tldw / App_Function_Libraries /RAG /RAG_Library_2.py
oceansweep's picture
Rename App_Function_Libraries/RAG/RAG_Libary_2.py to App_Function_Libraries/RAG/RAG_Library_2.py
a589866 verified
raw
history blame
16.1 kB
# RAG_Library_2.py
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
#
# Import necessary modules and functions
import configparser
import logging
import os
from typing import Dict, Any, List, Optional
# Local Imports
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article
from App_Function_Libraries.DB.DB_Manager import search_db, fetch_keywords_for_media
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
#
# 3rd-Party Imports
import openai
#
########################################################################################################################
#
# Functions:
# Initialize OpenAI client (adjust this based on your API key management)
openai.api_key = "your-openai-api-key"
# Get the directory of the current script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the path to the config file
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
# Read the config file
config = configparser.ConfigParser()
# Read the configuration file
config.read('config.txt')
# RAG pipeline function for web scraping
# def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
# try:
# # Extract content
# try:
# article_data = scrape_article(url)
# content = article_data['content']
# title = article_data['title']
# except Exception as e:
# logging.error(f"Error scraping article: {str(e)}")
# return {"error": "Failed to scrape article", "details": str(e)}
#
# # Store the article in the database and get the media_id
# try:
# media_id = add_media_to_database(url, title, 'article', content)
# except Exception as e:
# logging.error(f"Error adding article to database: {str(e)}")
# return {"error": "Failed to store article in database", "details": str(e)}
#
# # Process and store content
# collection_name = f"article_{media_id}"
# try:
# # Assuming you have a database object available, let's call it 'db'
# db = get_database_connection()
#
# process_and_store_content(
# database=db,
# content=content,
# collection_name=collection_name,
# media_id=media_id,
# file_name=title,
# create_embeddings=True,
# create_contextualized=True,
# api_name=api_choice
# )
# except Exception as e:
# logging.error(f"Error processing and storing content: {str(e)}")
# return {"error": "Failed to process and store content", "details": str(e)}
#
# # Perform searches
# try:
# vector_results = vector_search(collection_name, query, k=5)
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
# except Exception as e:
# logging.error(f"Error performing searches: {str(e)}")
# return {"error": "Failed to perform searches", "details": str(e)}
#
# # Combine results with error handling for missing 'content' key
# all_results = []
# for result in vector_results + fts_results:
# if isinstance(result, dict) and 'content' in result:
# all_results.append(result['content'])
# else:
# logging.warning(f"Unexpected result format: {result}")
# all_results.append(str(result))
#
# context = "\n".join(all_results)
#
# # Generate answer using the selected API
# try:
# answer = generate_answer(api_choice, context, query)
# except Exception as e:
# logging.error(f"Error generating answer: {str(e)}")
# return {"error": "Failed to generate answer", "details": str(e)}
#
# return {
# "answer": answer,
# "context": context
# }
#
# except Exception as e:
# logging.error(f"Unexpected error in rag_pipeline: {str(e)}")
# return {"error": "An unexpected error occurred", "details": str(e)}
# RAG Search with keyword filtering
def enhanced_rag_pipeline(query: str, api_choice: str, keywords: str = None) -> Dict[str, Any]:
try:
# Load embedding provider from config, or fallback to 'openai'
embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
# Log the provider used
logging.debug(f"Using embedding provider: {embedding_provider}")
# Process keywords if provided
keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else []
logging.debug(f"enhanced_rag_pipeline - Keywords: {keyword_list}")
# Fetch relevant media IDs based on keywords if keywords are provided
relevant_media_ids = fetch_relevant_media_ids(keyword_list) if keyword_list else None
logging.debug(f"enhanced_rag_pipeline - relevant media IDs: {relevant_media_ids}")
# Perform vector search
vector_results = perform_vector_search(query, relevant_media_ids)
logging.debug(f"enhanced_rag_pipeline - Vector search results: {vector_results}")
# Perform full-text search
fts_results = perform_full_text_search(query, relevant_media_ids)
logging.debug(f"enhanced_rag_pipeline - Full-text search results: {fts_results}")
# Combine results
all_results = vector_results + fts_results
# FIXME - Apply Re-Ranking of results here
apply_re_ranking = False
if apply_re_ranking:
# Implement re-ranking logic here
pass
# Extract content from results
context = "\n".join([result['content'] for result in all_results[:10]]) # Limit to top 10 results
logging.debug(f"Context length: {len(context)}")
logging.debug(f"Context: {context[:200]}")
# Generate answer using the selected API
answer = generate_answer(api_choice, context, query)
if not all_results:
logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
return {
"answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
"context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
}
return {
"answer": answer,
"context": context
}
except Exception as e:
logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
return {
"answer": "An error occurred while processing your request.",
"context": ""
}
def generate_answer(api_choice: str, context: str, query: str) -> str:
logging.debug("Entering generate_answer function")
config = load_comprehensive_config()
logging.debug(f"Config sections: {config.sections()}")
prompt = f"Context: {context}\n\nQuestion: {query}"
if api_choice == "OpenAI":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai
return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
elif api_choice == "Anthropic":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
elif api_choice == "Cohere":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
elif api_choice == "Groq":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq
return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
elif api_choice == "OpenRouter":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
elif api_choice == "HuggingFace":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
elif api_choice == "DeepSeek":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
elif api_choice == "Mistral":
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
elif api_choice == "Local-LLM":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm
return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "")
elif api_choice == "Llama.cpp":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama
return summarize_with_llama(config['API']['llama_api_key'], prompt, "")
elif api_choice == "Kobold":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold
return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "")
elif api_choice == "Ooba":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga
return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "")
elif api_choice == "TabbyAPI":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi
return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "")
elif api_choice == "vLLM":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm
return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "")
elif api_choice == "ollama":
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama
return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "")
else:
raise ValueError(f"Unsupported API choice: {api_choice}")
def perform_vector_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
all_collections = chroma_client.list_collections()
vector_results = []
for collection in all_collections:
collection_results = vector_search(collection.name, query, k=5)
filtered_results = [
result for result in collection_results
if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids
]
vector_results.extend(filtered_results)
return vector_results
def perform_full_text_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
filtered_fts_results = [
{
"content": result['content'],
"metadata": {"media_id": result['id']}
}
for result in fts_results
if relevant_media_ids is None or result['id'] in relevant_media_ids
]
return filtered_fts_results
def fetch_relevant_media_ids(keywords: List[str]) -> List[int]:
relevant_ids = set()
try:
for keyword in keywords:
media_ids = fetch_keywords_for_media(keyword)
relevant_ids.update(media_ids)
except Exception as e:
logging.error(f"Error fetching relevant media IDs: {str(e)}")
return list(relevant_ids)
def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]:
if not keywords:
return results
filtered_results = []
for result in results:
try:
metadata = result.get('metadata', {})
if metadata is None:
logging.warning(f"No metadata found for result: {result}")
continue
if not isinstance(metadata, dict):
logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.")
continue
media_id = metadata.get('media_id')
if media_id is None:
logging.warning(f"No media_id found in metadata: {metadata}")
continue
media_keywords = fetch_keywords_for_media(media_id)
if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords):
filtered_results.append(result)
except Exception as e:
logging.error(f"Error processing result: {result}. Error: {str(e)}")
return filtered_results
# FIXME: to be implememted
def extract_media_id_from_result(result: str) -> Optional[int]:
# Implement this function based on how you store the media_id in your results
# For example, if it's stored at the beginning of each result:
try:
return int(result.split('_')[0])
except (IndexError, ValueError):
logging.error(f"Failed to extract media_id from result: {result}")
return None
#
#
########################################################################################################################
# Function to preprocess and store all existing content in the database
# def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"):
# unprocessed_media = get_unprocessed_media()
# total_media = len(unprocessed_media)
#
# for index, row in enumerate(unprocessed_media, 1):
# media_id, content, media_type, file_name = row
# collection_name = f"{media_type}_{media_id}"
#
# logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}")
#
# try:
# process_and_store_content(
# database=database,
# content=content,
# collection_name=collection_name,
# media_id=media_id,
# file_name=file_name or f"{media_type}_{media_id}",
# create_embeddings=True,
# create_contextualized=create_contextualized,
# api_name=api_name
# )
#
# # Mark the media as processed in the database
# mark_media_as_processed(database, media_id)
#
# logger.info(f"Successfully processed media ID {media_id}")
# except Exception as e:
# logger.error(f"Error processing media ID {media_id}: {str(e)}")
#
# logger.info("Finished preprocessing all unprocessed content")
############################################################################################################
#
# ElasticSearch Retriever
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
#
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
#
# End of RAG_Library_2.py
############################################################################################################