |
# | |
# return { | |
# "answer": answer, | |
# "context": context | |
# } | |
# | |
# except Exception as e: | |
# logging.error(f"Unexpected error in rag_pipeline: {str(e)}") | |
# return {"error": "An unexpected error occurred", "details": str(e)} | |
# RAG Search with keyword filtering | |
def enhanced_rag_pipeline(query: str, api_choice: str, keywords: str = None) -> Dict[str, Any]: | |
try: | |
# Load embedding provider from config, or fallback to 'openai' | |
embedding_provider = config.get('Embeddings', 'provider', fallback='openai') | |
# Log the provider used | |
logging.debug(f"Using embedding provider: {embedding_provider}") | |
# Process keywords if provided | |
keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else [] | |
logging.debug(f"enhanced_rag_pipeline - Keywords: {keyword_list}") | |
# Fetch relevant media IDs based on keywords if keywords are provided | |
relevant_media_ids = fetch_relevant_media_ids(keyword_list) if keyword_list else None | |
logging.debug(f"enhanced_rag_pipeline - relevant media IDs: {relevant_media_ids}") | |
# Perform vector search | |
vector_results = perform_vector_search(query, relevant_media_ids) | |
logging.debug(f"enhanced_rag_pipeline - Vector search results: {vector_results}") | |
# Perform full-text search | |
fts_results = perform_full_text_search(query, relevant_media_ids) | |
logging.debug(f"enhanced_rag_pipeline - Full-text search results: {fts_results}") | |
# Combine results | |
all_results = vector_results + fts_results | |
# FIXME - Apply Re-Ranking of results here | |
apply_re_ranking = False | |
if apply_re_ranking: | |
# Implement re-ranking logic here | |
pass | |
# Extract content from results | |
context = "\n".join([result['content'] for result in all_results[:10]]) # Limit to top 10 results | |
logging.debug(f"Context length: {len(context)}") | |
logging.debug(f"Context: {context[:200]}") | |
# Generate answer using the selected API | |
answer = generate_answer(api_choice, context, query) | |
if not all_results: | |
logging.info(f"No results found. Query: {query}, Keywords: {keywords}") | |
return { | |
"answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer, | |
"context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query | |
} | |
return { | |
"answer": answer, | |
"context": context | |
} | |
except Exception as e: | |
logging.error(f"Error in enhanced_rag_pipeline: {str(e)}") | |
return { | |
"answer": "An error occurred while processing your request.", | |
"context": "" | |
} | |
def generate_answer(api_choice: str, context: str, query: str) -> str: | |
logging.debug("Entering generate_answer function") | |
config = load_comprehensive_config() | |
logging.debug(f"Config sections: {config.sections()}") | |
prompt = f"Context: {context}\n\nQuestion: {query}" | |
if api_choice == "OpenAI": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai | |
return summarize_with_openai(config['API']['openai_api_key'], prompt, "") | |
elif api_choice == "Anthropic": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic | |
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "") | |
elif api_choice == "Cohere": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere | |
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "") | |
elif api_choice == "Groq": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq | |
return summarize_with_groq(config['API']['groq_api_key'], prompt, "") | |
elif api_choice == "OpenRouter": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter | |
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "") | |
elif api_choice == "HuggingFace": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface | |
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "") | |
elif api_choice == "DeepSeek": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek | |
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "") | |
elif api_choice == "Mistral": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral | |
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "") | |
elif api_choice == "Local-LLM": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm | |
return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "") | |
elif api_choice == "Llama.cpp": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama | |
return summarize_with_llama(config['API']['llama_api_key'], prompt, "") | |
elif api_choice == "Kobold": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold | |
return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "") | |
elif api_choice == "Ooba": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga | |
return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "") | |
elif api_choice == "TabbyAPI": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi | |
return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "") | |
elif api_choice == "vLLM": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm | |
return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "") | |
elif api_choice == "ollama": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama | |
return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "") | |
else: | |
raise ValueError(f"Unsupported API choice: {api_choice}") | |
def perform_vector_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]: | |
all_collections = chroma_client.list_collections() | |
vector_results = [] | |
for collection in all_collections: | |
collection_results = vector_search(collection.name, query, k=5) | |
filtered_results = [ | |
result for result in collection_results | |
if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids | |
] | |
vector_results.extend(filtered_results) | |
return vector_results | |
def perform_full_text_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]: | |
fts_results = search_db(query, ["content"], "", page=1, results_per_page=5) | |
filtered_fts_results = [ | |
{ | |
"content": result['content'], | |
"metadata": {"media_id": result['id']} | |
} | |
for result in fts_results | |
if relevant_media_ids is None or result['id'] in relevant_media_ids | |
] | |
return filtered_fts_results | |
def fetch_relevant_media_ids(keywords: List[str]) -> List[int]: | |
relevant_ids = set() | |
try: | |
for keyword in keywords: | |
media_ids = fetch_keywords_for_media(keyword) | |
relevant_ids.update(media_ids) | |
except Exception as e: | |
logging.error(f"Error fetching relevant media IDs: {str(e)}") | |
return list(relevant_ids) | |
def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]: | |
if not keywords: | |
return results | |
filtered_results = [] | |
for result in results: | |
try: | |
metadata = result.get('metadata', {}) | |
if metadata is None: | |
logging.warning(f"No metadata found for result: {result}") | |
continue | |
if not isinstance(metadata, dict): | |
logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.") | |
continue | |
media_id = metadata.get('media_id') | |
if media_id is None: | |
logging.warning(f"No media_id found in metadata: {metadata}") | |
continue | |
media_keywords = fetch_keywords_for_media(media_id) | |
if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords): | |
filtered_results.append(result) | |
except Exception as e: | |
logging.error(f"Error processing result: {result}. Error: {str(e)}") | |
return filtered_results | |
# FIXME: to be implememted | |
def extract_media_id_from_result(result: str) -> Optional[int]: | |
# Implement this function based on how you store the media_id in your results | |
# For example, if it's stored at the beginning of each result: | |
try: | |
return int(result.split('_')[0]) | |
except (IndexError, ValueError): | |
logging.error(f"Failed to extract media_id from result: {result}") | |
return None | |
# | |
# | |
######################################################################################################################## | |
# Function to preprocess and store all existing content in the database | |
# def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"): | |
# unprocessed_media = get_unprocessed_media() | |
# total_media = len(unprocessed_media) | |
# | |
# for index, row in enumerate(unprocessed_media, 1): | |
# media_id, content, media_type, file_name = row | |
# collection_name = f"{media_type}_{media_id}" | |
# | |
# logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}") | |
# | |
# try: | |
# process_and_store_content( | |
# database=database, | |
# content=content, | |
# collection_name=collection_name, | |
# media_id=media_id, | |
# file_name=file_name or f"{media_type}_{media_id}", | |
# create_embeddings=True, | |
# create_contextualized=create_contextualized, | |
# api_name=api_name | |
# ) | |
# | |
# # Mark the media as processed in the database | |
# mark_media_as_processed(database, media_id) | |
# | |
# logger.info(f"Successfully processed media ID {media_id}") | |
# except Exception as e: | |
# logger.error(f"Error processing media ID {media_id}: {str(e)}") | |
# | |
# logger.info("Finished preprocessing all unprocessed content") | |
############################################################################################################ | |
# | |
# ElasticSearch Retriever | |
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch | |
# | |
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query | |
# | |
# End of RAG_Library_2.py | |
############################################################################################################ | |