tldw / App_Function_Libraries /Web_Scraping /Article_Extractor_Lib.py
oceansweep's picture
Upload 169 files
c5b0bb7 verified
raw
history blame
32.6 kB
# Article_Extractor_Lib.py
#########################################
# Article Extraction Library
# This library is used to handle scraping and extraction of articles from web pages.
#
####################
# Function List
#
# 1. get_page_title(url)
# 2. get_article_text(url)
# 3. get_article_title(article_url_arg)
#
####################
#
# Import necessary libraries
import hashlib
from datetime import datetime
import json
import logging
import os
import tempfile
from typing import Any, Dict, List, Union, Optional, Tuple
#
# 3rd-Party Imports
import asyncio
from urllib.parse import urljoin, urlparse
from xml.dom import minidom
import xml.etree.ElementTree as ET
#
# External Libraries
from bs4 import BeautifulSoup
import pandas as pd
from playwright.async_api import async_playwright
import requests
import trafilatura
#
# Import Local
from App_Function_Libraries.DB.DB_Manager import ingest_article_to_db
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize
#######################################################################################################################
# Function Definitions
#
#################################################################
#
# Scraping-related functions:
def get_page_title(url: str) -> str:
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
title_tag = soup.find('title')
return title_tag.string.strip() if title_tag else "Untitled"
except requests.RequestException as e:
logging.error(f"Error fetching page title: {e}")
return "Untitled"
async def scrape_article(url: str, custom_cookies: Optional[List[Dict[str, Any]]] = None) -> Dict[str, Any]:
async def fetch_html(url: str) -> str:
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
context = await browser.new_context(
user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
)
if custom_cookies:
await context.add_cookies(custom_cookies)
page = await context.new_page()
await page.goto(url)
await page.wait_for_load_state("networkidle")
content = await page.content()
await browser.close()
return content
def extract_article_data(html: str, url: str) -> dict:
# FIXME - Add option for extracting comments/tables/images
downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False)
metadata = trafilatura.extract_metadata(html)
result = {
'title': 'N/A',
'author': 'N/A',
'content': '',
'date': 'N/A',
'url': url,
'extraction_successful': False
}
if downloaded:
# Add metadata to content
result['content'] = ContentMetadataHandler.format_content_with_metadata(
url=url,
content=downloaded,
pipeline="Trafilatura",
additional_metadata={
"extracted_date": metadata.date if metadata and metadata.date else 'N/A',
"author": metadata.author if metadata and metadata.author else 'N/A'
}
)
result['extraction_successful'] = True
if metadata:
result.update({
'title': metadata.title if metadata.title else 'N/A',
'author': metadata.author if metadata.author else 'N/A',
'date': metadata.date if metadata.date else 'N/A'
})
else:
logging.warning("Metadata extraction failed.")
if not downloaded:
logging.warning("Content extraction failed.")
return result
def convert_html_to_markdown(html: str) -> str:
soup = BeautifulSoup(html, 'html.parser')
for para in soup.find_all('p'):
# Add a newline at the end of each paragraph for markdown separation
para.append('\n')
# Use .get_text() with separator to keep paragraph separation
return soup.get_text(separator='\n\n')
html = await fetch_html(url)
article_data = extract_article_data(html, url)
if article_data['extraction_successful']:
article_data['content'] = convert_html_to_markdown(article_data['content'])
return article_data
async def scrape_and_summarize_multiple(
urls: str,
custom_prompt_arg: Optional[str],
api_name: str,
api_key: Optional[str],
keywords: str,
custom_article_titles: Optional[str],
system_message: Optional[str] = None,
summarize_checkbox: bool = False,
custom_cookies: Optional[List[Dict[str, Any]]] = None,
temperature: float = 0.7
) -> List[Dict[str, Any]]:
urls_list = [url.strip() for url in urls.split('\n') if url.strip()]
custom_titles = custom_article_titles.split('\n') if custom_article_titles else []
results = []
errors = []
# Loop over each URL to scrape and optionally summarize
for i, url in enumerate(urls_list):
custom_title = custom_titles[i] if i < len(custom_titles) else None
try:
# Scrape the article
article = await scrape_article(url, custom_cookies=custom_cookies)
if article and article['extraction_successful']:
if custom_title:
article['title'] = custom_title
# If summarization is requested
if summarize_checkbox:
content = article.get('content', '')
if content:
# Prepare prompts
system_message_final = system_message or "Act as a professional summarizer and summarize this article."
article_custom_prompt = custom_prompt_arg or "Act as a professional summarizer and summarize this article."
# Summarize the content using the summarize function
summary = summarize(
input_data=content,
custom_prompt_arg=article_custom_prompt,
api_name=api_name,
api_key=api_key,
temp=temperature,
system_message=system_message_final
)
article['summary'] = summary
logging.info(f"Summary generated for URL {url}")
else:
article['summary'] = "No content available to summarize."
logging.warning(f"No content to summarize for URL {url}")
else:
article['summary'] = None
results.append(article)
else:
error_message = f"Extraction unsuccessful for URL {url}"
errors.append(error_message)
logging.error(error_message)
except Exception as e:
error_message = f"Error processing URL {i + 1} ({url}): {str(e)}"
errors.append(error_message)
logging.error(error_message, exc_info=True)
if errors:
logging.error("\n".join(errors))
if not results:
logging.error("No articles were successfully scraped and summarized/analyzed.")
return []
return results
def scrape_and_no_summarize_then_ingest(url, keywords, custom_article_title):
try:
# Step 1: Scrape the article
article_data = asyncio.run(scrape_article(url))
print(f"Scraped Article Data: {article_data}") # Debugging statement
if not article_data:
return "Failed to scrape the article."
# Use the custom title if provided, otherwise use the scraped title
title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled')
author = article_data.get('author', 'Unknown')
content = article_data.get('content', '')
ingestion_date = datetime.now().strftime('%Y-%m-%d')
print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement
# Step 2: Ingest the article into the database
ingestion_result = ingest_article_to_db(url, title, author, content, keywords, ingestion_date, None, None)
# When displaying content, we might want to strip metadata
display_content = ContentMetadataHandler.strip_metadata(content)
return f"Title: {title}\nAuthor: {author}\nIngestion Result: {ingestion_result}\n\nArticle Contents: {display_content}"
except Exception as e:
logging.error(f"Error processing URL {url}: {str(e)}")
return f"Failed to process URL {url}: {str(e)}"
def scrape_from_filtered_sitemap(sitemap_file: str, filter_function) -> list:
"""
Scrape articles from a sitemap file, applying an additional filter function.
:param sitemap_file: Path to the sitemap file
:param filter_function: A function that takes a URL and returns True if it should be scraped
:return: List of scraped articles
"""
try:
tree = ET.parse(sitemap_file)
root = tree.getroot()
articles = []
for url in root.findall('.//{http://www.sitemaps.org/schemas/sitemap/0.9}loc'):
if filter_function(url.text):
article_data = scrape_article(url.text)
if article_data:
articles.append(article_data)
return articles
except ET.ParseError as e:
logging.error(f"Error parsing sitemap: {e}")
return []
def is_content_page(url: str) -> bool:
"""
Determine if a URL is likely to be a content page.
This is a basic implementation and may need to be adjusted based on the specific website structure.
:param url: The URL to check
:return: True if the URL is likely a content page, False otherwise
"""
#Add more specific checks here based on the website's structure
# Exclude common non-content pages
exclude_patterns = [
'/tag/', '/category/', '/author/', '/search/', '/page/',
'wp-content', 'wp-includes', 'wp-json', 'wp-admin',
'login', 'register', 'cart', 'checkout', 'account',
'.jpg', '.png', '.gif', '.pdf', '.zip'
]
return not any(pattern in url.lower() for pattern in exclude_patterns)
def scrape_and_convert_with_filter(source: str, output_file: str, filter_function=is_content_page, level: int = None):
"""
Scrape articles from a sitemap or by URL level, apply filtering, and convert to a single markdown file.
:param source: URL of the sitemap, base URL for level-based scraping, or path to a local sitemap file
:param output_file: Path to save the output markdown file
:param filter_function: Function to filter URLs (default is is_content_page)
:param level: URL level for scraping (None if using sitemap)
"""
if level is not None:
# Scraping by URL level
articles = scrape_by_url_level(source, level)
articles = [article for article in articles if filter_function(article['url'])]
elif source.startswith('http'):
# Scraping from online sitemap
articles = scrape_from_sitemap(source)
articles = [article for article in articles if filter_function(article['url'])]
else:
# Scraping from local sitemap file
articles = scrape_from_filtered_sitemap(source, filter_function)
articles = [article for article in articles if filter_function(article['url'])]
markdown_content = convert_to_markdown(articles)
with open(output_file, 'w', encoding='utf-8') as f:
f.write(markdown_content)
logging.info(f"Scraped and filtered content saved to {output_file}")
async def scrape_entire_site(base_url: str) -> List[Dict]:
"""
Scrape the entire site by generating a temporary sitemap and extracting content from each page.
:param base_url: The base URL of the site to scrape
:return: A list of dictionaries containing scraped article data
"""
# Step 1: Collect internal links from the site
links = collect_internal_links(base_url)
logging.info(f"Collected {len(links)} internal links.")
# Step 2: Generate the temporary sitemap
temp_sitemap_path = generate_temp_sitemap_from_links(links)
# Step 3: Scrape each URL in the sitemap
scraped_articles = []
try:
async def scrape_and_log(link):
logging.info(f"Scraping {link} ...")
article_data = await scrape_article(link)
if article_data:
logging.info(f"Title: {article_data['title']}")
logging.info(f"Author: {article_data['author']}")
logging.info(f"Date: {article_data['date']}")
logging.info(f"Content: {article_data['content'][:500]}...")
return article_data
return None
# Use asyncio.gather to scrape multiple articles concurrently
scraped_articles = await asyncio.gather(*[scrape_and_log(link) for link in links])
# Remove any None values (failed scrapes)
scraped_articles = [article for article in scraped_articles if article is not None]
finally:
# Clean up the temporary sitemap file
os.unlink(temp_sitemap_path)
logging.info("Temporary sitemap file deleted")
return scraped_articles
def scrape_by_url_level(base_url: str, level: int) -> list:
"""Scrape articles from URLs up to a certain level under the base URL."""
def get_url_level(url: str) -> int:
return len(urlparse(url).path.strip('/').split('/'))
links = collect_internal_links(base_url)
filtered_links = [link for link in links if get_url_level(link) <= level]
return [article for link in filtered_links if (article := scrape_article(link))]
def scrape_from_sitemap(sitemap_url: str) -> list:
"""Scrape articles from a sitemap URL."""
try:
response = requests.get(sitemap_url)
response.raise_for_status()
root = ET.fromstring(response.content)
return [article for url in root.findall('.//{http://www.sitemaps.org/schemas/sitemap/0.9}loc')
if (article := scrape_article(url.text))]
except requests.RequestException as e:
logging.error(f"Error fetching sitemap: {e}")
return []
#
# End of Scraping Functions
#######################################################
#
# Sitemap/Crawling-related Functions
def collect_internal_links(base_url: str) -> set:
visited = set()
to_visit = {base_url}
while to_visit:
current_url = to_visit.pop()
if current_url in visited:
continue
try:
response = requests.get(current_url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Collect internal links
for link in soup.find_all('a', href=True):
full_url = urljoin(base_url, link['href'])
# Only process links within the same domain
if urlparse(full_url).netloc == urlparse(base_url).netloc:
if full_url not in visited:
to_visit.add(full_url)
visited.add(current_url)
except requests.RequestException as e:
logging.error(f"Error visiting {current_url}: {e}")
continue
return visited
def generate_temp_sitemap_from_links(links: set) -> str:
"""
Generate a temporary sitemap file from collected links and return its path.
:param links: A set of URLs to include in the sitemap
:return: Path to the temporary sitemap file
"""
# Create the root element
urlset = ET.Element("urlset")
urlset.set("xmlns", "http://www.sitemaps.org/schemas/sitemap/0.9")
# Add each link to the sitemap
for link in links:
url = ET.SubElement(urlset, "url")
loc = ET.SubElement(url, "loc")
loc.text = link
lastmod = ET.SubElement(url, "lastmod")
lastmod.text = datetime.now().strftime("%Y-%m-%d")
changefreq = ET.SubElement(url, "changefreq")
changefreq.text = "daily"
priority = ET.SubElement(url, "priority")
priority.text = "0.5"
# Create the tree and get it as a string
xml_string = ET.tostring(urlset, 'utf-8')
# Pretty print the XML
pretty_xml = minidom.parseString(xml_string).toprettyxml(indent=" ")
# Create a temporary file
with tempfile.NamedTemporaryFile(mode="w", suffix=".xml", delete=False) as temp_file:
temp_file.write(pretty_xml)
temp_file_path = temp_file.name
logging.info(f"Temporary sitemap created at: {temp_file_path}")
return temp_file_path
def generate_sitemap_for_url(url: str) -> List[Dict[str, str]]:
"""
Generate a sitemap for the given URL using the create_filtered_sitemap function.
Args:
url (str): The base URL to generate the sitemap for
Returns:
List[Dict[str, str]]: A list of dictionaries, each containing 'url' and 'title' keys
"""
with tempfile.NamedTemporaryFile(mode="w+", suffix=".xml", delete=False) as temp_file:
create_filtered_sitemap(url, temp_file.name, is_content_page)
temp_file.seek(0)
tree = ET.parse(temp_file.name)
root = tree.getroot()
sitemap = []
for url_elem in root.findall(".//{http://www.sitemaps.org/schemas/sitemap/0.9}url"):
loc = url_elem.find("{http://www.sitemaps.org/schemas/sitemap/0.9}loc").text
sitemap.append({"url": loc, "title": loc.split("/")[-1] or url}) # Use the last part of the URL as a title
return sitemap
def create_filtered_sitemap(base_url: str, output_file: str, filter_function):
"""
Create a sitemap from internal links and filter them based on a custom function.
:param base_url: The base URL of the website
:param output_file: The file to save the sitemap to
:param filter_function: A function that takes a URL and returns True if it should be included
"""
links = collect_internal_links(base_url)
filtered_links = set(filter(filter_function, links))
root = ET.Element("urlset")
root.set("xmlns", "http://www.sitemaps.org/schemas/sitemap/0.9")
for link in filtered_links:
url = ET.SubElement(root, "url")
loc = ET.SubElement(url, "loc")
loc.text = link
tree = ET.ElementTree(root)
tree.write(output_file, encoding='utf-8', xml_declaration=True)
print(f"Filtered sitemap saved to {output_file}")
#
# End of Crawling Functions
#################################################################
#
# Utility Functions
def convert_to_markdown(articles: list) -> str:
"""Convert a list of article data into a single markdown document."""
markdown = ""
for article in articles:
markdown += f"# {article['title']}\n\n"
markdown += f"Author: {article['author']}\n"
markdown += f"Date: {article['date']}\n\n"
markdown += f"{article['content']}\n\n"
markdown += "---\n\n" # Separator between articles
return markdown
def compute_content_hash(content: str) -> str:
return hashlib.sha256(content.encode('utf-8')).hexdigest()
def load_hashes(filename: str) -> Dict[str, str]:
if os.path.exists(filename):
with open(filename, 'r') as f:
return json.load(f)
else:
return {}
def save_hashes(hashes: Dict[str, str], filename: str):
with open(filename, 'w') as f:
json.dump(hashes, f)
def has_page_changed(url: str, new_hash: str, stored_hashes: Dict[str, str]) -> bool:
old_hash = stored_hashes.get(url)
return old_hash != new_hash
#
#
###################################################
#
# Bookmark Parsing Functions
def parse_chromium_bookmarks(json_data: dict) -> Dict[str, Union[str, List[str]]]:
"""
Parse Chromium-based browser bookmarks from JSON data.
:param json_data: The JSON data from the bookmarks file
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist
"""
bookmarks = {}
def recurse_bookmarks(nodes):
for node in nodes:
if node.get('type') == 'url':
name = node.get('name')
url = node.get('url')
if name and url:
if name in bookmarks:
if isinstance(bookmarks[name], list):
bookmarks[name].append(url)
else:
bookmarks[name] = [bookmarks[name], url]
else:
bookmarks[name] = url
elif node.get('type') == 'folder' and 'children' in node:
recurse_bookmarks(node['children'])
# Chromium bookmarks have a 'roots' key
if 'roots' in json_data:
for root in json_data['roots'].values():
if 'children' in root:
recurse_bookmarks(root['children'])
else:
recurse_bookmarks(json_data.get('children', []))
return bookmarks
def parse_firefox_bookmarks(html_content: str) -> Dict[str, Union[str, List[str]]]:
"""
Parse Firefox bookmarks from HTML content.
:param html_content: The HTML content from the bookmarks file
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist
"""
bookmarks = {}
soup = BeautifulSoup(html_content, 'html.parser')
# Firefox stores bookmarks within <a> tags inside <dt>
for a in soup.find_all('a'):
name = a.get_text()
url = a.get('href')
if name and url:
if name in bookmarks:
if isinstance(bookmarks[name], list):
bookmarks[name].append(url)
else:
bookmarks[name] = [bookmarks[name], url]
else:
bookmarks[name] = url
return bookmarks
def load_bookmarks(file_path: str) -> Dict[str, Union[str, List[str]]]:
"""
Load bookmarks from a file (JSON for Chrome/Edge or HTML for Firefox).
:param file_path: Path to the bookmarks file
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist
:raises ValueError: If the file format is unsupported or parsing fails
"""
if not os.path.isfile(file_path):
logging.error(f"File '{file_path}' does not exist.")
raise FileNotFoundError(f"File '{file_path}' does not exist.")
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext == '.json' or ext == '':
# Attempt to parse as JSON (Chrome/Edge)
try:
with open(file_path, 'r', encoding='utf-8') as f:
json_data = json.load(f)
return parse_chromium_bookmarks(json_data)
except json.JSONDecodeError:
logging.error("Failed to parse JSON. Ensure the file is a valid Chromium bookmarks JSON file.")
raise ValueError("Invalid JSON format for Chromium bookmarks.")
elif ext in ['.html', '.htm']:
# Parse as HTML (Firefox)
try:
with open(file_path, 'r', encoding='utf-8') as f:
html_content = f.read()
return parse_firefox_bookmarks(html_content)
except Exception as e:
logging.error(f"Failed to parse HTML bookmarks: {e}")
raise ValueError(f"Failed to parse HTML bookmarks: {e}")
else:
logging.error("Unsupported file format. Please provide a JSON (Chrome/Edge) or HTML (Firefox) bookmarks file.")
raise ValueError("Unsupported file format for bookmarks.")
def collect_bookmarks(file_path: str) -> Dict[str, Union[str, List[str]]]:
"""
Collect bookmarks from the provided bookmarks file and return a dictionary.
:param file_path: Path to the bookmarks file
:return: Dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist
"""
try:
bookmarks = load_bookmarks(file_path)
logging.info(f"Successfully loaded {len(bookmarks)} bookmarks from '{file_path}'.")
return bookmarks
except (FileNotFoundError, ValueError) as e:
logging.error(f"Error loading bookmarks: {e}")
return {}
def parse_csv_urls(file_path: str) -> Dict[str, Union[str, List[str]]]:
"""
Parse URLs from a CSV file. The CSV should have at minimum a 'url' column,
and optionally a 'title' or 'name' column.
:param file_path: Path to the CSV file
:return: Dictionary with titles/names as keys and URLs as values
"""
try:
# Read CSV file
df = pd.read_csv(file_path)
# Check if required columns exist
if 'url' not in df.columns:
raise ValueError("CSV must contain a 'url' column")
# Initialize result dictionary
urls_dict = {}
# Determine which column to use as key
key_column = next((col for col in ['title', 'name'] if col in df.columns), None)
for idx in range(len(df)):
url = df.iloc[idx]['url'].strip()
# Use title/name if available, otherwise use URL as key
if key_column:
key = df.iloc[idx][key_column].strip()
else:
key = f"Article {idx + 1}"
# Handle duplicate keys
if key in urls_dict:
if isinstance(urls_dict[key], list):
urls_dict[key].append(url)
else:
urls_dict[key] = [urls_dict[key], url]
else:
urls_dict[key] = url
return urls_dict
except pd.errors.EmptyDataError:
logging.error("The CSV file is empty")
return {}
except Exception as e:
logging.error(f"Error parsing CSV file: {str(e)}")
return {}
def collect_urls_from_file(file_path: str) -> Dict[str, Union[str, List[str]]]:
"""
Unified function to collect URLs from either bookmarks or CSV files.
:param file_path: Path to the file (bookmarks or CSV)
:return: Dictionary with names as keys and URLs as values
"""
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext == '.csv':
return parse_csv_urls(file_path)
else:
return collect_bookmarks(file_path)
# Usage:
# from Article_Extractor_Lib import collect_bookmarks
#
# # Path to your bookmarks file
# # For Chrome or Edge (JSON format)
# chromium_bookmarks_path = "/path/to/Bookmarks"
#
# # For Firefox (HTML format)
# firefox_bookmarks_path = "/path/to/bookmarks.html"
#
# # Collect bookmarks from Chromium-based browser
# chromium_bookmarks = collect_bookmarks(chromium_bookmarks_path)
# print("Chromium Bookmarks:")
# for name, url in chromium_bookmarks.items():
# print(f"{name}: {url}")
#
# # Collect bookmarks from Firefox
# firefox_bookmarks = collect_bookmarks(firefox_bookmarks_path)
# print("\nFirefox Bookmarks:")
# for name, url in firefox_bookmarks.items():
# print(f"{name}: {url}")
#
# End of Bookmarking Parsing Functions
#####################################################################
#####################################################################
#
# Article Scraping Metadata Functions
class ContentMetadataHandler:
"""Handles the addition and parsing of metadata for scraped content."""
METADATA_START = "[METADATA]"
METADATA_END = "[/METADATA]"
@staticmethod
def format_content_with_metadata(
url: str,
content: str,
pipeline: str = "Trafilatura",
additional_metadata: Optional[Dict[str, Any]] = None
) -> str:
"""
Format content with metadata header.
Args:
url: The source URL
content: The scraped content
pipeline: The scraping pipeline used
additional_metadata: Optional dictionary of additional metadata to include
Returns:
Formatted content with metadata header
"""
metadata = {
"url": url,
"ingestion_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"content_hash": hashlib.sha256(content.encode('utf-8')).hexdigest(),
"scraping_pipeline": pipeline
}
# Add any additional metadata
if additional_metadata:
metadata.update(additional_metadata)
formatted_content = f"""{ContentMetadataHandler.METADATA_START}
{json.dumps(metadata, indent=2)}
{ContentMetadataHandler.METADATA_END}
{content}"""
return formatted_content
@staticmethod
def extract_metadata(content: str) -> Tuple[Dict[str, Any], str]:
"""
Extract metadata and content separately.
Args:
content: The full content including metadata
Returns:
Tuple of (metadata dict, clean content)
"""
try:
metadata_start = content.index(ContentMetadataHandler.METADATA_START) + len(
ContentMetadataHandler.METADATA_START)
metadata_end = content.index(ContentMetadataHandler.METADATA_END)
metadata_json = content[metadata_start:metadata_end].strip()
metadata = json.loads(metadata_json)
clean_content = content[metadata_end + len(ContentMetadataHandler.METADATA_END):].strip()
return metadata, clean_content
except (ValueError, json.JSONDecodeError) as e:
return {}, content
@staticmethod
def has_metadata(content: str) -> bool:
"""
Check if content contains metadata.
Args:
content: The content to check
Returns:
bool: True if metadata is present
"""
return (ContentMetadataHandler.METADATA_START in content and
ContentMetadataHandler.METADATA_END in content)
@staticmethod
def strip_metadata(content: str) -> str:
"""
Remove metadata from content if present.
Args:
content: The content to strip metadata from
Returns:
Content without metadata
"""
try:
metadata_end = content.index(ContentMetadataHandler.METADATA_END)
return content[metadata_end + len(ContentMetadataHandler.METADATA_END):].strip()
except ValueError:
return content
@staticmethod
def get_content_hash(content: str) -> str:
"""
Get hash of content without metadata.
Args:
content: The content to hash
Returns:
SHA-256 hash of the clean content
"""
clean_content = ContentMetadataHandler.strip_metadata(content)
return hashlib.sha256(clean_content.encode('utf-8')).hexdigest()
@staticmethod
def content_changed(old_content: str, new_content: str) -> bool:
"""
Check if content has changed by comparing hashes.
Args:
old_content: Previous version of content
new_content: New version of content
Returns:
bool: True if content has changed
"""
old_hash = ContentMetadataHandler.get_content_hash(old_content)
new_hash = ContentMetadataHandler.get_content_hash(new_content)
return old_hash != new_hash
#
# End of Article_Extractor_Lib.py
#######################################################################################################################