Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Std Lib Imports | |
import argparse | |
import atexit | |
import json | |
import logging | |
import os | |
import signal | |
import sys | |
import time | |
import webbrowser | |
# | |
# Local Library Imports | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'App_Function_Libraries'))) | |
from App_Function_Libraries.Book_Ingestion_Lib import ingest_folder, ingest_text_file | |
from App_Function_Libraries.Chunk_Lib import semantic_chunk_long_file#, rolling_summarize_function, | |
from App_Function_Libraries.Gradio_Related import launch_ui | |
from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import cleanup_process, local_llm_function | |
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \ | |
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm | |
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, \ | |
summarize_with_cohere, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \ | |
summarize_with_huggingface, perform_transcription, perform_summarization | |
from App_Function_Libraries.Audio_Transcription_Lib import convert_to_wav, speech_to_text | |
from App_Function_Libraries.Local_File_Processing_Lib import read_paths_from_file, process_local_file | |
from App_Function_Libraries.SQLite_DB import add_media_to_database, is_valid_url | |
from App_Function_Libraries.System_Checks_Lib import cuda_check, platform_check, check_ffmpeg | |
from App_Function_Libraries.Utils import load_and_log_configs, sanitize_filename, create_download_directory, extract_text_from_segments | |
from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info | |
# | |
# 3rd-Party Module Imports | |
import requests | |
# OpenAI Tokenizer support | |
# | |
# Other Tokenizers | |
# | |
####################### | |
# Logging Setup | |
# | |
log_level = "DEBUG" | |
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s') | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
# | |
############# | |
# Global variables setup | |
#custom_prompt_input = ("Above is the transcript of a video. Please read through the transcript carefully. Identify the " | |
"main topics that are discussed over the course of the transcript. Then, summarize the key points about each main " | |
"topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, " | |
"but should be much shorter than the full transcript. Please output your bullet point summary inside <bulletpoints> " | |
"tags.") | |
# | |
# Global variables | |
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3", | |
"distil-large-v2", "distil-medium.en", "distil-small.en"] | |
server_mode = False | |
share_public = False | |
# | |
# | |
####################### | |
####################### | |
# Function Sections | |
# | |
abc_xyz = """ | |
Database Setup | |
Config Loading | |
System Checks | |
DataBase Functions | |
Processing Paths and local file handling | |
Video Download/Handling | |
Audio Transcription | |
Diarization | |
Chunking-related Techniques & Functions | |
Tokenization-related Techniques & Functions | |
Summarizers | |
Gradio UI | |
Main | |
""" | |
# | |
# | |
####################### | |
####################### | |
# | |
# TL/DW: Too Long Didn't Watch | |
# | |
# Project originally created by https://github.com/the-crypt-keeper | |
# Modifications made by https://github.com/rmusser01 | |
# All credit to the original authors, I've just glued shit together. | |
# | |
# | |
# Usage: | |
# | |
# Download Audio only from URL -> Transcribe audio: | |
# python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s` | |
# | |
# Download Audio+Video from URL -> Transcribe audio from Video:** | |
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s` | |
# | |
# Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:** | |
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable | |
# | |
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:** | |
# python summarize.py ./local/file_on_your/system --api_name <API_name>` | |
# | |
# Run it as a WebApp** | |
# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it. | |
# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server. | |
# | |
####################### | |
####################### | |
# Random issues I've encountered and how I solved them: | |
# 1. Something about cuda nn library missing, even though cuda is installed... | |
# https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk. | |
# Or https://github.com/SYSTRAN/faster-whisper/issues/85 | |
# | |
# 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme' | |
# Resolved through adding --user to the pip install command | |
# | |
# 3. Windows: Could not locate cudnn_ops_infer64_8.dll. Please make sure it is in your library path! | |
# | |
# 4. | |
# | |
# 5. | |
# | |
# | |
# | |
####################### | |
####################### | |
# DB Setup | |
# Handled by SQLite_DB.py | |
####################### | |
####################### | |
# Config loading | |
# | |
# 1. | |
# 2. | |
# | |
# | |
####################### | |
####################### | |
# System Startup Notice | |
# | |
# Dirty hack - sue me. - FIXME - fix this... | |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' | |
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3", | |
"distil-large-v2", "distil-medium.en", "distil-small.en"] | |
source_languages = { | |
"en": "English", | |
"zh": "Chinese", | |
"de": "German", | |
"es": "Spanish", | |
"ru": "Russian", | |
"ko": "Korean", | |
"fr": "French" | |
} | |
source_language_list = [key[0] for key in source_languages.items()] | |
def print_hello(): | |
print(r"""_____ _ ________ _ _ | |
|_ _|| | / /| _ \| | | | _ | |
| | | | / / | | | || | | |(_) | |
| | | | / / | | | || |/\| | | |
| | | |____ / / | |/ / \ /\ / _ | |
\_/ \_____//_/ |___/ \/ \/ (_) | |
_ _ | |
| | | | | |
| |_ ___ ___ | | ___ _ __ __ _ | |
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` | | |
| |_ | (_) || (_) | | || (_) || | | || (_| | _ | |
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( ) | |
__/ ||/ | |
|___/ | |
_ _ _ _ _ _ _ | |
| |(_) | | ( )| | | | | | | |
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__ | |
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \ | |
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | | | |
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_| | |
""") | |
time.sleep(1) | |
return | |
# | |
# | |
####################### | |
####################### | |
# System Check Functions | |
# | |
# 1. platform_check() | |
# 2. cuda_check() | |
# 3. decide_cpugpu() | |
# 4. check_ffmpeg() | |
# 5. download_ffmpeg() | |
# | |
####################### | |
####################### | |
# DB Functions | |
# | |
# create_tables() | |
# add_keyword() | |
# delete_keyword() | |
# add_keyword() | |
# add_media_with_keywords() | |
# search_db() | |
# format_results() | |
# search_and_display() | |
# export_to_csv() | |
# is_valid_url() | |
# is_valid_date() | |
# | |
######################################################################################################################## | |
######################################################################################################################## | |
# Processing Paths and local file handling | |
# | |
# Function List | |
# 1. read_paths_from_file(file_path) | |
# 2. process_path(path) | |
# 3. process_local_file(file_path) | |
# 4. read_paths_from_file(file_path: str) -> List[str] | |
# | |
# | |
######################################################################################################################## | |
####################################################################################################################### | |
# Online Article Extraction / Handling | |
# | |
# Function List | |
# 1. get_page_title(url) | |
# 2. get_article_text(url) | |
# 3. get_article_title(article_url_arg) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Video Download/Handling | |
# Video-DL-Ingestion-Lib | |
# | |
# Function List | |
# 1. get_video_info(url) | |
# 2. create_download_directory(title) | |
# 3. sanitize_filename(title) | |
# 4. normalize_title(title) | |
# 5. get_youtube(video_url) | |
# 6. get_playlist_videos(playlist_url) | |
# 7. download_video(video_url, download_path, info_dict, download_video_flag) | |
# 8. save_to_file(video_urls, filename) | |
# 9. save_summary_to_file(summary, file_path) | |
# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, ) # FIXME - UPDATE | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Audio Transcription | |
# | |
# Function List | |
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False) | |
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Diarization | |
# | |
# Function List 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", | |
# embedding_size=512, num_speakers=0) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Chunking-related Techniques & Functions | |
# | |
# | |
# FIXME | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Tokenization-related Functions | |
# | |
# | |
# FIXME | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Website-related Techniques & Functions | |
# | |
# | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Summarizers | |
# | |
# Function List | |
# 1. extract_text_from_segments(segments: List[Dict]) -> str | |
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg) | |
# 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) | |
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg) | |
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg) | |
# | |
################################# | |
# Local Summarization | |
# | |
# Function List | |
# | |
# 1. summarize_with_local_llm(file_path, custom_prompt_arg) | |
# 2. summarize_with_llama(api_url, file_path, token, custom_prompt) | |
# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt) | |
# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt) | |
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) | |
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) | |
# 7. save_summary_to_file(summary, file_path) | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Summarization with Detail | |
# | |
# FIXME - see 'Old_Chunking_Lib.py' | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Gradio UI | |
# | |
# | |
# | |
# | |
# | |
################################################################################################################# | |
# | |
####################################################################################################################### | |
# Local LLM Setup / Running | |
# | |
# Function List | |
# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename) | |
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5) | |
# 3. verify_checksum(file_path, expected_checksum) | |
# 4. cleanup_process() | |
# 5. signal_handler(sig, frame) | |
# 6. local_llm_function() | |
# 7. launch_in_new_terminal_windows(executable, args) | |
# 8. launch_in_new_terminal_linux(executable, args) | |
# 9. launch_in_new_terminal_mac(executable, args) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Helper Functions for Main() & process_url() | |
# | |
# | |
# | |
####################################################################################################################### | |
###################################################################################################################### | |
# Main() | |
# | |
def main(input_path, api_name=None, api_key=None, | |
num_speakers=2, | |
whisper_model="small.en", | |
offset=0, | |
vad_filter=False, | |
download_video_flag=False, | |
custom_prompt=None, | |
overwrite=False, | |
rolling_summarization=False, | |
detail=0.01, | |
keywords=None, | |
llm_model=None, | |
time_based=False, | |
set_chunk_txt_by_words=False, | |
set_max_txt_chunk_words=0, | |
set_chunk_txt_by_sentences=False, | |
set_max_txt_chunk_sentences=0, | |
set_chunk_txt_by_paragraphs=False, | |
set_max_txt_chunk_paragraphs=0, | |
set_chunk_txt_by_tokens=False, | |
set_max_txt_chunk_tokens=0, | |
ingest_text_file=False, | |
chunk=False, | |
max_chunk_size=2000, | |
chunk_overlap=100, | |
chunk_unit='tokens', | |
summarize_chunks=None, | |
diarize=False | |
): | |
global detail_level_number, summary, audio_file, transcription_text, info_dict | |
detail_level = detail | |
print(f"Keywords: {keywords}") | |
if not input_path: | |
return [] | |
start_time = time.monotonic() | |
paths = [input_path] if not os.path.isfile(input_path) else read_paths_from_file(input_path) | |
results = [] | |
for path in paths: | |
try: | |
if path.startswith('http'): | |
info_dict, title = extract_video_info(path) | |
download_path = create_download_directory(title) | |
video_path = download_video(path, download_path, info_dict, download_video_flag) | |
if video_path: | |
if diarize: | |
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True) | |
transcription_text = {'audio_file': audio_file, 'transcription': segments} | |
else: | |
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) | |
transcription_text = {'audio_file': audio_file, 'transcription': segments} | |
# FIXME rolling summarization | |
if rolling_summarization == True: | |
pass | |
# text = extract_text_from_segments(segments) | |
# detail = detail_level | |
# additional_instructions = custom_prompt_input | |
# chunk_text_by_words = set_chunk_txt_by_words | |
# max_words = set_max_txt_chunk_words | |
# chunk_text_by_sentences = set_chunk_txt_by_sentences | |
# max_sentences = set_max_txt_chunk_sentences | |
# chunk_text_by_paragraphs = set_chunk_txt_by_paragraphs | |
# max_paragraphs = set_max_txt_chunk_paragraphs | |
# chunk_text_by_tokens = set_chunk_txt_by_tokens | |
# max_tokens = set_max_txt_chunk_tokens | |
# # FIXME | |
# summarize_recursively = rolling_summarization | |
# verbose = False | |
# model = None | |
# summary = rolling_summarize_function(text, detail, api_name, api_key, model, custom_prompt_input, | |
# chunk_text_by_words, | |
# max_words, chunk_text_by_sentences, | |
# max_sentences, chunk_text_by_paragraphs, | |
# max_paragraphs, chunk_text_by_tokens, | |
# max_tokens, summarize_recursively, verbose | |
# ) | |
elif api_name: | |
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) | |
else: | |
summary = None | |
if summary: | |
# Save the summary file in the download_path directory | |
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") | |
with open(summary_file_path, 'w') as file: | |
file.write(summary) | |
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) | |
else: | |
logging.error(f"Failed to download video: {path}") | |
# FIXME - make sure this doesn't break ingesting multiple videos vs multiple text files | |
# FIXME - Need to update so that chunking is fully handled. | |
elif chunk and path.lower().endswith('.txt'): | |
chunks = semantic_chunk_long_file(path, max_chunk_size, chunk_overlap) | |
if chunks: | |
chunks_data = { | |
"file_path": path, | |
"chunk_unit": chunk_unit, | |
"max_chunk_size": max_chunk_size, | |
"chunk_overlap": chunk_overlap, | |
"chunks": [] | |
} | |
summaries_data = { | |
"file_path": path, | |
"summarization_method": summarize_chunks, | |
"summaries": [] | |
} | |
for i, chunk_text in enumerate(chunks): | |
chunk_info = { | |
"chunk_id": i + 1, | |
"text": chunk_text | |
} | |
chunks_data["chunks"].append(chunk_info) | |
if summarize_chunks: | |
summary = None | |
if summarize_chunks == 'openai': | |
summary = summarize_with_openai(api_key, chunk_text, custom_prompt) | |
elif summarize_chunks == 'anthropic': | |
summary = summarize_with_anthropic(api_key, chunk_text, custom_prompt) | |
elif summarize_chunks == 'cohere': | |
summary = summarize_with_cohere(api_key, chunk_text, custom_prompt) | |
elif summarize_chunks == 'groq': | |
summary = summarize_with_groq(api_key, chunk_text, custom_prompt) | |
elif summarize_chunks == 'local-llm': | |
summary = summarize_with_local_llm(chunk_text, custom_prompt) | |
# FIXME - Add more summarization methods as needed | |
if summary: | |
summary_info = { | |
"chunk_id": i + 1, | |
"summary": summary | |
} | |
summaries_data["summaries"].append(summary_info) | |
else: | |
logging.warning(f"Failed to generate summary for chunk {i + 1}") | |
# Save chunks to a single JSON file | |
chunks_file_path = f"{path}_chunks.json" | |
with open(chunks_file_path, 'w', encoding='utf-8') as f: | |
json.dump(chunks_data, f, ensure_ascii=False, indent=2) | |
logging.info(f"All chunks saved to {chunks_file_path}") | |
# Save summaries to a single JSON file (if summarization was performed) | |
if summarize_chunks: | |
summaries_file_path = f"{path}_summaries.json" | |
with open(summaries_file_path, 'w', encoding='utf-8') as f: | |
json.dump(summaries_data, f, ensure_ascii=False, indent=2) | |
logging.info(f"All summaries saved to {summaries_file_path}") | |
logging.info(f"File {path} chunked into {len(chunks)} parts using {chunk_unit} as the unit.") | |
else: | |
logging.error(f"Failed to chunk file {path}") | |
# Handle downloading of URLs from a text file or processing local video/audio files | |
else: | |
download_path, info_dict, urls_or_media_file = process_local_file(path) | |
if isinstance(urls_or_media_file, list): | |
# Text file containing URLs | |
for url in urls_or_media_file: | |
for item in urls_or_media_file: | |
if item.startswith(('http://', 'https://')): | |
info_dict, title = extract_video_info(url) | |
download_path = create_download_directory(title) | |
video_path = download_video(url, download_path, info_dict, download_video_flag) | |
if video_path: | |
if diarize: | |
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True) | |
else: | |
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) | |
transcription_text = {'audio_file': audio_file, 'transcription': segments} | |
if rolling_summarization: | |
text = extract_text_from_segments(segments) | |
# FIXME | |
#summary = summarize_with_detail_openai(text, detail=detail) | |
elif api_name: | |
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) | |
else: | |
summary = None | |
if summary: | |
# Save the summary file in the download_path directory | |
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") | |
with open(summary_file_path, 'w') as file: | |
file.write(summary) | |
add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) | |
else: | |
logging.error(f"Failed to download video: {url}") | |
else: | |
# Video or audio or txt file | |
media_path = urls_or_media_file | |
if media_path.lower().endswith(('.txt', '.md')): | |
if media_path.lower().endswith('.txt'): | |
# Handle text file ingestion | |
result = ingest_text_file(media_path) | |
logging.info(result) | |
elif media_path.lower().endswith(('.mp4', '.avi', '.mov')): | |
if diarize: | |
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter, diarize=True) | |
else: | |
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter) | |
elif media_path.lower().endswith(('.wav', '.mp3', '.m4a')): | |
if diarize: | |
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter, diarize=True) | |
else: | |
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter) | |
else: | |
logging.error(f"Unsupported media file format: {media_path}") | |
continue | |
transcription_text = {'media_path': path, 'audio_file': media_path, 'transcription': segments} | |
# FIXME | |
if rolling_summarization: | |
# text = extract_text_from_segments(segments) | |
# summary = summarize_with_detail_openai(text, detail=detail) | |
pass | |
elif api_name: | |
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) | |
else: | |
summary = None | |
if summary: | |
# Save the summary file in the download_path directory | |
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") | |
with open(summary_file_path, 'w') as file: | |
file.write(summary) | |
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) | |
except Exception as e: | |
logging.error(f"Error processing {path}: {str(e)}") | |
continue | |
return transcription_text | |
def signal_handler(sig, frame): | |
logging.info('Signal handler called with signal: %s', sig) | |
cleanup_process() | |
sys.exit(0) | |
############################## MAIN ############################## | |
# | |
# | |
if __name__ == "__main__": | |
# Register signal handlers | |
signal.signal(signal.SIGINT, signal_handler) | |
signal.signal(signal.SIGTERM, signal_handler) | |
# Logging setup | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Load Config | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data: | |
logging.info("Main: Configuration loaded successfully") | |
# You can access the configuration data like this: | |
# print(f"OpenAI API Key: {config_data['api_keys']['openai']}") | |
# print(f"Anthropic Model: {config_data['models']['anthropic']}") | |
# print(f"Kobold API IP: {config_data['local_apis']['kobold']['ip']}") | |
# print(f"Output Path: {config_data['output_path']}") | |
# print(f"Processing Choice: {config_data['processing_choice']}") | |
else: | |
print("Failed to load configuration") | |
# Print ascii_art | |
print_hello() | |
transcription_text = None | |
parser = argparse.ArgumentParser( | |
description='Transcribe and summarize videos.', | |
epilog=''' | |
Sample commands: | |
1. Simple Sample command structure: | |
summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three | |
2. Rolling Summary Sample command structure: | |
summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three | |
3. FULL Sample command structure: | |
summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three | |
4. Sample command structure for UI: | |
summarize.py -gui -log DEBUG | |
''', | |
formatter_class=argparse.RawTextHelpFormatter | |
) | |
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?') | |
parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio') | |
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)') | |
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)') | |
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)') | |
parser.add_argument('-wm', '--whisper_model', type=str, default='small', | |
help='Whisper model (default: small)| Options: tiny.en, tiny, base.en, base, small.en, small, medium.en, ' | |
'medium, large-v1, large-v2, large-v3, large, distil-large-v2, distil-medium.en, ' | |
'distil-small.en') | |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') | |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') | |
parser.add_argument('-log', '--log_level', type=str, default='INFO', | |
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') | |
parser.add_argument('-gui', '--user_interface', action='store_true', default=True, help="Launch the Gradio user interface") | |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') | |
parser.add_argument('-prompt', '--custom_prompt', type=str, | |
help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just ' | |
'modify the script itself...)') | |
parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files') | |
parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization') | |
parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, ' | |
'defines the chunk size.\n Default is 0.01(lots ' | |
'of chunks) -> 1.00 (few chunks)\n Currently ' | |
'only OpenAI works. ', | |
default=0.01, ) | |
parser.add_argument('-model', '--llm_model', type=str, default='', | |
help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)') | |
parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'], | |
help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)') | |
parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)') | |
parser.add_argument('--local_llm', action='store_true', | |
help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)") | |
parser.add_argument('--server_mode', action='store_true', | |
help='Run in server mode (This exposes the GUI/Server to the network)') | |
parser.add_argument('--share_public', type=int, default=7860, | |
help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)") | |
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on') | |
parser.add_argument('--ingest_text_file', action='store_true', | |
help='Ingest .txt files as content instead of treating them as URL lists') | |
parser.add_argument('--text_title', type=str, help='Title for the text file being ingested') | |
parser.add_argument('--text_author', type=str, help='Author of the text file being ingested') | |
parser.add_argument('--diarize', action='store_true', help='Enable speaker diarization') | |
# parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage') | |
# parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file') | |
args = parser.parse_args() | |
# Set Chunking values/variables | |
set_chunk_txt_by_words = False | |
set_max_txt_chunk_words = 0 | |
set_chunk_txt_by_sentences = False | |
set_max_txt_chunk_sentences = 0 | |
set_chunk_txt_by_paragraphs = False | |
set_max_txt_chunk_paragraphs = 0 | |
set_chunk_txt_by_tokens = False | |
set_max_txt_chunk_tokens = 0 | |
if args.share_public: | |
share_public = args.share_public | |
else: | |
share_public = None | |
if args.server_mode: | |
server_mode = args.server_mode | |
else: | |
server_mode = None | |
if args.server_mode is True: | |
server_mode = True | |
if args.port: | |
server_port = args.port | |
else: | |
server_port = None | |
########## Logging setup | |
logger = logging.getLogger() | |
logger.setLevel(getattr(logging, args.log_level)) | |
# Create console handler | |
console_handler = logging.StreamHandler() | |
console_handler.setLevel(getattr(logging, args.log_level)) | |
console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') | |
console_handler.setFormatter(console_formatter) | |
if args.log_file: | |
# Create file handler | |
file_handler = logging.FileHandler(args.log_file) | |
file_handler.setLevel(getattr(logging, args.log_level)) | |
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') | |
file_handler.setFormatter(file_formatter) | |
logger.addHandler(file_handler) | |
logger.info(f"Log file created at: {args.log_file}") | |
# Check if the user wants to use the local LLM from the script | |
local_llm = args.local_llm | |
logging.info(f'Local LLM flag: {local_llm}') | |
# Check if the user wants to ingest a text file (singular or multiple from a folder) | |
if args.input_path is not None: | |
if os.path.isdir(args.input_path) and args.ingest_text_file: | |
results = ingest_folder(args.input_path, keywords=args.keywords) | |
for result in results: | |
print(result) | |
elif args.input_path.lower().endswith('.txt') and args.ingest_text_file: | |
result = ingest_text_file(args.input_path, title=args.text_title, author=args.text_author, | |
keywords=args.keywords) | |
print(result) | |
sys.exit(0) | |
# Launch the GUI | |
# This is huggingface so: | |
if args.user_interface: | |
if local_llm: | |
local_llm_function() | |
time.sleep(2) | |
webbrowser.open_new_tab('http://127.0.0.1:7860') | |
launch_ui() | |
elif not args.input_path: | |
parser.print_help() | |
sys.exit(1) | |
else: | |
logging.info('Starting the transcription and summarization process.') | |
logging.info(f'Input path: {args.input_path}') | |
logging.info(f'API Name: {args.api_name}') | |
logging.info(f'Number of speakers: {args.num_speakers}') | |
logging.info(f'Whisper model: {args.whisper_model}') | |
logging.info(f'Offset: {args.offset}') | |
logging.info(f'VAD filter: {args.vad_filter}') | |
logging.info(f'Log Level: {args.log_level}') | |
logging.info(f'Demo Mode: {args.demo_mode}') | |
logging.info(f'Custom Prompt: {args.custom_prompt}') | |
logging.info(f'Overwrite: {args.overwrite}') | |
logging.info(f'Rolling Summarization: {args.rolling_summarization}') | |
logging.info(f'User Interface: {args.user_interface}') | |
logging.info(f'Video Download: {args.video}') | |
# logging.info(f'Save File location: {args.output_path}') | |
# logging.info(f'Log File location: {args.log_file}') | |
global api_name | |
api_name = args.api_name | |
########## Custom Prompt setup | |
custom_prompt_input = args.custom_prompt | |
if not args.custom_prompt: | |
logging.debug("No custom prompt defined, will use default") | |
args.custom_prompt_input = ( | |
"\n\nabove is the transcript of a video. " | |
"Please read through the transcript carefully. Identify the main topics that are " | |
"discussed over the course of the transcript. Then, summarize the key points about each " | |
"main topic in a concise bullet point. The bullet points should cover the key " | |
"information conveyed about each topic in the video, but should be much shorter than " | |
"the full transcript. Please output your bullet point summary inside <bulletpoints> " | |
"tags." | |
) | |
print("No custom prompt defined, will use default") | |
custom_prompt_input = args.custom_prompt | |
else: | |
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt_input} \n\nas the prompt") | |
print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}") | |
summary = None # Initialize to ensure it's always defined | |
if args.detail_level == None: | |
args.detail_level = 0.01 | |
# FIXME | |
# if args.api_name and args.rolling_summarization and any( | |
# key.startswith(args.api_name) and value is not None for key, value in api_keys.items()): | |
# logging.info(f'MAIN: API used: {args.api_name}') | |
# logging.info('MAIN: Rolling Summarization will be performed.') | |
elif args.api_name: | |
logging.info(f'MAIN: API used: {args.api_name}') | |
logging.info('MAIN: Summarization (not rolling) will be performed.') | |
else: | |
logging.info('No API specified. Summarization will not be performed.') | |
logging.debug("Platform check being performed...") | |
platform_check() | |
logging.debug("CUDA check being performed...") | |
cuda_check() | |
processing_choice = "cpu" | |
logging.debug("ffmpeg check being performed...") | |
check_ffmpeg() | |
# download_ffmpeg() | |
llm_model = args.llm_model or None | |
# FIXME - dirty hack | |
args.time_based = False | |
try: | |
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, | |
num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, | |
vad_filter=args.vad_filter, download_video_flag=args.video, custom_prompt=args.custom_prompt_input, | |
overwrite=args.overwrite, rolling_summarization=args.rolling_summarization, | |
detail=args.detail_level, keywords=args.keywords, llm_model=args.llm_model, | |
time_based=args.time_based, set_chunk_txt_by_words=set_chunk_txt_by_words, | |
set_max_txt_chunk_words=set_max_txt_chunk_words, | |
set_chunk_txt_by_sentences=set_chunk_txt_by_sentences, | |
set_max_txt_chunk_sentences=set_max_txt_chunk_sentences, | |
set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs, | |
set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs, | |
set_chunk_txt_by_tokens=set_chunk_txt_by_tokens, | |
set_max_txt_chunk_tokens=set_max_txt_chunk_tokens) | |
logging.info('Transcription process completed.') | |
atexit.register(cleanup_process) | |
except Exception as e: | |
logging.error('An error occurred during the transcription process.') | |
logging.error(str(e)) | |
sys.exit(1) | |
finally: | |
cleanup_process() | |