oceansweep's picture
Upload 155 files
43cd37c verified
raw
history blame
5.64 kB
# html_to_markdown/dom_utils.py
from bs4 import BeautifulSoup, Tag
from typing import Optional
import logging
from conversion_options import ConversionOptions
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def find_main_content(soup: BeautifulSoup, options: ConversionOptions) -> Tag:
logger.debug("Entering find_main_content function")
main_element = soup.find('main')
if main_element:
logger.debug("Existing <main> element found")
return main_element
logger.debug("No <main> element found. Detecting main content.")
if not soup.body:
logger.debug("No body element found, returning the entire document")
return soup
return detect_main_content(soup.body, options)
def wrap_main_content(main_content: Tag, soup: BeautifulSoup):
if main_content.name.lower() != 'main':
logger.debug("Wrapping main content in <main> element")
main_element = soup.new_tag('main')
main_content.wrap(main_element)
main_element['id'] = 'detected-main-content'
logger.debug("Main content wrapped successfully")
else:
logger.debug("Main content already wrapped")
def detect_main_content(element: Tag, options: ConversionOptions) -> Tag:
candidates = []
min_score = 20
logger.debug(f"Collecting candidates with minimum score: {min_score}")
collect_candidates(element, candidates, min_score, options)
logger.debug(f"Total candidates found: {len(candidates)}")
if not candidates:
logger.debug("No suitable candidates found, returning root element")
return element
# Sort candidates by score descending
candidates.sort(key=lambda x: calculate_score(x, options), reverse=True)
logger.debug("Candidates sorted by score")
best_candidate = candidates[0]
for candidate in candidates[1:]:
if not any(other.contains(candidate) for other in candidates):
if calculate_score(candidate, options) > calculate_score(best_candidate, options):
best_candidate = candidate
logger.debug(f"New best independent candidate found: {element_to_string(best_candidate)}")
logger.debug(f"Final main content candidate: {element_to_string(best_candidate)}")
return best_candidate
def element_to_string(element: Optional[Tag]) -> str:
if not element:
return 'No element'
classes = '.'.join(element.get('class', []))
return f"{element.name}#{element.get('id', 'no-id')}.{classes}"
def collect_candidates(element: Tag, candidates: list, min_score: int, options: ConversionOptions):
score = calculate_score(element, options)
if score >= min_score:
candidates.append(element)
logger.debug(f"Candidate found: {element_to_string(element)}, score: {score}")
for child in element.find_all(recursive=False):
collect_candidates(child, candidates, min_score, options)
def calculate_score(element: Tag, options: ConversionOptions) -> int:
score = 0
score_log = []
# High impact attributes
high_impact_attributes = ['article', 'content', 'main-container', 'main', 'main-content']
for attr in high_impact_attributes:
if 'class' in element.attrs and attr in element['class']:
score += 10
score_log.append(f"High impact attribute found: {attr}, score increased by 10")
if 'id' in element.attrs and attr in element['id']:
score += 10
score_log.append(f"High impact ID found: {attr}, score increased by 10")
# High impact tags
high_impact_tags = ['article', 'main', 'section']
if element.name.lower() in high_impact_tags:
score += 5
score_log.append(f"High impact tag found: {element.name}, score increased by 5")
# Paragraph count
paragraph_count = len(element.find_all('p'))
paragraph_score = min(paragraph_count, 5)
if paragraph_score > 0:
score += paragraph_score
score_log.append(f"Paragraph count: {paragraph_count}, score increased by {paragraph_score}")
# Text content length
text_content_length = len(element.get_text(strip=True))
if text_content_length > 200:
text_score = min(text_content_length // 200, 5)
score += text_score
score_log.append(f"Text content length: {text_content_length}, score increased by {text_score}")
# Link density
link_density = calculate_link_density(element)
if link_density < 0.3:
score += 5
score_log.append(f"Link density: {link_density:.2f}, score increased by 5")
# Data attributes
if element.has_attr('data-main') or element.has_attr('data-content'):
score += 10
score_log.append("Data attribute for main content found, score increased by 10")
# Role attribute
if element.get('role') and 'main' in element.get('role'):
score += 10
score_log.append("Role attribute indicating main content found, score increased by 10")
if options.debug and score_log:
logger.debug(f"Scoring for {element_to_string(element)}:")
for log in score_log:
logger.debug(f" {log}")
logger.debug(f" Final score: {score}")
return score
def calculate_link_density(element: Tag) -> float:
links = element.find_all('a')
link_length = sum(len(link.get_text(strip=True)) for link in links)
text_length = len(element.get_text(strip=True)) or 1 # Avoid division by zero
return link_length / text_length