tldw / App_Function_Libraries /LLM_API_Calls.py
oceansweep's picture
Update App_Function_Libraries/LLM_API_Calls.py
b3b2a0b verified
raw
history blame
50.3 kB
# Summarization_General_Lib.py
#########################################
# General Summarization Library
# This library is used to perform summarization.
#
####
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
#
#
####################
#
# Import necessary libraries
import json
import logging
import os
import time
from typing import List
import requests
#
# Import 3rd-Party Libraries
#
# Import Local libraries
from App_Function_Libraries.Utils.Utils import load_and_log_configs
#
#######################################################################################################################
# Function Definitions
#
#FIXME: Update to include full arguments
def extract_text_from_segments(segments):
logging.debug(f"Segments received: {segments}")
logging.debug(f"Type of segments: {type(segments)}")
text = ""
if isinstance(segments, list):
for segment in segments:
logging.debug(f"Current segment: {segment}")
logging.debug(f"Type of segment: {type(segment)}")
if 'Text' in segment:
text += segment['Text'] + " "
else:
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
else:
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
return text.strip()
def get_openai_embeddings(input_data: str, model: str) -> List[float]:
"""
Get embeddings for the input text from OpenAI API.
Args:
input_data (str): The input text to get embeddings for.
model (str): The model to use for generating embeddings.
Returns:
List[float]: The embeddings generated by the API.
"""
loaded_config_data = load_and_log_configs()
api_key = loaded_config_data['api_keys']['openai']
if not api_key:
logging.error("OpenAI: API key not found or is empty")
raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty")
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
logging.debug(f"OpenAI: Using model: {model}")
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
request_data = {
"input": input_data,
"model": model,
}
try:
logging.debug("OpenAI: Posting request to embeddings API")
response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data)
logging.debug(f"Full API response data: {response}")
if response.status_code == 200:
response_data = response.json()
if 'data' in response_data and len(response_data['data']) > 0:
embedding = response_data['data'][0]['embedding']
logging.debug("OpenAI: Embeddings retrieved successfully")
return embedding
else:
logging.warning("OpenAI: Embedding data not found in the response")
raise ValueError("OpenAI: Embedding data not available in the response")
else:
logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}")
logging.error(f"OpenAI: Error response: {response.text}")
raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}")
except requests.RequestException as e:
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
raise ValueError(f"OpenAI: Error making API request: {str(e)}")
except Exception as e:
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}")
def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
loaded_config_data = load_and_log_configs()
openai_api_key = api_key
try:
# API key validation
if not openai_api_key:
logging.info("OpenAI: API key not provided as parameter")
logging.info("OpenAI: Attempting to use API key from config file")
openai_api_key = loaded_config_data['api_keys']['openai']
if not openai_api_key:
logging.error("OpenAI: API key not found or is empty")
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}")
# Input data handling
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
if isinstance(input_data, str):
if input_data.strip().startswith('{'):
# It's likely a JSON string
logging.debug("OpenAI: Parsing provided JSON string data for summarization")
try:
data = json.loads(input_data)
except json.JSONDecodeError as e:
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
return f"OpenAI: Error parsing JSON input: {str(e)}"
elif os.path.isfile(input_data):
logging.debug("OpenAI: Loading JSON data from file for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("OpenAI: Using provided string data for summarization")
data = input_data
else:
data = input_data
logging.debug(f"OpenAI: Processed data type: {type(data)}")
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")
# Text extraction
if isinstance(data, dict):
if 'summary' in data:
logging.debug("OpenAI: Summary already exists in the loaded data")
return data['summary']
elif 'segments' in data:
text = extract_text_from_segments(data['segments'])
else:
text = json.dumps(data) # Convert dict to string if no specific format
elif isinstance(data, list):
text = extract_text_from_segments(data)
elif isinstance(data, str):
text = data
else:
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
logging.debug(f"OpenAI: Using model: {openai_model}")
headers = {
'Authorization': f'Bearer {openai_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
logging.debug("openai: Preparing data + prompt for submittal")
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
if temp is None:
temp = 0.7
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
temp = float(temp)
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openai_prompt}
],
"max_tokens": 4096,
"temperature": temp
}
logging.debug("OpenAI: Posting request")
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
logging.debug(f"Full API response data: {response}")
if response.status_code == 200:
response_data = response.json()
logging.debug(response_data)
if 'choices' in response_data and len(response_data['choices']) > 0:
chat_response = response_data['choices'][0]['message']['content'].strip()
logging.debug("openai: Chat Sent successfully")
logging.debug(f"openai: Chat response: {chat_response}")
return chat_response
else:
logging.warning("openai: Chat response not found in the response data")
return "openai: Chat not available"
else:
logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
logging.error(f"OpenAI: Error response: {response.text}")
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
except json.JSONDecodeError as e:
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
return f"OpenAI: Error decoding JSON input: {str(e)}"
except requests.RequestException as e:
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
return f"OpenAI: Error making API request: {str(e)}"
except Exception as e:
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
return f"OpenAI: Unexpected error occurred: {str(e)}"
def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None, temp=None):
try:
loaded_config_data = load_and_log_configs()
# Check if config was loaded successfully
if loaded_config_data is None:
logging.error("Anthropic: Failed to load configuration data.")
return "Anthropic: Failed to load configuration data."
# Initialize the API key
anthropic_api_key = api_key
# API key validation
if not api_key:
logging.info("Anthropic: API key not provided as parameter")
logging.info("Anthropic: Attempting to use API key from config file")
# Ensure 'api_keys' and 'anthropic' keys exist
try:
anthropic_api_key = loaded_config_data['api_keys']['anthropic']
logging.debug(f"Anthropic: Loaded API Key from config: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
except (KeyError, TypeError) as e:
logging.error(f"Anthropic: Error accessing API key from config: {str(e)}")
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
if not anthropic_api_key or anthropic_api_key == "":
logging.error("Anthropic: API key not found or is empty")
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
if anthropic_api_key:
logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
else:
logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")
if system_prompt is not None:
logging.debug("Anthropic: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
logging.debug("Anthropic: Using default system prompt")
logging.debug(f"AnthropicAI: Loaded data: {input_data}")
logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")
# Retrieve the model from config if not provided
if not model:
try:
anthropic_model = loaded_config_data['models']['anthropic']
logging.debug(f"Anthropic: Loaded model from config: {anthropic_model}")
except (KeyError, TypeError) as e:
logging.error(f"Anthropic: Error accessing model from config: {str(e)}")
return "Anthropic: Model configuration not found."
else:
anthropic_model = model
logging.debug(f"Anthropic: Using provided model: {anthropic_model}")
if temp is None:
temp = 1.0
logging.debug(f"Anthropic: Using default temperature: {temp}")
headers = {
'x-api-key': anthropic_api_key,
'anthropic-version': '2023-06-01',
'Content-Type': 'application/json'
}
anthropic_user_prompt = custom_prompt_arg if custom_prompt_arg else ""
logging.debug(f"Anthropic: User Prompt is '{anthropic_user_prompt}'")
user_message = {
"role": "user",
"content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
}
data = {
"model": anthropic_model,
"max_tokens": 4096, # max possible tokens to return
"messages": [user_message],
"stop_sequences": ["\n\nHuman:"],
"temperature": temp,
"top_k": 0,
"top_p": 1.0,
"metadata": {
"user_id": "example_user_id",
},
"stream": False,
"system": system_prompt
}
for attempt in range(max_retries):
try:
logging.debug("Anthropic: Posting request to API")
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
logging.debug(f"Anthropic: Full API response data: {response}")
# Check if the status code indicates success
if response.status_code == 200:
logging.debug("Anthropic: Post submittal successful")
response_data = response.json()
# Corrected path to access the assistant's reply
if 'content' in response_data and isinstance(response_data['content'], list) and len(response_data['content']) > 0:
chat_response = response_data['content'][0]['text'].strip()
logging.debug("Anthropic: Chat request successful")
print("Chat request processed successfully.")
return chat_response
else:
logging.error("Anthropic: Unexpected data structure in response.")
print("Unexpected response format from Anthropic API:", response.text)
return "Anthropic: Unexpected response format from API."
elif response.status_code == 500: # Handle internal server error specifically
logging.debug("Anthropic: Internal server error")
print("Internal server error from API. Retrying may be necessary.")
time.sleep(retry_delay)
else:
logging.debug(
f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
return f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}"
except requests.RequestException as e:
logging.error(f"Anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
if attempt < max_retries - 1:
logging.debug(f"Anthropic: Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
else:
return f"Anthropic: Network error: {str(e)}"
except Exception as e:
logging.error(f"Anthropic: Error in processing: {str(e)}")
return f"Anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
# Summarize with Cohere
def chat_with_cohere(api_key, input_data, model=None, custom_prompt_arg=None, system_prompt=None, temp=None):
loaded_config_data = load_and_log_configs()
cohere_api_key = None
try:
# API key validation
if api_key:
logging.info(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}")
cohere_api_key = api_key
else:
logging.info("Cohere Chat: API key not provided as parameter")
logging.info("Cohere Chat: Attempting to use API key from config file")
logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}")
cohere_api_key = loaded_config_data['api_keys']['cohere']
if cohere_api_key:
logging.debug(f"Cohere Chat: Cohere API Key from config: {cohere_api_key[:3]}...{cohere_api_key[-3:]}")
else:
logging.error("Cohere Chat: API key not found or is empty")
return "Cohere Chat: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"Cohere Chat: Loaded data: {input_data}")
logging.debug(f"Cohere Chat: Type of data: {type(input_data)}")
# Ensure model is set
if not model:
model = loaded_config_data['models']['cohere']
logging.debug(f"Cohere Chat: Using model: {model}")
if temp is None:
temp = 0.3
else:
try:
temp = float(temp)
except ValueError:
logging.warning(f"Cohere Chat: Invalid temperature value '{temp}', defaulting to 0.3")
temp = 0.3
headers = {
'accept': 'application/json',
'content-type': 'application/json',
'Authorization': f'Bearer {cohere_api_key}'
}
# Ensure system_prompt is set
if not system_prompt:
system_prompt = "You are a helpful assistant"
logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'")
cohere_prompt = input_data
if custom_prompt_arg:
cohere_prompt += f"\n\n{custom_prompt_arg}"
logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'")
data = {
"model" : model,
"temperature": temp,
"messages": [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": cohere_prompt,
}
],
}
logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}")
logging.debug("cohere chat: Submitting request to API endpoint")
print("cohere chat: Submitting request to API endpoint")
try:
response = requests.post('https://api.cohere.ai/v2/chat', headers=headers, json=data)
logging.debug(f"Cohere Chat: Raw API response: {response.text}")
except requests.RequestException as e:
logging.error(f"Cohere Chat: Error making API request: {str(e)}")
return f"Cohere Chat: Error making API request: {str(e)}"
if response.status_code == 200:
try:
response_data = response.json()
except json.JSONDecodeError:
logging.error("Cohere Chat: Failed to decode JSON response")
return "Cohere Chat: Failed to decode JSON response"
if response_data is None:
logging.error("Cohere Chat: No response data received.")
return "Cohere Chat: No response data received."
logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}")
if 'message' in response_data and 'content' in response_data['message']:
content = response_data['message']['content']
if isinstance(content, list) and len(content) > 0:
# Extract text from the first content block
text = content[0].get('text', '').strip()
if text:
logging.debug("Cohere Chat: Chat request successful")
print("Cohere Chat request processed successfully.")
return text
else:
logging.error("Cohere Chat: 'text' field is empty in response content.")
return "Cohere Chat: 'text' field is empty in response content."
else:
logging.error("Cohere Chat: 'content' field is not a list or is empty.")
return "Cohere Chat: 'content' field is not a list or is empty."
else:
logging.error("Cohere Chat: 'message' or 'content' field not found in API response.")
return "Cohere Chat: 'message' or 'content' field not found in API response."
elif response.status_code == 401:
error_message = "Cohere Chat: Unauthorized - Invalid API key"
logging.warning(error_message)
print(error_message)
return error_message
else:
logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}")
print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}")
return f"Cohere Chat: API request failed: {response.text}"
except Exception as e:
logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True)
return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}"
# https://console.groq.com/docs/quickstart
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Groq: Summarization process starting...")
try:
logging.debug("Groq: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
groq_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
groq_api_key = api_key
logging.info("Groq: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
groq_api_key = loaded_config_data['api_keys'].get('groq')
if groq_api_key:
logging.info("Groq: Using API key from config file")
else:
logging.warning("Groq: No API key found in config file")
# Final check to ensure we have a valid API key
if not groq_api_key or not groq_api_key.strip():
logging.error("Anthropic: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# For example: raise ValueError("No valid Anthropic API key available")
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")
# Transcript data handling & Validation
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Groq: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Groq: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"Groq: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Groq: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Groq: Invalid input data format")
# Set the model to be used
groq_model = loaded_config_data['models']['groq']
if temp is None:
temp = 0.2
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {groq_api_key}',
'Content-Type': 'application/json'
}
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
logging.debug("groq: Prompt being sent is {groq_prompt}")
data = {
"messages": [
{
"role": "system",
"content": system_message,
},
{
"role": "user",
"content": groq_prompt,
}
],
"model": groq_model,
"temperature": temp
}
logging.debug("groq: Submitting request to API endpoint")
print("groq: Submitting request to API endpoint")
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
response_data = response.json()
logging.debug(f"Full API response data: {response_data}")
if response.status_code == 200:
logging.debug(response_data)
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("groq: Chat request successful")
print("Groq: Chat request successful.")
return summary
else:
logging.error("Groq(chat): Expected data not found in API response.")
return "Groq(chat): Expected data not found in API response."
else:
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
return f"groq: API request failed: {response.text}"
except Exception as e:
logging.error("groq: Error in processing: %s", str(e))
return f"groq: Error occurred while processing summary with groq: {str(e)}"
def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
import requests
import json
global openrouter_model, openrouter_api_key
try:
logging.debug("OpenRouter: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
openrouter_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
openrouter_api_key = api_key
logging.info("OpenRouter: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
if openrouter_api_key:
logging.info("OpenRouter: Using API key from config file")
else:
logging.warning("OpenRouter: No API key found in config file")
# Model Selection validation
logging.debug("OpenRouter: Validating model selection")
loaded_config_data = load_and_log_configs()
openrouter_model = loaded_config_data['models']['openrouter']
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")
# Final check to ensure we have a valid API key
if not openrouter_api_key or not openrouter_api_key.strip():
logging.error("OpenRouter: No valid API key available")
raise ValueError("No valid Anthropic API key available")
except Exception as e:
logging.error("OpenRouter: Error in processing: %s", str(e))
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")
logging.debug(f"OpenRouter: Using Model: {openrouter_model}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("OpenRouter: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("OpenRouter: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"OpenRouter: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("OpenRouter: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("OpenRouter: Invalid input data format")
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")
if temp is None:
temp = 0.1
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
try:
logging.debug("OpenRouter: Submitting request to API endpoint")
print("OpenRouter: Submitting request to API endpoint")
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_api_key}",
},
data=json.dumps({
"model": openrouter_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openrouter_prompt}
],
"temperature": temp
})
)
response_data = response.json()
logging.debug("Full API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("openrouter: Chat request successful")
print("openrouter: Chat request successful.")
return summary
else:
logging.error("openrouter: Expected data not found in API response.")
return "openrouter: Expected data not found in API response."
else:
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
return f"openrouter: API request failed: {response.text}"
except Exception as e:
logging.error("openrouter: Error in processing: %s", str(e))
return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None):
logging.debug(f"huggingface Chat: Chat request process starting...")
try:
huggingface_api_key = os.getenv('HF_TOKEN')
if huggingface_api_key is None or huggingface_api_key.strip() == "":
logging.error("HuggingFace Chat: API key not found or is empty")
return "HuggingFace Chat: API Key Not Provided/Found in Config file or is empty"
if huggingface_api_key:
logging.info("HuggingFace Chat: Using API key from ENV")
headers = {
"Authorization": f"Bearer {huggingface_api_key}"
}
# Setup model
huggingface_model = "meta-llama/Llama-3.1-70B-Instruct"
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}/v1/chat/completions"
if temp is None:
temp = 1.0
temp = float(temp)
huggingface_prompt = f"{custom_prompt_arg}\n\n\n{input_data}"
logging.debug(f"HuggingFace chat: Prompt being sent is {huggingface_prompt}")
data = {
"model": f"{huggingface_model}",
"messages": [{"role": "user", "content": f"{huggingface_prompt}"}],
"max_tokens": 4096,
"stream": False,
"temperature": temp
}
logging.debug("HuggingFace Chat: Submitting request...")
response = requests.post(API_URL, headers=headers, json=data)
logging.debug(f"Full API response data: {response.text}")
if response.status_code == 200:
response_json = response.json()
if "choices" in response_json and len(response_json["choices"]) > 0:
generated_text = response_json["choices"][0]["message"]["content"]
logging.debug("HuggingFace Chat: Chat request successful")
print("HuggingFace Chat: Chat request successful.")
return generated_text.strip()
else:
logging.error("HuggingFace Chat: No generated text in the response")
return "HuggingFace Chat: No generated text in the response"
else:
logging.error(
f"HuggingFace Chat: Chat request failed with status code {response.status_code}: {response.text}")
return f"HuggingFace Chat: Failed to process chat request, status code {response.status_code}: {response.text}"
except Exception as e:
logging.error(f"HuggingFace Chat: Error in processing: {str(e)}")
print(f"HuggingFace Chat: Error occurred while processing chat request with huggingface: {str(e)}")
return None
def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=0.1, system_message="You are a helpful AI assistant who does whatever the user requests.", max_retries=3, retry_delay=5):
"""
Interacts with the DeepSeek API to generate summaries based on input data.
Parameters:
api_key (str): DeepSeek API key. If not provided, the key from the config is used.
input_data (str or list): The data to summarize. Can be a string or a list of segments.
custom_prompt_arg (str): Custom prompt to append to the input data.
temp (float, optional): Temperature setting for the model. Defaults to 0.1.
system_message (str, optional): System prompt for the assistant. Defaults to a helpful assistant message.
max_retries (int, optional): Maximum number of retries for failed API calls. Defaults to 3.
retry_delay (int, optional): Delay between retries in seconds. Defaults to 5.
Returns:
str: The summary generated by DeepSeek or an error message.
"""
logging.debug("DeepSeek: Summarization process starting...")
try:
logging.debug("DeepSeek: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("DeepSeek: Failed to load configuration data")
return "DeepSeek: Failed to load configuration data."
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
deepseek_api_key = api_key.strip()
logging.info("DeepSeek: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
if deepseek_api_key and deepseek_api_key.strip():
deepseek_api_key = deepseek_api_key.strip()
logging.info("DeepSeek: Using API key from config file")
else:
logging.error("DeepSeek: No valid API key available")
return "DeepSeek: API Key Not Provided/Found in Config file or is empty"
logging.debug("DeepSeek: Using API Key")
# Input data handling
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("DeepSeek: Loading JSON data for summarization")
with open(input_data, 'r', encoding='utf-8') as file:
try:
data = json.load(file)
except json.JSONDecodeError as e:
logging.error(f"DeepSeek: JSON decoding failed: {str(e)}")
return f"DeepSeek: Invalid JSON file. Error: {str(e)}"
else:
logging.debug("DeepSeek: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
if isinstance(data, str):
snipped_data = data[:500] + "..." if len(data) > 500 else data
logging.debug(f"DeepSeek: Loaded data (snipped to first 500 chars): {snipped_data}")
elif isinstance(data, list):
snipped_data = json.dumps(data[:2], indent=2) + "..." if len(data) > 2 else json.dumps(data, indent=2)
logging.debug(f"DeepSeek: Loaded data (snipped to first 2 segments): {snipped_data}")
else:
logging.debug(f"DeepSeek: Loaded data: {data}")
logging.debug(f"DeepSeek: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("DeepSeek: Summary already exists in the loaded data")
return data['summary']
# Text extraction
if isinstance(data, list):
segments = data
try:
text = extract_text_from_segments(segments)
logging.debug("DeepSeek: Extracted text from segments")
except Exception as e:
logging.error(f"DeepSeek: Error extracting text from segments: {str(e)}")
return f"DeepSeek: Error extracting text from segments: {str(e)}"
elif isinstance(data, str):
text = data
logging.debug("DeepSeek: Using string data directly")
else:
raise ValueError("DeepSeek: Invalid input data format")
# Retrieve the model from config if not provided
deepseek_model = loaded_config_data['models'].get('deepseek', "deepseek-chat")
logging.debug(f"DeepSeek: Using model: {deepseek_model}")
# Ensure temperature is a float within acceptable range
try:
temp = float(temp)
if not (0.0 <= temp <= 1.0):
logging.warning("DeepSeek: Temperature out of bounds (0.0 - 1.0). Setting to default 0.1")
temp = 0.1
except (ValueError, TypeError):
logging.warning("DeepSeek: Invalid temperature value. Setting to default 0.1")
temp = 0.1
# Set default system prompt if not provided
if system_message is not None:
logging.debug("DeepSeek: Using provided system prompt")
else:
system_message = "You are a helpful AI assistant who does whatever the user requests."
logging.debug("DeepSeek: Using default system prompt")
headers = {
'Authorization': f'Bearer {deepseek_api_key}',
'Content-Type': 'application/json'
}
logging.debug("DeepSeek: Preparing data and prompt for submittal")
deepseek_prompt = f"{text}\n\n\n\n{custom_prompt_arg}"
payload = {
"model": deepseek_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": deepseek_prompt}
],
"stream": False,
"temperature": temp
}
logging.debug("DeepSeek: Posting request to API")
for attempt in range(1, max_retries + 1):
try:
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=payload, timeout=30)
logging.debug(f"DeepSeek: Full API response: {response.status_code} - {response.text}")
if response.status_code == 200:
response_data = response.json()
logging.debug(f"DeepSeek: Response JSON: {json.dumps(response_data, indent=2)}")
# Adjust parsing based on actual API response structure
if 'choices' in response_data:
if len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("DeepSeek: Chat request successful")
return summary
else:
logging.error("DeepSeek: 'choices' key is empty in response")
else:
logging.error("DeepSeek: 'choices' key missing in response")
return "DeepSeek: Unexpected response format from API."
elif 500 <= response.status_code < 600:
logging.error(f"DeepSeek: Server error (status code {response.status_code}). Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
else:
logging.error(f"DeepSeek: Request failed with status code {response.status_code}. Response: {response.text}")
return f"DeepSeek: Failed to process chat request. Status code: {response.status_code}"
except requests.Timeout:
logging.error(f"DeepSeek: Request timed out. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
except requests.RequestException as e:
logging.error(f"DeepSeek: Request exception occurred: {str(e)}. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
if attempt < max_retries:
time.sleep(retry_delay)
else:
logging.error("DeepSeek: Max retries reached. Failed to get a successful response.")
return "DeepSeek: Failed to get a successful response from API after multiple attempts."
except Exception as e:
logging.error(f"DeepSeek: Unexpected error in processing: {str(e)}", exc_info=True)
return f"DeepSeek: Error occurred while processing chat request: {str(e)}"
def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Mistral: Chat request made")
try:
logging.debug("Mistral: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
mistral_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
mistral_api_key = api_key
logging.info("Mistral: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
mistral_api_key = loaded_config_data['api_keys'].get('mistral')
if mistral_api_key:
logging.info("Mistral: Using API key from config file")
else:
logging.warning("Mistral: No API key found in config file")
# Final check to ensure we have a valid API key
if not mistral_api_key or not mistral_api_key.strip():
logging.error("Mistral: No valid API key available")
return "Mistral: No valid API key available"
logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")
logging.debug("Mistral: Using provided string data")
data = input_data
# Text extraction
if isinstance(input_data, list):
text = extract_text_from_segments(input_data)
elif isinstance(input_data, str):
text = input_data
else:
raise ValueError("Mistral: Invalid input data format")
mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest")
temp = float(temp) if temp is not None else 0.2
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {mistral_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
logging.debug("Mistral: Preparing data + prompt for submittal")
mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
data = {
"model": mistral_model,
"messages": [
{"role": "system",
"content": system_message},
{"role": "user",
"content": mistral_prompt}
],
"temperature": temp,
"top_p": 1,
"max_tokens": 4096,
"stream": False,
"safe_prompt": False
}
logging.debug("Mistral: Posting request")
response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
logging.debug(f"Full API response data: {response}")
if response.status_code == 200:
response_data = response.json()
logging.debug(response_data)
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("Mistral: request successful")
return summary
else:
logging.warning("Mistral: Chat response not found in the response data")
return "Mistral: Chat response not available"
else:
logging.error(f"Mistral: Chat request failed with status code {response.status_code}")
logging.error(f"Mistral: Error response: {response.text}")
return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}"
except Exception as e:
logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
return f"Mistral: Error occurred while processing Chat: {str(e)}"
# Stashed in here since OpenAI usage.... #FIXME
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
# def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
# loaded_config_data = load_and_log_configs()
# llm_model = loaded_config_data['models']['vllm']
# # API key validation
# if api_key is None:
# logging.info("vLLM: API key not provided as parameter")
# logging.info("vLLM: Attempting to use API key from config file")
# api_key = loaded_config_data['api_keys']['llama']
#
# if api_key is None or api_key.strip() == "":
# logging.info("vLLM: API key not found or is empty")
# vllm_client = OpenAI(
# base_url=vllm_api_url,
# api_key=custom_prompt_input
# )
#
# if isinstance(input_data, str) and os.path.isfile(input_data):
# logging.debug("vLLM: Loading json data for summarization")
# with open(input_data, 'r') as file:
# data = json.load(file)
# else:
# logging.debug("vLLM: Using provided string data for summarization")
# data = input_data
#
# logging.debug(f"vLLM: Loaded data: {data}")
# logging.debug(f"vLLM: Type of data: {type(data)}")
#
# if isinstance(data, dict) and 'summary' in data:
# # If the loaded data is a dictionary and already contains a summary, return it
# logging.debug("vLLM: Summary already exists in the loaded data")
# return data['summary']
#
# # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
# if isinstance(data, list):
# segments = data
# text = extract_text_from_segments(segments)
# elif isinstance(data, str):
# text = data
# else:
# raise ValueError("Invalid input data format")
#
#
# custom_prompt = custom_prompt_input
#
# completion = client.chat.completions.create(
# model=llm_model,
# messages=[
# {"role": "system", "content": f"{system_prompt}"},
# {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
# ]
# )
# vllm_summary = completion.choices[0].message.content
# return vllm_summary
#
#
#######################################################################################################################