Spaces:
Running
Running
oceansweep
commited on
Commit
•
0c961d6
1
Parent(s):
8755180
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,10 @@ import gradio as gr
|
|
17 |
import torch
|
18 |
import yt_dlp
|
19 |
|
|
|
|
|
|
|
|
|
20 |
#######
|
21 |
# Function Sections
|
22 |
#
|
@@ -39,7 +43,7 @@ import yt_dlp
|
|
39 |
# 2. Usage of/Hardcoding HF_TOKEN as token for API calls
|
40 |
# 3. Usage of HuggingFace for Inference
|
41 |
# 4. Other stuff I can't remember. Will eventually do a diff and document them.
|
42 |
-
#
|
43 |
|
44 |
|
45 |
####
|
@@ -63,10 +67,10 @@ import yt_dlp
|
|
63 |
# llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:** python summarize.py
|
64 |
# -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into
|
65 |
# `config.txt` under the appropriate API variable
|
66 |
-
#
|
67 |
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
|
68 |
# python summarize.py ./local/file_on_your/system --api_name <API_name>`
|
69 |
-
#
|
70 |
# Run it as a WebApp**
|
71 |
# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it.
|
72 |
# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server.
|
@@ -120,7 +124,7 @@ output_path = config.get('Paths', 'output_path', fallback='results')
|
|
120 |
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
|
121 |
|
122 |
# Log file
|
123 |
-
#logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG)
|
124 |
|
125 |
#
|
126 |
#
|
@@ -148,8 +152,8 @@ print(r"""
|
|
148 |
| | | | / / | | | || |/\| |
|
149 |
| | | |____ / / | |/ / \ /\ / _
|
150 |
\_/ \_____//_/ |___/ \/ \/ (_)
|
151 |
-
|
152 |
-
|
153 |
_ _
|
154 |
| | | |
|
155 |
| |_ ___ ___ | | ___ _ __ __ _
|
@@ -168,8 +172,8 @@ print(r"""
|
|
168 |
|
169 |
####################################################################################################################################
|
170 |
# System Checks
|
171 |
-
#
|
172 |
-
#
|
173 |
|
174 |
# Perform Platform Check
|
175 |
userOS = ""
|
@@ -222,7 +226,7 @@ def decide_cpugpu():
|
|
222 |
|
223 |
# check for existence of ffmpeg
|
224 |
def check_ffmpeg():
|
225 |
-
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile("
|
226 |
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
|
227 |
pass
|
228 |
else:
|
@@ -291,13 +295,13 @@ def download_ffmpeg():
|
|
291 |
|
292 |
|
293 |
#
|
294 |
-
#
|
295 |
####################################################################################################################################
|
296 |
|
297 |
|
298 |
####################################################################################################################################
|
299 |
# Processing Paths and local file handling
|
300 |
-
#
|
301 |
#
|
302 |
|
303 |
def read_paths_from_file(file_path):
|
@@ -488,7 +492,7 @@ def download_video(video_url, download_path, info_dict, download_video_flag):
|
|
488 |
if userOS == "Windows":
|
489 |
logging.debug("Running ffmpeg on Windows...")
|
490 |
ffmpeg_command = [
|
491 |
-
'
|
492 |
'-i', video_file_path,
|
493 |
'-i', audio_file_path,
|
494 |
'-c:v', 'copy',
|
@@ -508,8 +512,8 @@ def download_video(video_url, download_path, info_dict, download_video_flag):
|
|
508 |
]
|
509 |
subprocess.run(ffmpeg_command, check=True)
|
510 |
else:
|
511 |
-
logging.error("
|
512 |
-
|
513 |
os.remove(video_file_path)
|
514 |
os.remove(audio_file_path)
|
515 |
|
@@ -529,7 +533,7 @@ def download_video(video_url, download_path, info_dict, download_video_flag):
|
|
529 |
# https://www.gyan.dev/ffmpeg/builds/
|
530 |
#
|
531 |
|
532 |
-
#os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
533 |
def convert_to_wav(video_file_path, offset=0):
|
534 |
print("Starting conversion process of .m4a to .WAV")
|
535 |
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
@@ -539,7 +543,8 @@ def convert_to_wav(video_file_path, offset=0):
|
|
539 |
logging.debug("ffmpeg being ran on windows")
|
540 |
|
541 |
if sys.platform.startswith('win'):
|
542 |
-
ffmpeg_cmd = "
|
|
|
543 |
else:
|
544 |
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
545 |
|
@@ -749,7 +754,7 @@ def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='sm
|
|
749 |
|
750 |
|
751 |
####################################################################################################################################
|
752 |
-
#Summarizers
|
753 |
#
|
754 |
#
|
755 |
|
@@ -885,7 +890,6 @@ def summarize_with_claude(api_key, file_path, model, custom_prompt):
|
|
885 |
# Summarize with Cohere
|
886 |
def summarize_with_cohere(api_key, file_path, model, custom_prompt):
|
887 |
try:
|
888 |
-
logging.basicConfig(level=logging.DEBUG)
|
889 |
logging.debug("cohere: Loading JSON data")
|
890 |
with open(file_path, 'r') as file:
|
891 |
segments = json.load(file)
|
@@ -1023,7 +1027,7 @@ def summarize_with_llama(api_url, file_path, token, custom_prompt):
|
|
1023 |
logging.debug("API Response Data: %s", response_data)
|
1024 |
|
1025 |
if response.status_code == 200:
|
1026 |
-
#if 'X' in response_data:
|
1027 |
logging.debug(response_data)
|
1028 |
summary = response_data['content'].strip()
|
1029 |
logging.debug("llama: Summarization successful")
|
@@ -1236,36 +1240,53 @@ def process_text(api_key, text_file):
|
|
1236 |
return "Notice:", message
|
1237 |
|
1238 |
|
|
|
|
|
|
|
|
|
1239 |
def launch_ui(demo_mode=False):
|
1240 |
def process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter,
|
1241 |
download_video):
|
|
|
1242 |
try:
|
1243 |
-
# Assuming 'main' is the function that handles the processing logic.
|
1244 |
-
# Adjust parameters as needed based on your actual 'main' function implementation.
|
1245 |
results = main(url, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
1246 |
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
1247 |
download_video_flag=download_video, custom_prompt=custom_prompt)
|
1248 |
|
1249 |
if results:
|
1250 |
transcription_result = results[0]
|
1251 |
-
json_data = transcription_result['transcription']
|
1252 |
-
summary_file_path = transcription_result.get('summary', "Summary not available.")
|
1253 |
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
|
|
|
|
1254 |
video_file_path = transcription_result.get('video_path', None)
|
1255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1256 |
else:
|
1257 |
-
|
|
|
|
|
1258 |
except Exception as e:
|
1259 |
-
return str(e), "Error processing the request.", None, None, None
|
1260 |
|
1261 |
inputs = [
|
1262 |
gr.components.Textbox(label="URL", placeholder="Enter the video URL here"),
|
1263 |
gr.components.Number(value=2, label="Number of Speakers"),
|
1264 |
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
1265 |
-
gr.components.Textbox(label="Custom Prompt",
|
|
|
|
|
1266 |
gr.components.Number(value=0, label="Offset"),
|
1267 |
gr.components.Dropdown(
|
1268 |
choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
|
|
|
1269 |
label="API Name"),
|
1270 |
gr.components.Textbox(label="API Key", placeholder="Enter your API key here"),
|
1271 |
gr.components.Checkbox(label="VAD Filter", value=False),
|
@@ -1292,6 +1313,68 @@ def launch_ui(demo_mode=False):
|
|
1292 |
iface.launch(share=False)
|
1293 |
|
1294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1295 |
#
|
1296 |
#
|
1297 |
#####################################################################################################################################
|
@@ -1303,6 +1386,7 @@ def launch_ui(demo_mode=False):
|
|
1303 |
|
1304 |
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False,
|
1305 |
download_video_flag=False, demo_mode=False, custom_prompt=None):
|
|
|
1306 |
if input_path is None and args.user_interface:
|
1307 |
return []
|
1308 |
start_time = time.monotonic()
|
@@ -1332,7 +1416,12 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
1332 |
download_path = create_download_directory(info_dict['title'])
|
1333 |
logging.debug("MAIN: Path created successfully")
|
1334 |
logging.debug("MAIN: Downloading video from yt_dlp...")
|
1335 |
-
|
|
|
|
|
|
|
|
|
|
|
1336 |
logging.debug("MAIN: Video downloaded successfully")
|
1337 |
logging.debug("MAIN: Converting video file to WAV...")
|
1338 |
audio_file = convert_to_wav(video_path, offset)
|
@@ -1362,6 +1451,7 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
1362 |
json_file_path = audio_file.replace('.wav', '.segments.json')
|
1363 |
if api_name.lower() == 'openai':
|
1364 |
api_key = openai_api_key
|
|
|
1365 |
try:
|
1366 |
logging.debug(f"MAIN: trying to summarize with openAI")
|
1367 |
summary = summarize_with_openai(api_key, json_file_path, openai_model, custom_prompt)
|
@@ -1436,7 +1526,7 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
1436 |
logging.error(f"Error processing path: {path}")
|
1437 |
logging.error(str(e))
|
1438 |
end_time = time.monotonic()
|
1439 |
-
#print("Total program execution time: " + timedelta(seconds=end_time - start_time))
|
1440 |
|
1441 |
return results
|
1442 |
|
@@ -1451,15 +1541,16 @@ if __name__ == "__main__":
|
|
1451 |
help='Whisper model (default: small.en)')
|
1452 |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
1453 |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
1454 |
-
|
1455 |
-
|
|
|
1456 |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
1457 |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
1458 |
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
1459 |
help='Pass in a custom prompt to be used in place of the existing one.(Probably should just modify the script itself...)')
|
1460 |
-
#parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
1461 |
args = parser.parse_args()
|
1462 |
-
|
1463 |
custom_prompt = args.custom_prompt
|
1464 |
if custom_prompt == "":
|
1465 |
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt")
|
@@ -1469,31 +1560,31 @@ if __name__ == "__main__":
|
|
1469 |
args.custom_prompt = "\n\nQ: As a professional summarizer, create a concise and comprehensive summary of the provided text.\nA: Here is a detailed, bulleted list of the key points made in the transcribed video and supporting arguments:"
|
1470 |
print("No custom prompt defined, will use default")
|
1471 |
|
1472 |
-
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
1473 |
# True
|
1474 |
-
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
1475 |
# Tesla T4
|
1476 |
|
1477 |
# Since this is running in HF....
|
1478 |
args.user_interface = True
|
1479 |
if args.user_interface:
|
|
|
|
|
1480 |
launch_ui(demo_mode=args.demo_mode)
|
1481 |
else:
|
1482 |
if not args.input_path:
|
1483 |
parser.print_help()
|
1484 |
sys.exit(1)
|
1485 |
|
1486 |
-
logging.
|
1487 |
-
|
1488 |
logging.info('Starting the transcription and summarization process.')
|
1489 |
logging.info(f'Input path: {args.input_path}')
|
1490 |
logging.info(f'API Name: {args.api_name}')
|
1491 |
-
logging.debug(f'API Key: {args.api_key}') # ehhhhh
|
1492 |
logging.info(f'Number of speakers: {args.num_speakers}')
|
1493 |
logging.info(f'Whisper model: {args.whisper_model}')
|
1494 |
logging.info(f'Offset: {args.offset}')
|
1495 |
logging.info(f'VAD filter: {args.vad_filter}')
|
1496 |
-
logging.info(f'Log Level: {args.log_level}') #lol
|
1497 |
|
1498 |
if args.api_name and args.api_key:
|
1499 |
logging.info(f'API: {args.api_name}')
|
|
|
17 |
import torch
|
18 |
import yt_dlp
|
19 |
|
20 |
+
log_level = "DEBUG"
|
21 |
+
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
22 |
+
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
23 |
+
|
24 |
#######
|
25 |
# Function Sections
|
26 |
#
|
|
|
43 |
# 2. Usage of/Hardcoding HF_TOKEN as token for API calls
|
44 |
# 3. Usage of HuggingFace for Inference
|
45 |
# 4. Other stuff I can't remember. Will eventually do a diff and document them.
|
46 |
+
#
|
47 |
|
48 |
|
49 |
####
|
|
|
67 |
# llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:** python summarize.py
|
68 |
# -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into
|
69 |
# `config.txt` under the appropriate API variable
|
70 |
+
#
|
71 |
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
|
72 |
# python summarize.py ./local/file_on_your/system --api_name <API_name>`
|
73 |
+
#
|
74 |
# Run it as a WebApp**
|
75 |
# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it.
|
76 |
# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server.
|
|
|
124 |
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
|
125 |
|
126 |
# Log file
|
127 |
+
# logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG)
|
128 |
|
129 |
#
|
130 |
#
|
|
|
152 |
| | | | / / | | | || |/\| |
|
153 |
| | | |____ / / | |/ / \ /\ / _
|
154 |
\_/ \_____//_/ |___/ \/ \/ (_)
|
155 |
+
|
156 |
+
|
157 |
_ _
|
158 |
| | | |
|
159 |
| |_ ___ ___ | | ___ _ __ __ _
|
|
|
172 |
|
173 |
####################################################################################################################################
|
174 |
# System Checks
|
175 |
+
#
|
176 |
+
#
|
177 |
|
178 |
# Perform Platform Check
|
179 |
userOS = ""
|
|
|
226 |
|
227 |
# check for existence of ffmpeg
|
228 |
def check_ffmpeg():
|
229 |
+
if shutil.which("ffmpeg") or (os.path.exists("..\\Bin") and os.path.isfile("..\\Bin\\ffmpeg.exe")):
|
230 |
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
|
231 |
pass
|
232 |
else:
|
|
|
295 |
|
296 |
|
297 |
#
|
298 |
+
#
|
299 |
####################################################################################################################################
|
300 |
|
301 |
|
302 |
####################################################################################################################################
|
303 |
# Processing Paths and local file handling
|
304 |
+
#
|
305 |
#
|
306 |
|
307 |
def read_paths_from_file(file_path):
|
|
|
492 |
if userOS == "Windows":
|
493 |
logging.debug("Running ffmpeg on Windows...")
|
494 |
ffmpeg_command = [
|
495 |
+
'..\\Bin\\ffmpeg.exe',
|
496 |
'-i', video_file_path,
|
497 |
'-i', audio_file_path,
|
498 |
'-c:v', 'copy',
|
|
|
512 |
]
|
513 |
subprocess.run(ffmpeg_command, check=True)
|
514 |
else:
|
515 |
+
logging.error("ffmpeg: Unsupported operating system for video download and merging.")
|
516 |
+
raise RuntimeError("ffmpeg: Unsupported operating system for video download and merging.")
|
517 |
os.remove(video_file_path)
|
518 |
os.remove(audio_file_path)
|
519 |
|
|
|
533 |
# https://www.gyan.dev/ffmpeg/builds/
|
534 |
#
|
535 |
|
536 |
+
# os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
537 |
def convert_to_wav(video_file_path, offset=0):
|
538 |
print("Starting conversion process of .m4a to .WAV")
|
539 |
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
|
|
543 |
logging.debug("ffmpeg being ran on windows")
|
544 |
|
545 |
if sys.platform.startswith('win'):
|
546 |
+
ffmpeg_cmd = "..\\Bin\\ffmpeg.exe"
|
547 |
+
logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}")
|
548 |
else:
|
549 |
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
550 |
|
|
|
754 |
|
755 |
|
756 |
####################################################################################################################################
|
757 |
+
# Summarizers
|
758 |
#
|
759 |
#
|
760 |
|
|
|
890 |
# Summarize with Cohere
|
891 |
def summarize_with_cohere(api_key, file_path, model, custom_prompt):
|
892 |
try:
|
|
|
893 |
logging.debug("cohere: Loading JSON data")
|
894 |
with open(file_path, 'r') as file:
|
895 |
segments = json.load(file)
|
|
|
1027 |
logging.debug("API Response Data: %s", response_data)
|
1028 |
|
1029 |
if response.status_code == 200:
|
1030 |
+
# if 'X' in response_data:
|
1031 |
logging.debug(response_data)
|
1032 |
summary = response_data['content'].strip()
|
1033 |
logging.debug("llama: Summarization successful")
|
|
|
1240 |
return "Notice:", message
|
1241 |
|
1242 |
|
1243 |
+
def format_file_path(file_path):
|
1244 |
+
# Helper function to check file existence and return an appropriate path or message
|
1245 |
+
return file_path if file_path and os.path.exists(file_path) else None
|
1246 |
+
|
1247 |
def launch_ui(demo_mode=False):
|
1248 |
def process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter,
|
1249 |
download_video):
|
1250 |
+
video_file_path = None
|
1251 |
try:
|
|
|
|
|
1252 |
results = main(url, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
1253 |
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
1254 |
download_video_flag=download_video, custom_prompt=custom_prompt)
|
1255 |
|
1256 |
if results:
|
1257 |
transcription_result = results[0]
|
|
|
|
|
1258 |
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
1259 |
+
summary_file_path = transcription_result.get('summary', None)
|
1260 |
+
|
1261 |
video_file_path = transcription_result.get('video_path', None)
|
1262 |
+
if summary:
|
1263 |
+
transcription_result['summary'] = summary
|
1264 |
+
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt')
|
1265 |
+
transcription_result['summary_file_path'] = summary_file_path
|
1266 |
+
logging.info(f"Summary generated using {api_name} API")
|
1267 |
+
save_summary_to_file(summary, json_file_path)
|
1268 |
+
return transcription_result['transcription'], "Summary available.", json_file_path, summary_file_path, video_file_path
|
1269 |
+
else:
|
1270 |
+
return transcription_result[
|
1271 |
+
'transcription'], "Summary not available.", json_file_path, None, video_file_path
|
1272 |
else:
|
1273 |
+
logging.warning(f"Failed to generate summary using {api_name} API")
|
1274 |
+
return "No results found.", "Summary not available.", None, None, None
|
1275 |
+
|
1276 |
except Exception as e:
|
1277 |
+
return str(e), "Error processing the request.", None, None, None
|
1278 |
|
1279 |
inputs = [
|
1280 |
gr.components.Textbox(label="URL", placeholder="Enter the video URL here"),
|
1281 |
gr.components.Number(value=2, label="Number of Speakers"),
|
1282 |
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
1283 |
+
gr.components.Textbox(label="Custom Prompt",
|
1284 |
+
placeholder="Q: As a professional summarizer, create a concise and comprehensive summary of the provided text.\nA: Here is a detailed, bulleted list of the key points made in the transcribed video and supporting arguments:",
|
1285 |
+
lines=3),
|
1286 |
gr.components.Number(value=0, label="Offset"),
|
1287 |
gr.components.Dropdown(
|
1288 |
choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
|
1289 |
+
value="huggingface",
|
1290 |
label="API Name"),
|
1291 |
gr.components.Textbox(label="API Key", placeholder="Enter your API key here"),
|
1292 |
gr.components.Checkbox(label="VAD Filter", value=False),
|
|
|
1313 |
iface.launch(share=False)
|
1314 |
|
1315 |
|
1316 |
+
|
1317 |
+
|
1318 |
+
a = """def launch_ui(demo_mode=False):
|
1319 |
+
def process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter,
|
1320 |
+
download_video):
|
1321 |
+
try:
|
1322 |
+
results = main(url, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
1323 |
+
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
1324 |
+
download_video_flag=download_video, custom_prompt=custom_prompt)
|
1325 |
+
|
1326 |
+
if results:
|
1327 |
+
transcription_result = results[0]
|
1328 |
+
json_data = transcription_result['transcription']
|
1329 |
+
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
1330 |
+
summary_file_path = transcription_result.get('summary', "Summary not available.")
|
1331 |
+
video_file_path = transcription_result.get('video_path', None)
|
1332 |
+
|
1333 |
+
json_file_path = format_file_path(json_file_path)
|
1334 |
+
summary_file_path = format_file_path(summary_file_path)
|
1335 |
+
|
1336 |
+
return json_data, "Summary available", json_file_path, summary_file_path, video_file_path
|
1337 |
+
else:
|
1338 |
+
return "No results found.", "No summary available.", None, None, None
|
1339 |
+
except Exception as e:
|
1340 |
+
return str(e), "Error processing the request.", None, None, None, None
|
1341 |
+
|
1342 |
+
inputs = [
|
1343 |
+
gr.components.Textbox(label="URL", placeholder="Enter the video URL here"),
|
1344 |
+
gr.components.Number(value=2, label="Number of Speakers"),
|
1345 |
+
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
1346 |
+
gr.components.Textbox(label="Custom Prompt",
|
1347 |
+
placeholder="Q: As a professional summarizer, create a concise and comprehensive summary of the provided text.\nA: Here is a detailed, bulleted list of the key points made in the transcribed video and supporting arguments:",
|
1348 |
+
lines=3),
|
1349 |
+
gr.components.Number(value=0, label="Offset"),
|
1350 |
+
gr.components.Dropdown(
|
1351 |
+
choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
|
1352 |
+
label="API Name"),
|
1353 |
+
gr.components.Textbox(label="API Key", placeholder="Enter your API key here"),
|
1354 |
+
gr.components.Checkbox(label="VAD Filter", value=False),
|
1355 |
+
gr.components.Checkbox(label="Download Video", value=False)
|
1356 |
+
]
|
1357 |
+
|
1358 |
+
outputs = [
|
1359 |
+
gr.components.Textbox(label="Transcription"),
|
1360 |
+
gr.components.Textbox(label="Summary or Status Message"),
|
1361 |
+
gr.components.File(label="Download Transcription as JSON", visible=lambda x: x != "File not available"),
|
1362 |
+
gr.components.File(label="Download Summary as Text", visible=lambda x: x != "File not available"),
|
1363 |
+
gr.components.File(label="Download Video", visible=lambda x: x is not None)
|
1364 |
+
]
|
1365 |
+
|
1366 |
+
iface = gr.Interface(
|
1367 |
+
fn=process_url,
|
1368 |
+
inputs=inputs,
|
1369 |
+
outputs=outputs,
|
1370 |
+
title="Video Transcription and Summarization",
|
1371 |
+
description="Submit a video URL for transcription and summarization. Ensure you input all necessary information including API keys.",
|
1372 |
+
theme="bethecloud/storj_theme" # Adjust theme as necessary
|
1373 |
+
)
|
1374 |
+
|
1375 |
+
iface.launch(share=False)
|
1376 |
+
"""
|
1377 |
+
|
1378 |
#
|
1379 |
#
|
1380 |
#####################################################################################################################################
|
|
|
1386 |
|
1387 |
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False,
|
1388 |
download_video_flag=False, demo_mode=False, custom_prompt=None):
|
1389 |
+
global summary
|
1390 |
if input_path is None and args.user_interface:
|
1391 |
return []
|
1392 |
start_time = time.monotonic()
|
|
|
1416 |
download_path = create_download_directory(info_dict['title'])
|
1417 |
logging.debug("MAIN: Path created successfully")
|
1418 |
logging.debug("MAIN: Downloading video from yt_dlp...")
|
1419 |
+
try:
|
1420 |
+
video_path = download_video(path, download_path, info_dict, download_video_flag)
|
1421 |
+
except RuntimeError as e:
|
1422 |
+
logging.error(f"Error downloading video: {str(e)}")
|
1423 |
+
#FIXME - figure something out for handling this situation....
|
1424 |
+
continue
|
1425 |
logging.debug("MAIN: Video downloaded successfully")
|
1426 |
logging.debug("MAIN: Converting video file to WAV...")
|
1427 |
audio_file = convert_to_wav(video_path, offset)
|
|
|
1451 |
json_file_path = audio_file.replace('.wav', '.segments.json')
|
1452 |
if api_name.lower() == 'openai':
|
1453 |
api_key = openai_api_key
|
1454 |
+
logging.debug(f"MAIN: API Key in main: {api_key}")
|
1455 |
try:
|
1456 |
logging.debug(f"MAIN: trying to summarize with openAI")
|
1457 |
summary = summarize_with_openai(api_key, json_file_path, openai_model, custom_prompt)
|
|
|
1526 |
logging.error(f"Error processing path: {path}")
|
1527 |
logging.error(str(e))
|
1528 |
end_time = time.monotonic()
|
1529 |
+
# print("Total program execution time: " + timedelta(seconds=end_time - start_time))
|
1530 |
|
1531 |
return results
|
1532 |
|
|
|
1541 |
help='Whisper model (default: small.en)')
|
1542 |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
1543 |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
1544 |
+
# Give app.py verbose logging - DEBUG
|
1545 |
+
parser.add_argument('-log', '--log_level', type=str, default='DEBUG',
|
1546 |
+
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: DEBUG)')
|
1547 |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
1548 |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
1549 |
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
1550 |
help='Pass in a custom prompt to be used in place of the existing one.(Probably should just modify the script itself...)')
|
1551 |
+
# parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
1552 |
args = parser.parse_args()
|
1553 |
+
logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
1554 |
custom_prompt = args.custom_prompt
|
1555 |
if custom_prompt == "":
|
1556 |
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt")
|
|
|
1560 |
args.custom_prompt = "\n\nQ: As a professional summarizer, create a concise and comprehensive summary of the provided text.\nA: Here is a detailed, bulleted list of the key points made in the transcribed video and supporting arguments:"
|
1561 |
print("No custom prompt defined, will use default")
|
1562 |
|
1563 |
+
# print(f"Is CUDA available: {torch.cuda.is_available()}")
|
1564 |
# True
|
1565 |
+
# print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
1566 |
# Tesla T4
|
1567 |
|
1568 |
# Since this is running in HF....
|
1569 |
args.user_interface = True
|
1570 |
if args.user_interface:
|
1571 |
+
log_level = "DEBUG"
|
1572 |
+
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
1573 |
launch_ui(demo_mode=args.demo_mode)
|
1574 |
else:
|
1575 |
if not args.input_path:
|
1576 |
parser.print_help()
|
1577 |
sys.exit(1)
|
1578 |
|
1579 |
+
logging.debug('Logging configured')
|
|
|
1580 |
logging.info('Starting the transcription and summarization process.')
|
1581 |
logging.info(f'Input path: {args.input_path}')
|
1582 |
logging.info(f'API Name: {args.api_name}')
|
|
|
1583 |
logging.info(f'Number of speakers: {args.num_speakers}')
|
1584 |
logging.info(f'Whisper model: {args.whisper_model}')
|
1585 |
logging.info(f'Offset: {args.offset}')
|
1586 |
logging.info(f'VAD filter: {args.vad_filter}')
|
1587 |
+
logging.info(f'Log Level: {args.log_level}') # lol
|
1588 |
|
1589 |
if args.api_name and args.api_key:
|
1590 |
logging.info(f'API: {args.api_name}')
|