Spaces:
Running
Running
# Embeddings_tabc.py | |
# Description: This file contains the code for the RAG Chat tab in the Gradio UI | |
# | |
# Imports | |
import json | |
import logging | |
# | |
# External Imports | |
import gradio as gr | |
import numpy as np | |
from tqdm import tqdm | |
# | |
# Local Imports | |
from App_Function_Libraries.DB.DB_Manager import get_all_content_from_database | |
from App_Function_Libraries.RAG.ChromaDB_Library import chroma_client, \ | |
store_in_chroma, situate_context | |
from App_Function_Libraries.RAG.Embeddings_Create import create_embedding, create_embeddings_batch | |
from App_Function_Libraries.Chunk_Lib import improved_chunking_process, chunk_for_embedding | |
# | |
######################################################################################################################## | |
# | |
# Functions: | |
def create_embeddings_tab(): | |
with gr.TabItem("Create Embeddings"): | |
gr.Markdown("# Create Embeddings for All Content") | |
with gr.Row(): | |
with gr.Column(): | |
embedding_provider = gr.Radio( | |
choices=["huggingface", "local", "openai"], | |
label="Select Embedding Provider", | |
value="huggingface" | |
) | |
gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.") | |
gr.Markdown("OpenAI provider requires a valid API key.") | |
huggingface_model = gr.Dropdown( | |
choices=[ | |
"jinaai/jina-embeddings-v3", | |
"Alibaba-NLP/gte-large-en-v1.5", | |
"dunzhang/setll_en_400M_v5", | |
"custom" | |
], | |
label="Hugging Face Model", | |
value="jinaai/jina-embeddings-v3", | |
visible=True | |
) | |
openai_model = gr.Dropdown( | |
choices=[ | |
"text-embedding-3-small", | |
"text-embedding-3-large" | |
], | |
label="OpenAI Embedding Model", | |
value="text-embedding-3-small", | |
visible=False | |
) | |
custom_embedding_model = gr.Textbox( | |
label="Custom Embedding Model", | |
placeholder="Enter your custom embedding model name here", | |
visible=False | |
) | |
embedding_api_url = gr.Textbox( | |
label="API URL (for local provider)", | |
value="http://localhost:8080/embedding", | |
visible=False | |
) | |
# Add chunking options | |
chunking_method = gr.Dropdown( | |
choices=["words", "sentences", "paragraphs", "tokens", "semantic"], | |
label="Chunking Method", | |
value="words" | |
) | |
max_chunk_size = gr.Slider( | |
minimum=1, maximum=8000, step=1, value=500, | |
label="Max Chunk Size" | |
) | |
chunk_overlap = gr.Slider( | |
minimum=0, maximum=4000, step=1, value=200, | |
label="Chunk Overlap" | |
) | |
adaptive_chunking = gr.Checkbox( | |
label="Use Adaptive Chunking", | |
value=False | |
) | |
create_button = gr.Button("Create Embeddings") | |
with gr.Column(): | |
status_output = gr.Textbox(label="Status", lines=10) | |
def update_provider_options(provider): | |
if provider == "huggingface": | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
elif provider == "local": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
else: # OpenAI | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) | |
def update_huggingface_options(model): | |
if model == "custom": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
embedding_provider.change( | |
fn=update_provider_options, | |
inputs=[embedding_provider], | |
outputs=[huggingface_model, openai_model, custom_embedding_model, embedding_api_url] | |
) | |
huggingface_model.change( | |
fn=update_huggingface_options, | |
inputs=[huggingface_model], | |
outputs=[custom_embedding_model] | |
) | |
def create_all_embeddings(provider, hf_model, openai_model, custom_model, api_url, method, max_size, overlap, adaptive): | |
try: | |
all_content = get_all_content_from_database() | |
if not all_content: | |
return "No content found in the database." | |
chunk_options = { | |
'method': method, | |
'max_size': max_size, | |
'overlap': overlap, | |
'adaptive': adaptive | |
} | |
collection_name = "all_content_embeddings" | |
collection = chroma_client.get_or_create_collection(name=collection_name) | |
# Determine the model to use | |
if provider == "huggingface": | |
model = custom_model if hf_model == "custom" else hf_model | |
elif provider == "openai": | |
model = openai_model | |
else: | |
model = custom_model | |
for item in all_content: | |
media_id = item['id'] | |
text = item['content'] | |
chunks = improved_chunking_process(text, chunk_options) | |
for i, chunk in enumerate(chunks): | |
chunk_text = chunk['text'] | |
chunk_id = f"doc_{media_id}_chunk_{i}" | |
existing = collection.get(ids=[chunk_id]) | |
if existing['ids']: | |
continue | |
embedding = create_embedding(chunk_text, provider, model, api_url) | |
metadata = { | |
"media_id": str(media_id), | |
"chunk_index": i, | |
"total_chunks": len(chunks), | |
"chunking_method": method, | |
"max_chunk_size": max_size, | |
"chunk_overlap": overlap, | |
"adaptive_chunking": adaptive, | |
"embedding_model": model, | |
"embedding_provider": provider, | |
**chunk['metadata'] | |
} | |
store_in_chroma(collection_name, [chunk_text], [embedding], [chunk_id], [metadata]) | |
return "Embeddings created and stored successfully for all content." | |
except Exception as e: | |
logging.error(f"Error during embedding creation: {str(e)}") | |
return f"Error: {str(e)}" | |
create_button.click( | |
fn=create_all_embeddings, | |
inputs=[embedding_provider, huggingface_model, openai_model, custom_embedding_model, embedding_api_url, | |
chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking], | |
outputs=status_output | |
) | |
def create_view_embeddings_tab(): | |
with gr.TabItem("View/Update Embeddings"): | |
gr.Markdown("# View and Update Embeddings") | |
item_mapping = gr.State({}) | |
with gr.Row(): | |
with gr.Column(): | |
item_dropdown = gr.Dropdown(label="Select Item", choices=[], interactive=True) | |
refresh_button = gr.Button("Refresh Item List") | |
embedding_status = gr.Textbox(label="Embedding Status", interactive=False) | |
embedding_preview = gr.Textbox(label="Embedding Preview", interactive=False, lines=5) | |
embedding_metadata = gr.Textbox(label="Embedding Metadata", interactive=False, lines=10) | |
with gr.Column(): | |
create_new_embedding_button = gr.Button("Create New Embedding") | |
embedding_provider = gr.Radio( | |
choices=["huggingface", "local", "openai"], | |
label="Select Embedding Provider", | |
value="huggingface" | |
) | |
gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.") | |
gr.Markdown("OpenAI provider requires a valid API key.") | |
huggingface_model = gr.Dropdown( | |
choices=[ | |
"jinaai/jina-embeddings-v3", | |
"Alibaba-NLP/gte-large-en-v1.5", | |
"dunzhang/stella_en_400M_v5", | |
"custom" | |
], | |
label="Hugging Face Model", | |
value="jinaai/jina-embeddings-v3", | |
visible=True | |
) | |
openai_model = gr.Dropdown( | |
choices=[ | |
"text-embedding-3-small", | |
"text-embedding-3-large" | |
], | |
label="OpenAI Embedding Model", | |
value="text-embedding-3-small", | |
visible=False | |
) | |
custom_embedding_model = gr.Textbox( | |
label="Custom Embedding Model", | |
placeholder="Enter your custom embedding model name here", | |
visible=False | |
) | |
embedding_api_url = gr.Textbox( | |
label="API URL (for local provider)", | |
value="http://localhost:8080/embedding", | |
visible=False | |
) | |
chunking_method = gr.Dropdown( | |
choices=["words", "sentences", "paragraphs", "tokens", "semantic"], | |
label="Chunking Method", | |
value="words" | |
) | |
max_chunk_size = gr.Slider( | |
minimum=1, maximum=8000, step=5, value=500, | |
label="Max Chunk Size" | |
) | |
chunk_overlap = gr.Slider( | |
minimum=0, maximum=5000, step=5, value=200, | |
label="Chunk Overlap" | |
) | |
adaptive_chunking = gr.Checkbox( | |
label="Use Adaptive Chunking", | |
value=False | |
) | |
contextual_api_choice = gr.Dropdown( | |
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"], | |
label="Select API for Contextualized Embeddings", | |
value="OpenAI" | |
) | |
use_contextual_embeddings = gr.Checkbox( | |
label="Use Contextual Embeddings", | |
value=True | |
) | |
contextual_api_key = gr.Textbox(label="API Key", lines=1) | |
def get_items_with_embedding_status(): | |
try: | |
items = get_all_content_from_database() | |
collection = chroma_client.get_or_create_collection(name="all_content_embeddings") | |
choices = [] | |
new_item_mapping = {} | |
for item in items: | |
try: | |
result = collection.get(ids=[f"doc_{item['id']}_chunk_0"]) | |
embedding_exists = result is not None and result.get('ids') and len(result['ids']) > 0 | |
status = "Embedding exists" if embedding_exists else "No embedding" | |
except Exception as e: | |
print(f"Error checking embedding for item {item['id']}: {str(e)}") | |
status = "Error checking" | |
choice = f"{item['title']} ({status})" | |
choices.append(choice) | |
new_item_mapping[choice] = item['id'] | |
return gr.update(choices=choices), new_item_mapping | |
except Exception as e: | |
print(f"Error in get_items_with_embedding_status: {str(e)}") | |
return gr.update(choices=["Error: Unable to fetch items"]), {} | |
def update_provider_options(provider): | |
if provider == "huggingface": | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
elif provider == "local": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
else: # OpenAI | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) | |
def update_huggingface_options(model): | |
if model == "custom": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def check_embedding_status(selected_item, item_mapping): | |
if not selected_item: | |
return "Please select an item", "", "" | |
try: | |
item_id = item_mapping.get(selected_item) | |
if item_id is None: | |
return f"Invalid item selected: {selected_item}", "", "" | |
item_title = selected_item.rsplit(' (', 1)[0] | |
collection = chroma_client.get_or_create_collection(name="all_content_embeddings") | |
result = collection.get(ids=[f"doc_{item_id}_chunk_0"], include=["embeddings", "metadatas"]) | |
logging.info(f"ChromaDB result for item '{item_title}' (ID: {item_id}): {result}") | |
if not result['ids']: | |
return f"No embedding found for item '{item_title}' (ID: {item_id})", "", "" | |
if not result['embeddings'] or not result['embeddings'][0]: | |
return f"Embedding data missing for item '{item_title}' (ID: {item_id})", "", "" | |
embedding = result['embeddings'][0] | |
metadata = result['metadatas'][0] if result['metadatas'] else {} | |
embedding_preview = str(embedding[:50]) | |
status = f"Embedding exists for item '{item_title}' (ID: {item_id})" | |
return status, f"First 50 elements of embedding:\n{embedding_preview}", json.dumps(metadata, indent=2) | |
except Exception as e: | |
logging.error(f"Error in check_embedding_status: {str(e)}") | |
return f"Error processing item: {selected_item}. Details: {str(e)}", "", "" | |
def create_new_embedding_for_item(selected_item, provider, hf_model, openai_model, custom_model, api_url, | |
method, max_size, overlap, adaptive, | |
item_mapping, use_contextual, contextual_api_choice=None): | |
if not selected_item: | |
return "Please select an item", "", "" | |
try: | |
item_id = item_mapping.get(selected_item) | |
if item_id is None: | |
return f"Invalid item selected: {selected_item}", "", "" | |
items = get_all_content_from_database() | |
item = next((item for item in items if item['id'] == item_id), None) | |
if not item: | |
return f"Item not found: {item_id}", "", "" | |
chunk_options = { | |
'method': method, | |
'max_size': max_size, | |
'overlap': overlap, | |
'adaptive': adaptive | |
} | |
logging.info(f"Chunking content for item: {item['title']} (ID: {item_id})") | |
chunks = chunk_for_embedding(item['content'], item['title'], chunk_options) | |
collection_name = "all_content_embeddings" | |
collection = chroma_client.get_or_create_collection(name=collection_name) | |
# Delete existing embeddings for this item | |
existing_ids = [f"doc_{item_id}_chunk_{i}" for i in range(len(chunks))] | |
collection.delete(ids=existing_ids) | |
logging.info(f"Deleted {len(existing_ids)} existing embeddings for item {item_id}") | |
texts, ids, metadatas = [], [], [] | |
chunk_count = 0 | |
logging.info("Generating contextual summaries and preparing chunks for embedding") | |
for i, chunk in enumerate(chunks): | |
chunk_text = chunk['text'] | |
chunk_metadata = chunk['metadata'] | |
if use_contextual: | |
logging.debug(f"Generating contextual summary for chunk {chunk_count}") | |
context = situate_context(contextual_api_choice, item['content'], chunk_text) | |
contextualized_text = f"{chunk_text}\n\nContextual Summary: {context}" | |
else: | |
contextualized_text = chunk_text | |
context = None | |
chunk_id = f"doc_{item_id}_chunk_{i}" | |
# Determine the model to use | |
if provider == "huggingface": | |
model = custom_model if hf_model == "custom" else hf_model | |
elif provider == "openai": | |
model = openai_model | |
else: | |
model = custom_model | |
metadata = { | |
"media_id": str(item_id), | |
"chunk_index": i, | |
"total_chunks": len(chunks), | |
"chunking_method": method, | |
"max_chunk_size": max_size, | |
"chunk_overlap": overlap, | |
"adaptive_chunking": adaptive, | |
"embedding_model": model, | |
"embedding_provider": provider, | |
"original_text": chunk_text, | |
"use_contextual_embeddings": use_contextual, | |
"contextual_summary": context, | |
**chunk_metadata | |
} | |
texts.append(contextualized_text) | |
ids.append(chunk_id) | |
metadatas.append(metadata) | |
chunk_count += 1 | |
# Create embeddings in batch | |
logging.info(f"Creating embeddings for {len(texts)} chunks") | |
embeddings = create_embeddings_batch(texts, provider, model, api_url) | |
# Store in Chroma | |
store_in_chroma(collection_name, texts, embeddings, ids, metadatas) | |
# Create a preview of the first embedding | |
if isinstance(embeddings, np.ndarray) and embeddings.size > 0: | |
embedding_preview = str(embeddings[0][:50]) | |
elif isinstance(embeddings, list) and len(embeddings) > 0: | |
embedding_preview = str(embeddings[0][:50]) | |
else: | |
embedding_preview = "No embeddings created" | |
# Return status message | |
status = f"New embeddings created and stored for item: {item['title']} (ID: {item_id})" | |
# Add contextual summaries to status message if enabled | |
if use_contextual: | |
status += " (with contextual summaries)" | |
# Return status message, embedding preview, and metadata | |
return status, f"First 50 elements of new embedding:\n{embedding_preview}", json.dumps(metadatas[0], | |
indent=2) | |
except Exception as e: | |
logging.error(f"Error in create_new_embedding_for_item: {str(e)}", exc_info=True) | |
return f"Error creating embedding: {str(e)}", "", "" | |
refresh_button.click( | |
get_items_with_embedding_status, | |
outputs=[item_dropdown, item_mapping] | |
) | |
item_dropdown.change( | |
check_embedding_status, | |
inputs=[item_dropdown, item_mapping], | |
outputs=[embedding_status, embedding_preview, embedding_metadata] | |
) | |
create_new_embedding_button.click( | |
create_new_embedding_for_item, | |
inputs=[item_dropdown, embedding_provider, huggingface_model, openai_model, custom_embedding_model, embedding_api_url, | |
chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, item_mapping, | |
use_contextual_embeddings, contextual_api_choice], | |
outputs=[embedding_status, embedding_preview, embedding_metadata] | |
) | |
embedding_provider.change( | |
update_provider_options, | |
inputs=[embedding_provider], | |
outputs=[huggingface_model, openai_model, custom_embedding_model, embedding_api_url] | |
) | |
huggingface_model.change( | |
update_huggingface_options, | |
inputs=[huggingface_model], | |
outputs=[custom_embedding_model] | |
) | |
return (item_dropdown, refresh_button, embedding_status, embedding_preview, embedding_metadata, | |
create_new_embedding_button, embedding_provider, huggingface_model, openai_model, custom_embedding_model, embedding_api_url, | |
chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, | |
use_contextual_embeddings, contextual_api_choice, contextual_api_key) | |
def create_purge_embeddings_tab(): | |
with gr.TabItem("Purge Embeddings"): | |
gr.Markdown("# Purge Embeddings") | |
with gr.Row(): | |
with gr.Column(): | |
purge_button = gr.Button("Purge All Embeddings") | |
with gr.Column(): | |
status_output = gr.Textbox(label="Status", lines=10) | |
def purge_all_embeddings(): | |
try: | |
# It came to me in a dream....I literally don't remember how the fuck this works, cant find documentation... | |
collection_name = "all_content_embeddings" | |
chroma_client.delete_collection(collection_name) | |
chroma_client.create_collection(collection_name) | |
logging.info(f"All embeddings have been purged successfully.") | |
return "All embeddings have been purged successfully." | |
except Exception as e: | |
logging.error(f"Error during embedding purge: {str(e)}") | |
return f"Error: {str(e)}" | |
purge_button.click( | |
fn=purge_all_embeddings, | |
outputs=status_output | |
) | |
# | |
# End of file | |
######################################################################################################################## | |