Spaces:
Running
Running
# Gradio_Shared.py | |
# Gradio UI functions that are shared across multiple tabs | |
# | |
# Imports | |
import logging | |
import sqlite3 | |
import traceback | |
from functools import wraps | |
from typing import List, Tuple | |
# | |
# External Imports | |
import gradio as gr | |
# | |
# Local Imports | |
from App_Function_Libraries.DB.DB_Manager import list_prompts, db, search_and_display, fetch_prompt_details | |
from App_Function_Libraries.DB.SQLite_DB import DatabaseError | |
from App_Function_Libraries.Utils.Utils import format_transcription | |
# | |
############################################################################################################## | |
# | |
# Functions: | |
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3", | |
"distil-large-v2", "distil-medium.en", "distil-small.en"] | |
# Sample data | |
prompts_category_1 = [ | |
"What are the key points discussed in the video?", | |
"Summarize the main arguments made by the speaker.", | |
"Describe the conclusions of the study presented." | |
] | |
prompts_category_2 = [ | |
"How does the proposed solution address the problem?", | |
"What are the implications of the findings?", | |
"Can you explain the theory behind the observed phenomenon?" | |
] | |
all_prompts = prompts_category_1 + prompts_category_2 | |
#FIXME - SQL Functions that need to be addressed/added to DB manager | |
def search_media(query, fields, keyword, page): | |
try: | |
results = search_and_display(query, fields, keyword, page) | |
return results | |
except Exception as e: | |
logger = logging.getLogger() | |
logger.error(f"Error searching media: {e}") | |
return str(e) | |
def fetch_items_by_title_or_url(search_query: str, search_type: str): | |
try: | |
with db.get_connection() as conn: | |
cursor = conn.cursor() | |
if search_type == 'Title': | |
cursor.execute("SELECT id, title, url FROM Media WHERE title LIKE ?", (f'%{search_query}%',)) | |
elif search_type == 'URL': | |
cursor.execute("SELECT id, title, url FROM Media WHERE url LIKE ?", (f'%{search_query}%',)) | |
results = cursor.fetchall() | |
return results | |
except sqlite3.Error as e: | |
raise DatabaseError(f"Error fetching items by {search_type}: {e}") | |
def fetch_items_by_keyword(search_query: str): | |
try: | |
with db.get_connection() as conn: | |
cursor = conn.cursor() | |
cursor.execute(""" | |
SELECT m.id, m.title, m.url | |
FROM Media m | |
JOIN MediaKeywords mk ON m.id = mk.media_id | |
JOIN Keywords k ON mk.keyword_id = k.id | |
WHERE k.keyword LIKE ? | |
""", (f'%{search_query}%',)) | |
results = cursor.fetchall() | |
return results | |
except sqlite3.Error as e: | |
raise DatabaseError(f"Error fetching items by keyword: {e}") | |
# FIXME - Raw SQL not using DB_Manager... | |
def fetch_items_by_content(search_query: str): | |
try: | |
with db.get_connection() as conn: | |
cursor = conn.cursor() | |
cursor.execute("SELECT id, title, url FROM Media WHERE content LIKE ?", (f'%{search_query}%',)) | |
results = cursor.fetchall() | |
return results | |
except sqlite3.Error as e: | |
raise DatabaseError(f"Error fetching items by content: {e}") | |
# FIXME - RAW SQL not using DB_Manager... | |
def fetch_item_details_single(media_id: int): | |
try: | |
with db.get_connection() as conn: | |
cursor = conn.cursor() | |
cursor.execute(""" | |
SELECT prompt, summary | |
FROM MediaModifications | |
WHERE media_id = ? | |
ORDER BY modification_date DESC | |
LIMIT 1 | |
""", (media_id,)) | |
prompt_summary_result = cursor.fetchone() | |
cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,)) | |
content_result = cursor.fetchone() | |
prompt = prompt_summary_result[0] if prompt_summary_result else "" | |
summary = prompt_summary_result[1] if prompt_summary_result else "" | |
content = content_result[0] if content_result else "" | |
return prompt, summary, content | |
except sqlite3.Error as e: | |
raise Exception(f"Error fetching item details: {e}") | |
# FIXME - RAW SQL not using DB_Manager... | |
def fetch_item_details(media_id: int): | |
try: | |
with db.get_connection() as conn: | |
cursor = conn.cursor() | |
cursor.execute(""" | |
SELECT prompt, summary | |
FROM MediaModifications | |
WHERE media_id = ? | |
ORDER BY modification_date DESC | |
LIMIT 1 | |
""", (media_id,)) | |
prompt_summary_result = cursor.fetchone() | |
cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,)) | |
content_result = cursor.fetchone() | |
prompt = prompt_summary_result[0] if prompt_summary_result else "" | |
summary = prompt_summary_result[1] if prompt_summary_result else "" | |
content = content_result[0] if content_result else "" | |
return content, prompt, summary | |
except sqlite3.Error as e: | |
logging.error(f"Error fetching item details: {e}") | |
return "", "", "" # Return empty strings if there's an error | |
# Handle prompt selection | |
def handle_prompt_selection(prompt): | |
return f"You selected: {prompt}" | |
def update_user_prompt(preset_name): | |
details = fetch_prompt_details(preset_name) | |
if details: | |
# Return a dictionary with all details | |
return { | |
"title": details[0], | |
"author": details[1], | |
"details": details[2], | |
"system_prompt": details[3], | |
"user_prompt": details[4] if len(details) > 3 else "", | |
} | |
return {"title": "", "details": "", "system_prompt": "", "user_prompt": "", "author": ""} | |
def browse_items(search_query, search_type): | |
if search_type == 'Keyword': | |
results = fetch_items_by_keyword(search_query) | |
elif search_type == 'Content': | |
results = fetch_items_by_content(search_query) | |
else: | |
results = fetch_items_by_title_or_url(search_query, search_type) | |
return results | |
def update_dropdown(search_query, search_type): | |
results = browse_items(search_query, search_type) | |
item_options = [f"{item[1]} ({item[2]})" for item in results] | |
new_item_mapping = {f"{item[1]} ({item[2]})": item[0] for item in results} | |
print(f"Debug - Update Dropdown - New Item Mapping: {new_item_mapping}") | |
return gr.update(choices=item_options), new_item_mapping | |
def get_media_id(selected_item, item_mapping): | |
return item_mapping.get(selected_item) | |
def update_detailed_view(item, item_mapping): | |
# Function to update the detailed view based on selected item | |
if item: | |
item_id = item_mapping.get(item) | |
if item_id: | |
content, prompt, summary = fetch_item_details(item_id) | |
if content or prompt or summary: | |
details_html = "<h4>Details:</h4>" | |
if prompt: | |
formatted_prompt = format_transcription(prompt) | |
details_html += f"<h4>Prompt:</h4>{formatted_prompt}</p>" | |
if summary: | |
formatted_summary = format_transcription(summary) | |
details_html += f"<h4>Summary:</h4>{formatted_summary}</p>" | |
# Format the transcription content for better readability | |
formatted_content = format_transcription(content) | |
#content_html = f"<h4>Transcription:</h4><div style='white-space: pre-wrap;'>{content}</div>" | |
content_html = f"<h4>Transcription:</h4><div style='white-space: pre-wrap;'>{formatted_content}</div>" | |
return details_html, content_html | |
else: | |
return "No details available.", "No details available." | |
else: | |
return "No item selected", "No item selected" | |
else: | |
return "No item selected", "No item selected" | |
def format_content(content): | |
# Format content using markdown | |
formatted_content = f"```\n{content}\n```" | |
return formatted_content | |
def display_prompt_details(selected_prompt): | |
if selected_prompt: | |
prompts = update_user_prompt(selected_prompt) | |
if prompts["title"]: # Check if we have any details | |
details_str = f"<h4>Details:</h4><p>{prompts['details']}</p>" | |
system_str = f"<h4>System:</h4><p>{prompts['system_prompt']}</p>" | |
user_str = f"<h4>User:</h4><p>{prompts['user_prompt']}</p>" if prompts['user_prompt'] else "" | |
return details_str + system_str + user_str | |
return "No details available." | |
def search_media_database(query: str) -> List[Tuple[int, str, str]]: | |
return browse_items(query, 'Title') | |
def load_media_content(media_id: int) -> dict: | |
try: | |
print(f"Debug - Load Media Content - Media ID: {media_id}") | |
item_details = fetch_item_details(media_id) | |
print(f"Debug - Load Media Content - Item Details: \n\n{item_details}\n\n\n\n") | |
if isinstance(item_details, tuple) and len(item_details) == 3: | |
content, prompt, summary = item_details | |
else: | |
print(f"Debug - Load Media Content - Unexpected item_details format: \n\n{item_details}\n\n\n\n") | |
content, prompt, summary = "", "", "" | |
return { | |
"content": content or "No content available", | |
"prompt": prompt or "No prompt available", | |
"summary": summary or "No summary available" | |
} | |
except Exception as e: | |
print(f"Debug - Load Media Content - Error: {str(e)}") | |
return {"content": "", "prompt": "", "summary": ""} | |
def error_handler(func): | |
def wrapper(*args, **kwargs): | |
try: | |
return func(*args, **kwargs) | |
except Exception as e: | |
error_message = f"Error in {func.__name__}: {str(e)}" | |
logging.error(f"{error_message}\n{traceback.format_exc()}") | |
return {"error": error_message, "details": traceback.format_exc()} | |
return wrapper | |
def create_chunking_inputs(): | |
chunk_text_by_words_checkbox = gr.Checkbox(label="Chunk Text by Words", value=False, visible=True) | |
max_words_input = gr.Number(label="Max Words", value=300, precision=0, visible=True) | |
chunk_text_by_sentences_checkbox = gr.Checkbox(label="Chunk Text by Sentences", value=False, visible=True) | |
max_sentences_input = gr.Number(label="Max Sentences", value=10, precision=0, visible=True) | |
chunk_text_by_paragraphs_checkbox = gr.Checkbox(label="Chunk Text by Paragraphs", value=False, visible=True) | |
max_paragraphs_input = gr.Number(label="Max Paragraphs", value=5, precision=0, visible=True) | |
chunk_text_by_tokens_checkbox = gr.Checkbox(label="Chunk Text by Tokens", value=False, visible=True) | |
max_tokens_input = gr.Number(label="Max Tokens", value=1000, precision=0, visible=True) | |
gr_semantic_chunk_long_file = gr.Checkbox(label="Semantic Chunking by Sentence similarity", value=False, visible=True) | |
gr_semantic_chunk_long_file_size = gr.Number(label="Max Chunk Size", value=2000, visible=True) | |
gr_semantic_chunk_long_file_overlap = gr.Number(label="Max Chunk Overlap Size", value=100, visible=True) | |
return [chunk_text_by_words_checkbox, max_words_input, chunk_text_by_sentences_checkbox, max_sentences_input, | |
chunk_text_by_paragraphs_checkbox, max_paragraphs_input, chunk_text_by_tokens_checkbox, max_tokens_input] | |