Spaces:
Running
Running
oceansweep
commited on
Delete App_Function_Libraries/Gradio_UI/MMLU_Pro_tab.py
Browse files
App_Function_Libraries/Gradio_UI/MMLU_Pro_tab.py
DELETED
@@ -1,115 +0,0 @@
|
|
1 |
-
# MMLU_Pro_tab.py
|
2 |
-
# is a library that contains the Gradio UI code for the MMLU-Pro benchmarking tool.
|
3 |
-
#
|
4 |
-
##############################################################################################################
|
5 |
-
# Imports
|
6 |
-
import os
|
7 |
-
|
8 |
-
import gradio as gr
|
9 |
-
import logging
|
10 |
-
#
|
11 |
-
# External Imports
|
12 |
-
from tqdm import tqdm
|
13 |
-
# Local Imports
|
14 |
-
from App_Function_Libraries.Benchmarks_Evaluations.MMLU_Pro.MMLU_Pro_rewritten import (
|
15 |
-
load_mmlu_pro, run_mmlu_pro_benchmark, mmlu_pro_main, load_mmlu_pro_config
|
16 |
-
)
|
17 |
-
#
|
18 |
-
##############################################################################################################
|
19 |
-
#
|
20 |
-
# Functions:
|
21 |
-
|
22 |
-
# Set up logging
|
23 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
24 |
-
logger = logging.getLogger(__name__)
|
25 |
-
|
26 |
-
|
27 |
-
def get_categories():
|
28 |
-
"""Fetch categories using the dataset loader from MMLU_Pro_rewritten.py"""
|
29 |
-
try:
|
30 |
-
test_data, _ = load_mmlu_pro() # Use the function from MMLU_Pro_rewritten.py
|
31 |
-
return list(test_data.keys()) # Return the categories from the test dataset
|
32 |
-
except Exception as e:
|
33 |
-
logger.error(f"Failed to load categories: {e}")
|
34 |
-
return ["Error loading categories"]
|
35 |
-
|
36 |
-
|
37 |
-
def load_categories():
|
38 |
-
"""Helper function to return the categories for the Gradio dropdown."""
|
39 |
-
categories = get_categories() # Fetch categories from the dataset
|
40 |
-
if categories:
|
41 |
-
return gr.update(choices=categories, value=categories[0]) # Update dropdown with categories
|
42 |
-
else:
|
43 |
-
return gr.update(choices=["Error loading categories"], value="Error loading categories")
|
44 |
-
|
45 |
-
|
46 |
-
def run_benchmark_from_ui(url, api_key, model, timeout, category, parallel, verbosity, log_prompt):
|
47 |
-
"""Function to run the benchmark with parameters from the UI."""
|
48 |
-
|
49 |
-
# Override config with UI parameters
|
50 |
-
config = load_mmlu_pro_config(
|
51 |
-
url=url,
|
52 |
-
api_key=api_key,
|
53 |
-
model=model,
|
54 |
-
timeout=timeout,
|
55 |
-
categories=[category] if category else None,
|
56 |
-
parallel=parallel,
|
57 |
-
verbosity=verbosity,
|
58 |
-
log_prompt=log_prompt
|
59 |
-
)
|
60 |
-
|
61 |
-
# Run the benchmarking process
|
62 |
-
try:
|
63 |
-
# Call the main benchmarking function
|
64 |
-
mmlu_pro_main()
|
65 |
-
|
66 |
-
# Assume the final report is generated in "eval_results" folder
|
67 |
-
report_path = os.path.join("eval_results", config["server"]["model"].replace("/", "-"), "final_report.txt")
|
68 |
-
|
69 |
-
# Read the final report
|
70 |
-
with open(report_path, "r") as f:
|
71 |
-
report = f.read()
|
72 |
-
|
73 |
-
return report
|
74 |
-
except Exception as e:
|
75 |
-
logger.error(f"An error occurred during benchmark execution: {e}")
|
76 |
-
return f"An error occurred during benchmark execution. Please check the logs for more information. Error: {str(e)}"
|
77 |
-
|
78 |
-
|
79 |
-
def create_mmlu_pro_tab():
|
80 |
-
"""Create the Gradio UI tab for MMLU-Pro Benchmark."""
|
81 |
-
with gr.Tab("MMLU-Pro Benchmark"):
|
82 |
-
gr.Markdown("## Run MMLU-Pro Benchmark")
|
83 |
-
|
84 |
-
with gr.Row():
|
85 |
-
with gr.Column():
|
86 |
-
# Inputs for the benchmark
|
87 |
-
url = gr.Textbox(label="Server URL")
|
88 |
-
api_key = gr.Textbox(label="API Key", type="password")
|
89 |
-
model = gr.Textbox(label="Model Name")
|
90 |
-
timeout = gr.Number(label="Timeout (seconds)", value=30)
|
91 |
-
category = gr.Dropdown(label="Category", choices=["Load categories..."])
|
92 |
-
load_categories_btn = gr.Button("Load Categories")
|
93 |
-
parallel = gr.Slider(label="Parallel Requests", minimum=1, maximum=10, step=1, value=1)
|
94 |
-
verbosity = gr.Slider(label="Verbosity Level", minimum=0, maximum=2, step=1, value=1)
|
95 |
-
log_prompt = gr.Checkbox(label="Log Prompt")
|
96 |
-
|
97 |
-
with gr.Column():
|
98 |
-
# Run button and output display
|
99 |
-
run_button = gr.Button("Run Benchmark")
|
100 |
-
output = gr.Textbox(label="Benchmark Results", lines=20)
|
101 |
-
|
102 |
-
# When "Load Categories" is clicked, load the categories into the dropdown
|
103 |
-
load_categories_btn.click(
|
104 |
-
load_categories,
|
105 |
-
outputs=category
|
106 |
-
)
|
107 |
-
|
108 |
-
# When "Run Benchmark" is clicked, trigger the run_benchmark_from_ui function
|
109 |
-
run_button.click(
|
110 |
-
run_benchmark_from_ui, # Use the function defined to run the benchmark
|
111 |
-
inputs=[url, api_key, model, timeout, category, parallel, verbosity, log_prompt],
|
112 |
-
outputs=output
|
113 |
-
)
|
114 |
-
|
115 |
-
return [url, api_key, model, timeout, category, parallel, verbosity, log_prompt, run_button, output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|