oceansweep commited on
Commit
530424e
·
verified ·
1 Parent(s): 6c74947

Upload 4 files

Browse files
App_Function_Libraries/Gradio_UI/Explain_summarize_tab.py CHANGED
@@ -6,6 +6,9 @@ import logging
6
  #
7
  # External Imports
8
  import gradio as gr
 
 
 
9
  #
10
  # Local Imports
11
  from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
@@ -25,35 +28,100 @@ def create_summarize_explain_tab():
25
  gr.Markdown("# Explain or Summarize Text without ingesting it into the DB")
26
  with gr.Row():
27
  with gr.Column():
28
- text_to_work_input = gr.Textbox(label="Text to be Explained or Summarized",
 
29
  placeholder="Enter the text you want explained or summarized here",
30
  lines=20)
31
  with gr.Row():
32
  explanation_checkbox = gr.Checkbox(label="Explain Text", value=True)
33
  summarization_checkbox = gr.Checkbox(label="Summarize Text", value=True)
34
- api_endpoint = gr.Dropdown(
35
- choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
36
- "OpenRouter",
37
- "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
38
- value=None,
39
- label="API for Summarization (Optional)"
40
- )
41
- api_key_input = gr.Textbox(label="API Key (if required)", placeholder="Enter your API key here",
42
- type="password")
43
- explain_summarize_button = gr.Button("Explain/Summarize")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  with gr.Column():
46
  summarization_output = gr.Textbox(label="Summary:", lines=20)
47
- explanation_output = gr.Textbox(label="Explanation:", lines=50)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  explain_summarize_button.click(
50
  fn=summarize_explain_text,
51
- inputs=[text_to_work_input, api_endpoint, api_key_input, summarization_checkbox, explanation_checkbox],
52
- outputs=[summarization_output, explanation_output]
53
  )
54
 
55
 
56
- def summarize_explain_text(message, api_endpoint, api_key, summarization, explanation):
 
57
  summarization_response = None
58
  explanation_response = None
59
  temp = 0.7
@@ -176,6 +244,52 @@ def summarize_explain_text(message, api_endpoint, api_key, summarization, explan
176
  logging.error(f"Error in summarization: {str(e)}")
177
  response2 = f"An error occurred during summarization: {str(e)}"
178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  if summarization_response:
180
  response1 = f"Summary: {summarization_response}"
181
  else:
@@ -186,7 +300,12 @@ def summarize_explain_text(message, api_endpoint, api_key, summarization, explan
186
  else:
187
  response2 = "Explanation: No explanation requested"
188
 
189
- return response1, response2
 
 
 
 
 
190
 
191
  except Exception as e:
192
  logging.error(f"Error in chat function: {str(e)}")
 
6
  #
7
  # External Imports
8
  import gradio as gr
9
+
10
+ from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
11
+ from App_Function_Libraries.Gradio_UI.Gradio_Shared import update_user_prompt
12
  #
13
  # Local Imports
14
  from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
 
28
  gr.Markdown("# Explain or Summarize Text without ingesting it into the DB")
29
  with gr.Row():
30
  with gr.Column():
31
+ with gr.Row():
32
+ text_to_work_input = gr.Textbox(label="Text to be Explained or Summarized",
33
  placeholder="Enter the text you want explained or summarized here",
34
  lines=20)
35
  with gr.Row():
36
  explanation_checkbox = gr.Checkbox(label="Explain Text", value=True)
37
  summarization_checkbox = gr.Checkbox(label="Summarize Text", value=True)
38
+ custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt",
39
+ value=False,
40
+ visible=True)
41
+ preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt",
42
+ value=False,
43
+ visible=True)
44
+ with gr.Row():
45
+ preset_prompt = gr.Dropdown(label="Select Preset Prompt",
46
+ choices=load_preset_prompts(),
47
+ visible=False)
48
+ with gr.Row():
49
+ custom_prompt_input = gr.Textbox(label="Custom Prompt",
50
+ placeholder="Enter custom prompt here",
51
+ lines=3,
52
+ visible=False)
53
+ with gr.Row():
54
+ system_prompt_input = gr.Textbox(label="System Prompt",
55
+ value="""<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]
56
+ **Bulleted Note Creation Guidelines**
57
+
58
+ **Headings**:
59
+ - Based on referenced topics, not categories like quotes or terms
60
+ - Surrounded by **bold** formatting
61
+ - Not listed as bullet points
62
+ - No space between headings and list items underneath
63
+
64
+ **Emphasis**:
65
+ - **Important terms** set in bold font
66
+ - **Text ending in a colon**: also bolded
67
+
68
+ **Review**:
69
+ - Ensure adherence to specified format
70
+ - Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]
71
+ """,
72
+ lines=3,
73
+ visible=False,
74
+ interactive=True)
75
+ api_endpoint = gr.Dropdown(
76
+ choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
77
+ "OpenRouter",
78
+ "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
79
+ value=None,
80
+ label="API for Summarization (Optional)"
81
+ )
82
+ api_key_input = gr.Textbox(label="API Key (if required)", placeholder="Enter your API key here",
83
+ type="password")
84
+ with gr.Row():
85
+ explain_summarize_button = gr.Button("Explain/Summarize")
86
 
87
  with gr.Column():
88
  summarization_output = gr.Textbox(label="Summary:", lines=20)
89
+ explanation_output = gr.Textbox(label="Explanation:", lines=20)
90
+ custom_prompt_output = gr.Textbox(label="Custom Prompt:", lines=20, visible=True)
91
+
92
+ custom_prompt_checkbox.change(
93
+ fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
94
+ inputs=[custom_prompt_checkbox],
95
+ outputs=[custom_prompt_input, system_prompt_input]
96
+ )
97
+ preset_prompt_checkbox.change(
98
+ fn=lambda x: gr.update(visible=x),
99
+ inputs=[preset_prompt_checkbox],
100
+ outputs=[preset_prompt]
101
+ )
102
+
103
+ def update_prompts(preset_name):
104
+ prompts = update_user_prompt(preset_name)
105
+ return (
106
+ gr.update(value=prompts["user_prompt"], visible=True),
107
+ gr.update(value=prompts["system_prompt"], visible=True)
108
+ )
109
+
110
+ preset_prompt.change(
111
+ update_prompts,
112
+ inputs=preset_prompt,
113
+ outputs=[custom_prompt_input, system_prompt_input]
114
+ )
115
 
116
  explain_summarize_button.click(
117
  fn=summarize_explain_text,
118
+ inputs=[text_to_work_input, api_endpoint, api_key_input, summarization_checkbox, explanation_checkbox, custom_prompt_input, system_prompt_input],
119
+ outputs=[summarization_output, explanation_output, custom_prompt_output]
120
  )
121
 
122
 
123
+ def summarize_explain_text(message, api_endpoint, api_key, summarization, explanation, custom_prompt, custom_system_prompt,):
124
+ global custom_prompt_output
125
  summarization_response = None
126
  explanation_response = None
127
  temp = 0.7
 
244
  logging.error(f"Error in summarization: {str(e)}")
245
  response2 = f"An error occurred during summarization: {str(e)}"
246
 
247
+ try:
248
+ if custom_prompt:
249
+ system_prompt = custom_system_prompt
250
+ user_prompt = custom_prompt + input_data
251
+ # Use the existing API request code based on the selected endpoint
252
+ logging.info(f"Debug - Chat Function - API Endpoint: {api_endpoint}")
253
+ if api_endpoint.lower() == 'openai':
254
+ custom_prompt_output = summarize_with_openai(api_key, input_data, user_prompt, temp, system_prompt)
255
+ elif api_endpoint.lower() == "anthropic":
256
+ custom_prompt_output = summarize_with_anthropic(api_key, input_data, user_prompt, temp,
257
+ system_prompt)
258
+ elif api_endpoint.lower() == "cohere":
259
+ custom_prompt_output = summarize_with_cohere(api_key, input_data, user_prompt, temp, system_prompt)
260
+ elif api_endpoint.lower() == "groq":
261
+ custom_prompt_output = summarize_with_groq(api_key, input_data, user_prompt, temp, system_prompt)
262
+ elif api_endpoint.lower() == "openrouter":
263
+ custom_prompt_output = summarize_with_openrouter(api_key, input_data, user_prompt, temp,
264
+ system_prompt)
265
+ elif api_endpoint.lower() == "deepseek":
266
+ custom_prompt_output = summarize_with_deepseek(api_key, input_data, user_prompt, temp,
267
+ system_prompt)
268
+ elif api_endpoint.lower() == "llama.cpp":
269
+ custom_prompt_output = summarize_with_llama(input_data, user_prompt, temp, system_prompt)
270
+ elif api_endpoint.lower() == "kobold":
271
+ custom_prompt_output = summarize_with_kobold(input_data, api_key, user_prompt, temp, system_prompt)
272
+ elif api_endpoint.lower() == "ooba":
273
+ custom_prompt_output = summarize_with_oobabooga(input_data, api_key, user_prompt, temp,
274
+ system_prompt)
275
+ elif api_endpoint.lower() == "tabbyapi":
276
+ custom_prompt_output = summarize_with_tabbyapi(input_data, user_prompt, temp, system_prompt)
277
+ elif api_endpoint.lower() == "vllm":
278
+ custom_prompt_output = summarize_with_vllm(input_data, user_prompt, system_prompt)
279
+ elif api_endpoint.lower() == "local-llm":
280
+ custom_prompt_output = summarize_with_local_llm(input_data, user_prompt, temp, system_prompt)
281
+ elif api_endpoint.lower() == "huggingface":
282
+ custom_prompt_output = summarize_with_huggingface(api_key, input_data, user_prompt,
283
+ temp) # , system_prompt)
284
+ elif api_endpoint.lower() == "ollama":
285
+ custom_prompt_output = summarize_with_ollama(input_data, user_prompt, temp, system_prompt)
286
+ else:
287
+ raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
288
+ except Exception as e:
289
+ logging.error(f"Error in summarization: {str(e)}")
290
+ response2 = f"An error occurred during summarization: {str(e)}"
291
+
292
+
293
  if summarization_response:
294
  response1 = f"Summary: {summarization_response}"
295
  else:
 
300
  else:
301
  response2 = "Explanation: No explanation requested"
302
 
303
+ if custom_prompt_output:
304
+ response3 = f"Custom Prompt: {custom_prompt_output}"
305
+ else:
306
+ response3 = "Custom Prompt: No custom prompt requested"
307
+
308
+ return response1, response2, response3
309
 
310
  except Exception as e:
311
  logging.error(f"Error in chat function: {str(e)}")
App_Function_Libraries/Gradio_UI/Live_Recording.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Live_Recording.py
2
+ # Description: Gradio UI for live audio recording and transcription.
3
+ #
4
+ # Import necessary modules and functions
5
+ import os
6
+ # External Imports
7
+ import gradio as gr
8
+ # Local Imports
9
+ from App_Function_Libraries.Audio_Transcription_Lib import (record_audio, speech_to_text, save_audio_temp)
10
+ from App_Function_Libraries.DB.DB_Manager import add_media_to_database
11
+ #
12
+ #######################################################################################################################
13
+ #
14
+ # Functions:
15
+
16
+ whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
17
+ "distil-large-v2", "distil-medium.en", "distil-small.en"]
18
+
19
+ def create_live_recording_tab():
20
+ with gr.Tab("Live Recording and Transcription"):
21
+ gr.Markdown("# Live Audio Recording and Transcription")
22
+ with gr.Row():
23
+ with gr.Column():
24
+ duration = gr.Slider(minimum=1, maximum=8000, value=15, label="Recording Duration (seconds)")
25
+ whisper_models_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
26
+ vad_filter = gr.Checkbox(label="Use VAD Filter")
27
+ save_recording = gr.Checkbox(label="Save Recording")
28
+ save_to_db = gr.Checkbox(label="Save Transcription to Database")
29
+ custom_title = gr.Textbox(label="Custom Title (for database)", visible=False)
30
+ record_button = gr.Button("Record and Transcribe")
31
+ with gr.Column():
32
+ output = gr.Textbox(label="Transcription", lines=10)
33
+ audio_output = gr.Audio(label="Recorded Audio", visible=False)
34
+
35
+ def record_and_transcribe(duration, whisper_model, vad_filter, save_recording):
36
+ audio_data = record_audio(duration)
37
+ temp_file = save_audio_temp(audio_data)
38
+ segments = speech_to_text(temp_file, whisper_model=whisper_model, vad_filter=vad_filter)
39
+ transcription = "\n".join([segment["Text"] for segment in segments])
40
+
41
+ if save_recording:
42
+ return transcription, temp_file
43
+ else:
44
+ os.remove(temp_file)
45
+ return transcription, None
46
+
47
+ def save_transcription_to_db(transcription, custom_title):
48
+ if custom_title.strip() == "":
49
+ custom_title = "Self-recorded Audio"
50
+
51
+ add_media_to_database(
52
+ url="self_recorded",
53
+ info_dict={"title": custom_title, "uploader": "self-recorded"},
54
+ segments=[{"Text": transcription}],
55
+ summary="",
56
+ keywords="self-recorded,audio",
57
+ custom_prompt_input="",
58
+ whisper_model="self-recorded"
59
+ )
60
+ return "Transcription saved to database successfully."
61
+
62
+ def update_custom_title_visibility(save_to_db):
63
+ return gr.update(visible=save_to_db)
64
+
65
+ record_button.click(
66
+ fn=record_and_transcribe,
67
+ inputs=[duration, whisper_models_input, vad_filter, save_recording],
68
+ outputs=[output, audio_output]
69
+ )
70
+
71
+ save_to_db.change(
72
+ fn=update_custom_title_visibility,
73
+ inputs=[save_to_db],
74
+ outputs=[custom_title]
75
+ )
76
+
77
+ gr.Button("Save to Database").click(
78
+ fn=save_transcription_to_db,
79
+ inputs=[output, custom_title],
80
+ outputs=gr.Textbox(label="Database Save Status")
81
+ )
82
+
83
+ #
84
+ # End of Functions
85
+ ########################################################################################################################