Spaces:
Running
Running
oceansweep
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import gradio as gr
|
3 |
+
import argparse, configparser, datetime, json, logging, os, platform, requests, shutil, subprocess, sys, time, unicodedata
|
4 |
+
import zipfile
|
5 |
+
from datetime import datetime
|
6 |
+
import contextlib
|
7 |
+
import ffmpeg
|
8 |
+
import torch
|
9 |
+
import yt_dlp
|
10 |
+
|
11 |
+
|
12 |
+
#######
|
13 |
+
# Function Sections
|
14 |
+
#
|
15 |
+
# System Checks
|
16 |
+
# Processing Paths and local file handling
|
17 |
+
# Video Download/Handling
|
18 |
+
# Audio Transcription
|
19 |
+
# Diarization
|
20 |
+
# Summarizers
|
21 |
+
# Main
|
22 |
+
#
|
23 |
+
#######
|
24 |
+
|
25 |
+
# To Do
|
26 |
+
# Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb
|
27 |
+
|
28 |
+
|
29 |
+
####
|
30 |
+
#
|
31 |
+
# TL/DW: Too Long Didn't Watch
|
32 |
+
#
|
33 |
+
# Project originally created by https://github.com/the-crypt-keeper
|
34 |
+
# Modifications made by https://github.com/rmusser01
|
35 |
+
# All credit to the original authors, I've just glued shit together.
|
36 |
+
#
|
37 |
+
#
|
38 |
+
# Usage:
|
39 |
+
# Transcribe a single URL:
|
40 |
+
# python diarize.py https://example.com/video.mp4
|
41 |
+
#
|
42 |
+
# Transcribe a single URL and have the resulting transcription summarized:
|
43 |
+
# python diarize.py https://example.com/video.mp4
|
44 |
+
#
|
45 |
+
# Transcribe a list of files:
|
46 |
+
# python diarize.py ./path/to/your/text_file.txt
|
47 |
+
#
|
48 |
+
# Transcribe a local file:
|
49 |
+
# python diarize.py /path/to/your/localfile.mp4
|
50 |
+
#
|
51 |
+
# Transcribe a local file and have it summarized:
|
52 |
+
# python diarize.py ./input.mp4 --api_name openai --api_key <your_openai_api_key>
|
53 |
+
#
|
54 |
+
# Transcribe a list of files and have them all summarized:
|
55 |
+
# python diarize.py path_to_your_text_file.txt --api_name <openai> --api_key <your_openai_api_key>
|
56 |
+
#
|
57 |
+
###
|
58 |
+
|
59 |
+
|
60 |
+
#######################
|
61 |
+
# Config loading
|
62 |
+
#
|
63 |
+
|
64 |
+
# Read configuration from file
|
65 |
+
config = configparser.ConfigParser()
|
66 |
+
config.read('config.txt')
|
67 |
+
|
68 |
+
# API Keys
|
69 |
+
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None)
|
70 |
+
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None)
|
71 |
+
groq_api_key = config.get('API', 'groq_api_key', fallback=None)
|
72 |
+
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
|
73 |
+
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
|
74 |
+
|
75 |
+
# Models
|
76 |
+
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
|
77 |
+
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
|
78 |
+
groq_model = config.get('API', 'groq_model', fallback='FIXME')
|
79 |
+
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo')
|
80 |
+
huggingface_model = config.get('API', 'huggingface_model', fallback='microsoft/Phi-3-mini-128k-instruct')
|
81 |
+
|
82 |
+
# Local-Models
|
83 |
+
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
|
84 |
+
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='')
|
85 |
+
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
|
86 |
+
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='')
|
87 |
+
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions')
|
88 |
+
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='')
|
89 |
+
|
90 |
+
# Retrieve output paths from the configuration file
|
91 |
+
output_path = config.get('Paths', 'output_path', fallback='results')
|
92 |
+
|
93 |
+
# Retrieve processing choice from the configuration file
|
94 |
+
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
|
95 |
+
|
96 |
+
# Log file
|
97 |
+
#logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG)
|
98 |
+
|
99 |
+
#
|
100 |
+
#
|
101 |
+
#######################
|
102 |
+
|
103 |
+
# Dirty hack - sue me.
|
104 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
105 |
+
|
106 |
+
whisper_models = ["small", "medium", "small.en","medium.en"]
|
107 |
+
source_languages = {
|
108 |
+
"en": "English",
|
109 |
+
"zh": "Chinese",
|
110 |
+
"de": "German",
|
111 |
+
"es": "Spanish",
|
112 |
+
"ru": "Russian",
|
113 |
+
"ko": "Korean",
|
114 |
+
"fr": "French"
|
115 |
+
}
|
116 |
+
source_language_list = [key[0] for key in source_languages.items()]
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
print(r"""_____ _ ________ _ _
|
122 |
+
|_ _|| | / /| _ \| | | | _
|
123 |
+
| | | | / / | | | || | | |(_)
|
124 |
+
| | | | / / | | | || |/\| |
|
125 |
+
| | | |____ / / | |/ / \ /\ / _
|
126 |
+
\_/ \_____//_/ |___/ \/ \/ (_)
|
127 |
+
|
128 |
+
|
129 |
+
_ _
|
130 |
+
| | | |
|
131 |
+
| |_ ___ ___ | | ___ _ __ __ _
|
132 |
+
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` |
|
133 |
+
| |_ | (_) || (_) | | || (_) || | | || (_| | _
|
134 |
+
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( )
|
135 |
+
__/ ||/
|
136 |
+
|___/
|
137 |
+
_ _ _ _ _ _ _
|
138 |
+
| |(_) | | ( )| | | | | |
|
139 |
+
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__
|
140 |
+
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \
|
141 |
+
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | |
|
142 |
+
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_|
|
143 |
+
""")
|
144 |
+
|
145 |
+
####################################################################################################################################
|
146 |
+
# System Checks
|
147 |
+
#
|
148 |
+
#
|
149 |
+
|
150 |
+
# Perform Platform Check
|
151 |
+
userOS = ""
|
152 |
+
def platform_check():
|
153 |
+
global userOS
|
154 |
+
if platform.system() == "Linux":
|
155 |
+
print("Linux OS detected \n Running Linux appropriate commands")
|
156 |
+
userOS = "Linux"
|
157 |
+
elif platform.system() == "Windows":
|
158 |
+
print("Windows OS detected \n Running Windows appropriate commands")
|
159 |
+
userOS = "Windows"
|
160 |
+
else:
|
161 |
+
print("Other OS detected \n Maybe try running things manually?")
|
162 |
+
exit()
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
# Check for NVIDIA GPU and CUDA availability
|
167 |
+
def cuda_check():
|
168 |
+
global processing_choice
|
169 |
+
try:
|
170 |
+
nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode()
|
171 |
+
if "NVIDIA-SMI" in nvidia_smi:
|
172 |
+
print("NVIDIA GPU with CUDA is available.")
|
173 |
+
processing_choice = "cuda" # Set processing_choice to gpu if NVIDIA GPU with CUDA is available
|
174 |
+
else:
|
175 |
+
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.")
|
176 |
+
processing_choice = "cpu" # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available
|
177 |
+
except subprocess.CalledProcessError:
|
178 |
+
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.")
|
179 |
+
processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
# Ask user if they would like to use either their GPU or their CPU for transcription
|
184 |
+
def decide_cpugpu():
|
185 |
+
global processing_choice
|
186 |
+
processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ")
|
187 |
+
if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"):
|
188 |
+
print("You've chosen to use the GPU.")
|
189 |
+
logging.debug("GPU is being used for processing")
|
190 |
+
processing_choice = "cuda"
|
191 |
+
elif processing_input.lower() == "cpu" or processing_input == "2":
|
192 |
+
print("You've chosen to use the CPU.")
|
193 |
+
logging.debug("CPU is being used for processing")
|
194 |
+
processing_choice = "cpu"
|
195 |
+
else:
|
196 |
+
print("Invalid choice. Please select either GPU or CPU.")
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
# check for existence of ffmpeg
|
201 |
+
def check_ffmpeg():
|
202 |
+
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
|
203 |
+
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
|
204 |
+
pass
|
205 |
+
else:
|
206 |
+
logging.debug("ffmpeg not installed on the local system/in local PATH")
|
207 |
+
print("ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/")
|
208 |
+
if userOS == "Windows":
|
209 |
+
download_ffmpeg()
|
210 |
+
elif userOS == "Linux":
|
211 |
+
print("You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg','dnf install ffmpeg' or 'pacman', etc.")
|
212 |
+
else:
|
213 |
+
logging.debug("running an unsupported OS")
|
214 |
+
print("You're running an unspported/Un-tested OS")
|
215 |
+
exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)")
|
216 |
+
if exit_script == "y" or "yes" or "1":
|
217 |
+
exit()
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
# Download ffmpeg
|
222 |
+
def download_ffmpeg():
|
223 |
+
user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ")
|
224 |
+
if user_choice.lower() == 'yes' or 'y' or '1':
|
225 |
+
print("Downloading ffmpeg")
|
226 |
+
url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip"
|
227 |
+
response = requests.get(url)
|
228 |
+
|
229 |
+
if response.status_code == 200:
|
230 |
+
print("Saving ffmpeg zip file")
|
231 |
+
logging.debug("Saving ffmpeg zip file")
|
232 |
+
zip_path = "ffmpeg-release-essentials.zip"
|
233 |
+
with open(zip_path, 'wb') as file:
|
234 |
+
file.write(response.content)
|
235 |
+
|
236 |
+
logging.debug("Extracting the 'ffmpeg.exe' file from the zip")
|
237 |
+
print("Extracting ffmpeg.exe from zip file to '/Bin' folder")
|
238 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
239 |
+
ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe"
|
240 |
+
|
241 |
+
logging.debug("checking if the './Bin' folder exists, creating if not")
|
242 |
+
bin_folder = "Bin"
|
243 |
+
if not os.path.exists(bin_folder):
|
244 |
+
logging.debug("Creating a folder for './Bin', it didn't previously exist")
|
245 |
+
os.makedirs(bin_folder)
|
246 |
+
|
247 |
+
logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder")
|
248 |
+
zip_ref.extract(ffmpeg_path, path=bin_folder)
|
249 |
+
|
250 |
+
logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder")
|
251 |
+
src_path = os.path.join(bin_folder, ffmpeg_path)
|
252 |
+
dst_path = os.path.join(bin_folder, "ffmpeg.exe")
|
253 |
+
shutil.move(src_path, dst_path)
|
254 |
+
|
255 |
+
logging.debug("Removing ffmpeg zip file")
|
256 |
+
print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)")
|
257 |
+
os.remove(zip_path)
|
258 |
+
|
259 |
+
logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.")
|
260 |
+
print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.")
|
261 |
+
else:
|
262 |
+
logging.error("Failed to download the zip file.")
|
263 |
+
print("Failed to download the zip file.")
|
264 |
+
else:
|
265 |
+
logging.debug("User chose to not download ffmpeg")
|
266 |
+
print("ffmpeg will not be downloaded.")
|
267 |
+
|
268 |
+
#
|
269 |
+
#
|
270 |
+
####################################################################################################################################
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
####################################################################################################################################
|
279 |
+
# Processing Paths and local file handling
|
280 |
+
#
|
281 |
+
#
|
282 |
+
|
283 |
+
def read_paths_from_file(file_path):
|
284 |
+
""" Reads a file containing URLs or local file paths and returns them as a list. """
|
285 |
+
paths = [] # Initialize paths as an empty list
|
286 |
+
with open(file_path, 'r') as file:
|
287 |
+
for line in file:
|
288 |
+
line = line.strip()
|
289 |
+
if line and not os.path.exists(os.path.join('results', normalize_title(line.split('/')[-1].split('.')[0]) + '.json')):
|
290 |
+
logging.debug("line successfully imported from file and added to list to be transcribed")
|
291 |
+
paths.append(line)
|
292 |
+
return paths
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
def process_path(path):
|
297 |
+
""" Decides whether the path is a URL or a local file and processes accordingly. """
|
298 |
+
if path.startswith('http'):
|
299 |
+
logging.debug("file is a URL")
|
300 |
+
return get_youtube(path) # For YouTube URLs, modify to download and extract info
|
301 |
+
elif os.path.exists(path):
|
302 |
+
logging.debug("File is a path")
|
303 |
+
return process_local_file(path) # For local files, define a function to handle them
|
304 |
+
else:
|
305 |
+
logging.error(f"Path does not exist: {path}")
|
306 |
+
return None
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
# FIXME
|
311 |
+
def process_local_file(file_path):
|
312 |
+
logging.info(f"Processing local file: {file_path}")
|
313 |
+
title = normalize_title(os.path.splitext(os.path.basename(file_path))[0])
|
314 |
+
info_dict = {'title': title}
|
315 |
+
logging.debug(f"Creating {title} directory...")
|
316 |
+
download_path = create_download_directory(title)
|
317 |
+
logging.debug(f"Converting '{title}' to an audio file (wav).")
|
318 |
+
audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction
|
319 |
+
logging.debug(f"'{title}' succesfully converted to an audio file (wav).")
|
320 |
+
return download_path, info_dict, audio_file
|
321 |
+
#
|
322 |
+
#
|
323 |
+
####################################################################################################################################
|
324 |
+
|
325 |
+
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
####################################################################################################################################
|
331 |
+
# Video Download/Handling
|
332 |
+
#
|
333 |
+
|
334 |
+
def process_url(input_path, num_speakers=2, whisper_model="small.en", offset=0, api_name=None, api_key=None, vad_filter=False, download_video_flag=False, demo_mode=False):
|
335 |
+
if demo_mode:
|
336 |
+
api_name = "huggingface"
|
337 |
+
api_key = os.environ.get("HF_TOKEN")
|
338 |
+
vad_filter = False
|
339 |
+
download_video_flag = False
|
340 |
+
|
341 |
+
try:
|
342 |
+
results = main(input_path, api_name=api_name, api_key=api_key, num_speakers=num_speakers, whisper_model=whisper_model, offset=offset, vad_filter=vad_filter, download_video_flag=download_video_flag)
|
343 |
+
|
344 |
+
if results:
|
345 |
+
transcription_result = results[0]
|
346 |
+
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
347 |
+
with open(json_file_path, 'r') as file:
|
348 |
+
json_data = json.load(file)
|
349 |
+
|
350 |
+
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt')
|
351 |
+
if os.path.exists(summary_file_path):
|
352 |
+
return json_data, summary_file_path, json_file_path, summary_file_path
|
353 |
+
else:
|
354 |
+
return json_data, "Summary not available.", json_file_path, None
|
355 |
+
else:
|
356 |
+
return None, "No results found.", None, None
|
357 |
+
except Exception as e:
|
358 |
+
error_message = f"An error occurred: {str(e)}"
|
359 |
+
return None, error_message, None, None
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
def create_download_directory(title):
|
364 |
+
base_dir = "Results"
|
365 |
+
# Remove characters that are illegal in Windows filenames and normalize
|
366 |
+
safe_title = normalize_title(title)
|
367 |
+
logging.debug(f"{title} successfully normalized")
|
368 |
+
session_path = os.path.join(base_dir, safe_title)
|
369 |
+
if not os.path.exists(session_path):
|
370 |
+
os.makedirs(session_path, exist_ok=True)
|
371 |
+
logging.debug(f"Created directory for downloaded video: {session_path}")
|
372 |
+
else:
|
373 |
+
logging.debug(f"Directory already exists for downloaded video: {session_path}")
|
374 |
+
return session_path
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
def normalize_title(title):
|
379 |
+
# Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters
|
380 |
+
title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii')
|
381 |
+
title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', '').replace('<', '').replace('>', '').replace('|', '')
|
382 |
+
return title
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
def get_youtube(video_url):
|
387 |
+
ydl_opts = {
|
388 |
+
'format': 'bestaudio[ext=m4a]',
|
389 |
+
'noplaylist': False,
|
390 |
+
'quiet': True,
|
391 |
+
'extract_flat': True
|
392 |
+
}
|
393 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
394 |
+
logging.debug("About to extract youtube info")
|
395 |
+
info_dict = ydl.extract_info(video_url, download=False)
|
396 |
+
logging.debug("Youtube info successfully extracted")
|
397 |
+
return info_dict
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
def get_playlist_videos(playlist_url):
|
402 |
+
ydl_opts = {
|
403 |
+
'extract_flat': True,
|
404 |
+
'skip_download': True,
|
405 |
+
'quiet': True
|
406 |
+
}
|
407 |
+
|
408 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
409 |
+
info = ydl.extract_info(playlist_url, download=False)
|
410 |
+
|
411 |
+
if 'entries' in info:
|
412 |
+
video_urls = [entry['url'] for entry in info['entries']]
|
413 |
+
playlist_title = info['title']
|
414 |
+
return video_urls, playlist_title
|
415 |
+
else:
|
416 |
+
print("No videos found in the playlist.")
|
417 |
+
return [], None
|
418 |
+
|
419 |
+
|
420 |
+
|
421 |
+
def save_to_file(video_urls, filename):
|
422 |
+
with open(filename, 'w') as file:
|
423 |
+
file.write('\n'.join(video_urls))
|
424 |
+
print(f"Video URLs saved to {filename}")
|
425 |
+
|
426 |
+
|
427 |
+
|
428 |
+
def download_video(video_url, download_path, info_dict, download_video_flag):
|
429 |
+
logging.debug("About to normalize downloaded video title")
|
430 |
+
title = normalize_title(info_dict['title'])
|
431 |
+
|
432 |
+
if download_video_flag == False:
|
433 |
+
file_path = os.path.join(download_path, f"{title}.m4a")
|
434 |
+
ydl_opts = {
|
435 |
+
'format': 'bestaudio[ext=m4a]',
|
436 |
+
'outtmpl': file_path,
|
437 |
+
}
|
438 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
439 |
+
logging.debug("yt_dlp: About to download audio with youtube-dl")
|
440 |
+
ydl.download([video_url])
|
441 |
+
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl")
|
442 |
+
return file_path
|
443 |
+
else:
|
444 |
+
video_file_path = os.path.join(download_path, f"{title}_video.mp4")
|
445 |
+
audio_file_path = os.path.join(download_path, f"{title}_audio.m4a")
|
446 |
+
ydl_opts_video = {
|
447 |
+
'format': 'bestvideo[ext=mp4]',
|
448 |
+
'outtmpl': video_file_path,
|
449 |
+
}
|
450 |
+
ydl_opts_audio = {
|
451 |
+
'format': 'bestaudio[ext=m4a]',
|
452 |
+
'outtmpl': audio_file_path,
|
453 |
+
}
|
454 |
+
|
455 |
+
with yt_dlp.YoutubeDL(ydl_opts_video) as ydl:
|
456 |
+
logging.debug("yt_dlp: About to download video with youtube-dl")
|
457 |
+
ydl.download([video_url])
|
458 |
+
logging.debug("yt_dlp: Video successfully downloaded with youtube-dl")
|
459 |
+
|
460 |
+
with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl:
|
461 |
+
logging.debug("yt_dlp: About to download audio with youtube-dl")
|
462 |
+
ydl.download([video_url])
|
463 |
+
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl")
|
464 |
+
|
465 |
+
output_file_path = os.path.join(download_path, f"{title}.mp4")
|
466 |
+
|
467 |
+
if userOS == "Windows":
|
468 |
+
logging.debug("Running ffmpeg on Windows...")
|
469 |
+
ffmpeg_command = [
|
470 |
+
'.\\Bin\\ffmpeg.exe',
|
471 |
+
'-i', video_file_path,
|
472 |
+
'-i', audio_file_path,
|
473 |
+
'-c:v', 'copy',
|
474 |
+
'-c:a', 'copy',
|
475 |
+
output_file_path
|
476 |
+
]
|
477 |
+
subprocess.run(ffmpeg_command, check=True)
|
478 |
+
elif userOS == "Linux":
|
479 |
+
logging.debug("Running ffmpeg on Linux...")
|
480 |
+
ffmpeg_command = [
|
481 |
+
'ffmpeg',
|
482 |
+
'-i', video_file_path,
|
483 |
+
'-i', audio_file_path,
|
484 |
+
'-c:v', 'copy',
|
485 |
+
'-c:a', 'copy',
|
486 |
+
output_file_path
|
487 |
+
]
|
488 |
+
subprocess.run(ffmpeg_command, check=True)
|
489 |
+
else:
|
490 |
+
logging.error("You shouldn't be here...")
|
491 |
+
exit()
|
492 |
+
os.remove(video_file_path)
|
493 |
+
os.remove(audio_file_path)
|
494 |
+
|
495 |
+
return output_file_path
|
496 |
+
|
497 |
+
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
#
|
502 |
+
#
|
503 |
+
####################################################################################################################################
|
504 |
+
|
505 |
+
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
####################################################################################################################################
|
511 |
+
# Audio Transcription
|
512 |
+
#
|
513 |
+
# Convert video .m4a into .wav using ffmpeg
|
514 |
+
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
|
515 |
+
# https://www.gyan.dev/ffmpeg/builds/
|
516 |
+
#
|
517 |
+
|
518 |
+
#os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
519 |
+
def convert_to_wav(video_file_path, offset=0):
|
520 |
+
print("Starting conversion process of .m4a to .WAV")
|
521 |
+
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
522 |
+
|
523 |
+
try:
|
524 |
+
if os.name == "nt":
|
525 |
+
logging.debug("ffmpeg being ran on windows")
|
526 |
+
|
527 |
+
if sys.platform.startswith('win'):
|
528 |
+
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
|
529 |
+
else:
|
530 |
+
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
531 |
+
|
532 |
+
command = [
|
533 |
+
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists
|
534 |
+
"-ss", "00:00:00", # Start at the beginning of the video
|
535 |
+
"-i", video_file_path,
|
536 |
+
"-ar", "16000", # Audio sample rate
|
537 |
+
"-ac", "1", # Number of audio channels
|
538 |
+
"-c:a", "pcm_s16le", # Audio codec
|
539 |
+
out_path
|
540 |
+
]
|
541 |
+
try:
|
542 |
+
# Redirect stdin from null device to prevent ffmpeg from waiting for input
|
543 |
+
with open(os.devnull, 'rb') as null_file:
|
544 |
+
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
|
545 |
+
if result.returncode == 0:
|
546 |
+
logging.info("FFmpeg executed successfully")
|
547 |
+
logging.debug("FFmpeg output: %s", result.stdout)
|
548 |
+
else:
|
549 |
+
logging.error("Error in running FFmpeg")
|
550 |
+
logging.error("FFmpeg stderr: %s", result.stderr)
|
551 |
+
raise RuntimeError(f"FFmpeg error: {result.stderr}")
|
552 |
+
except Exception as e:
|
553 |
+
logging.error("Error occurred - ffmpeg doesn't like windows")
|
554 |
+
raise RuntimeError("ffmpeg failed")
|
555 |
+
exit()
|
556 |
+
elif os.name == "posix":
|
557 |
+
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
558 |
+
else:
|
559 |
+
raise RuntimeError("Unsupported operating system")
|
560 |
+
logging.info("Conversion to WAV completed: %s", out_path)
|
561 |
+
except subprocess.CalledProcessError as e:
|
562 |
+
logging.error("Error executing FFmpeg command: %s", str(e))
|
563 |
+
raise RuntimeError("Error converting video file to WAV")
|
564 |
+
except Exception as e:
|
565 |
+
logging.error("Unexpected error occurred: %s", str(e))
|
566 |
+
raise RuntimeError("Error converting video file to WAV")
|
567 |
+
return out_path
|
568 |
+
|
569 |
+
|
570 |
+
|
571 |
+
# Transcribe .wav into .segments.json
|
572 |
+
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False):
|
573 |
+
logging.info('Loading faster_whisper model: %s', whisper_model)
|
574 |
+
from faster_whisper import WhisperModel
|
575 |
+
model = WhisperModel(whisper_model, device=f"{processing_choice}")
|
576 |
+
time_start = time.time()
|
577 |
+
if audio_file_path is None:
|
578 |
+
raise ValueError("No audio file provided")
|
579 |
+
logging.info("Audio file path: %s", audio_file_path)
|
580 |
+
|
581 |
+
try:
|
582 |
+
_, file_ending = os.path.splitext(audio_file_path)
|
583 |
+
out_file = audio_file_path.replace(file_ending, ".segments.json")
|
584 |
+
if os.path.exists(out_file):
|
585 |
+
logging.info("Segments file already exists: %s", out_file)
|
586 |
+
with open(out_file) as f:
|
587 |
+
segments = json.load(f)
|
588 |
+
return segments
|
589 |
+
|
590 |
+
logging.info('Starting transcription...')
|
591 |
+
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
|
592 |
+
transcribe_options = dict(task="transcribe", **options)
|
593 |
+
segments_raw, info = model.transcribe(audio_file_path, **transcribe_options)
|
594 |
+
|
595 |
+
segments = []
|
596 |
+
for segment_chunk in segments_raw:
|
597 |
+
chunk = {
|
598 |
+
"start": segment_chunk.start,
|
599 |
+
"end": segment_chunk.end,
|
600 |
+
"text": segment_chunk.text
|
601 |
+
}
|
602 |
+
logging.debug("Segment: %s", chunk)
|
603 |
+
segments.append(chunk)
|
604 |
+
logging.info("Transcription completed with faster_whisper")
|
605 |
+
with open(out_file, 'w') as f:
|
606 |
+
json.dump(segments, f, indent=2)
|
607 |
+
except Exception as e:
|
608 |
+
logging.error("Error transcribing audio: %s", str(e))
|
609 |
+
raise RuntimeError("Error transcribing audio")
|
610 |
+
return segments
|
611 |
+
#
|
612 |
+
#
|
613 |
+
####################################################################################################################################
|
614 |
+
|
615 |
+
|
616 |
+
|
617 |
+
|
618 |
+
|
619 |
+
|
620 |
+
####################################################################################################################################
|
621 |
+
# Diarization
|
622 |
+
#
|
623 |
+
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1
|
624 |
+
# embedding_model = "pyannote/embedding", embedding_size=512
|
625 |
+
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192
|
626 |
+
def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0):
|
627 |
+
"""
|
628 |
+
1. Generating speaker embeddings for each segments.
|
629 |
+
2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
630 |
+
"""
|
631 |
+
try:
|
632 |
+
from pyannote.audio import Audio
|
633 |
+
from pyannote.core import Segment
|
634 |
+
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
635 |
+
import numpy as np
|
636 |
+
import pandas as pd
|
637 |
+
from sklearn.cluster import AgglomerativeClustering
|
638 |
+
from sklearn.metrics import silhouette_score
|
639 |
+
import tqdm
|
640 |
+
import wave
|
641 |
+
|
642 |
+
embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
643 |
+
|
644 |
+
|
645 |
+
_,file_ending = os.path.splitext(f'{video_file_path}')
|
646 |
+
audio_file = video_file_path.replace(file_ending, ".wav")
|
647 |
+
out_file = video_file_path.replace(file_ending, ".diarize.json")
|
648 |
+
|
649 |
+
logging.debug("getting duration of audio file")
|
650 |
+
with contextlib.closing(wave.open(audio_file,'r')) as f:
|
651 |
+
frames = f.getnframes()
|
652 |
+
rate = f.getframerate()
|
653 |
+
duration = frames / float(rate)
|
654 |
+
logging.debug("duration of audio file obtained")
|
655 |
+
print(f"duration of audio file: {duration}")
|
656 |
+
|
657 |
+
def segment_embedding(segment):
|
658 |
+
logging.debug("Creating embedding")
|
659 |
+
audio = Audio()
|
660 |
+
start = segment["start"]
|
661 |
+
end = segment["end"]
|
662 |
+
|
663 |
+
# Enforcing a minimum segment length
|
664 |
+
if end-start < 0.3:
|
665 |
+
padding = 0.3-(end-start)
|
666 |
+
start -= padding/2
|
667 |
+
end += padding/2
|
668 |
+
print('Padded segment because it was too short:',segment)
|
669 |
+
|
670 |
+
# Whisper overshoots the end timestamp in the last segment
|
671 |
+
end = min(duration, end)
|
672 |
+
# clip audio and embed
|
673 |
+
clip = Segment(start, end)
|
674 |
+
waveform, sample_rate = audio.crop(audio_file, clip)
|
675 |
+
return embedding_model(waveform[None])
|
676 |
+
|
677 |
+
embeddings = np.zeros(shape=(len(segments), embedding_size))
|
678 |
+
for i, segment in enumerate(tqdm.tqdm(segments)):
|
679 |
+
embeddings[i] = segment_embedding(segment)
|
680 |
+
embeddings = np.nan_to_num(embeddings)
|
681 |
+
print(f'Embedding shape: {embeddings.shape}')
|
682 |
+
|
683 |
+
if num_speakers == 0:
|
684 |
+
# Find the best number of speakers
|
685 |
+
score_num_speakers = {}
|
686 |
+
|
687 |
+
for num_speakers in range(2, 10+1):
|
688 |
+
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
689 |
+
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
|
690 |
+
score_num_speakers[num_speakers] = score
|
691 |
+
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
|
692 |
+
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
|
693 |
+
else:
|
694 |
+
best_num_speaker = num_speakers
|
695 |
+
|
696 |
+
# Assign speaker label
|
697 |
+
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
|
698 |
+
labels = clustering.labels_
|
699 |
+
for i in range(len(segments)):
|
700 |
+
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
701 |
+
|
702 |
+
with open(out_file,'w') as f:
|
703 |
+
f.write(json.dumps(segments, indent=2))
|
704 |
+
|
705 |
+
# Make CSV output
|
706 |
+
def convert_time(secs):
|
707 |
+
return datetime.timedelta(seconds=round(secs))
|
708 |
+
|
709 |
+
objects = {
|
710 |
+
'Start' : [],
|
711 |
+
'End': [],
|
712 |
+
'Speaker': [],
|
713 |
+
'Text': []
|
714 |
+
}
|
715 |
+
text = ''
|
716 |
+
for (i, segment) in enumerate(segments):
|
717 |
+
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
718 |
+
objects['Start'].append(str(convert_time(segment["start"])))
|
719 |
+
objects['Speaker'].append(segment["speaker"])
|
720 |
+
if i != 0:
|
721 |
+
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
722 |
+
objects['Text'].append(text)
|
723 |
+
text = ''
|
724 |
+
text += segment["text"] + ' '
|
725 |
+
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
726 |
+
objects['Text'].append(text)
|
727 |
+
|
728 |
+
save_path = video_file_path.replace(file_ending, ".csv")
|
729 |
+
df_results = pd.DataFrame(objects)
|
730 |
+
df_results.to_csv(save_path)
|
731 |
+
return df_results, save_path
|
732 |
+
|
733 |
+
except Exception as e:
|
734 |
+
raise RuntimeError("Error Running inference with local model", e)
|
735 |
+
#
|
736 |
+
#
|
737 |
+
####################################################################################################################################
|
738 |
+
|
739 |
+
|
740 |
+
|
741 |
+
|
742 |
+
|
743 |
+
|
744 |
+
####################################################################################################################################
|
745 |
+
#Summarizers
|
746 |
+
#
|
747 |
+
#
|
748 |
+
|
749 |
+
# Summarize with OpenAI ChatGPT
|
750 |
+
def extract_text_from_segments(segments):
|
751 |
+
logging.debug(f"openai: extracting text from {segments}")
|
752 |
+
text = ' '.join([segment['text'] for segment in segments])
|
753 |
+
return text
|
754 |
+
|
755 |
+
|
756 |
+
|
757 |
+
def summarize_with_openai(api_key, file_path, model):
|
758 |
+
try:
|
759 |
+
logging.debug("openai: Loading json data for summarization")
|
760 |
+
with open(file_path, 'r') as file:
|
761 |
+
segments = json.load(file)
|
762 |
+
|
763 |
+
logging.debug("openai: Extracting text from the segments")
|
764 |
+
text = extract_text_from_segments(segments)
|
765 |
+
|
766 |
+
headers = {
|
767 |
+
'Authorization': f'Bearer {api_key}',
|
768 |
+
'Content-Type': 'application/json'
|
769 |
+
}
|
770 |
+
|
771 |
+
logging.debug("openai: Preparing data + prompt for submittal")
|
772 |
+
prompt_text = f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points"
|
773 |
+
data = {
|
774 |
+
"model": model,
|
775 |
+
"messages": [
|
776 |
+
{
|
777 |
+
"role": "system",
|
778 |
+
"content": "You are a professional summarizer."
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"role": "user",
|
782 |
+
"content": prompt_text
|
783 |
+
}
|
784 |
+
],
|
785 |
+
"max_tokens": 4096, # Adjust tokens as needed
|
786 |
+
"temperature": 0.7
|
787 |
+
}
|
788 |
+
logging.debug("openai: Posting request")
|
789 |
+
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
|
790 |
+
|
791 |
+
if response.status_code == 200:
|
792 |
+
summary = response.json()['choices'][0]['message']['content'].strip()
|
793 |
+
logging.debug("openai: Summarization successful")
|
794 |
+
print("Summarization successful.")
|
795 |
+
return summary
|
796 |
+
else:
|
797 |
+
logging.debug("openai: Summarization failed")
|
798 |
+
print("Failed to process summary:", response.text)
|
799 |
+
return None
|
800 |
+
except Exception as e:
|
801 |
+
logging.debug("openai: Error in processing: %s", str(e))
|
802 |
+
print("Error occurred while processing summary with openai:", str(e))
|
803 |
+
return None
|
804 |
+
|
805 |
+
|
806 |
+
|
807 |
+
def summarize_with_claude(api_key, file_path, model):
|
808 |
+
try:
|
809 |
+
logging.debug("anthropic: Loading JSON data")
|
810 |
+
with open(file_path, 'r') as file:
|
811 |
+
segments = json.load(file)
|
812 |
+
|
813 |
+
logging.debug("anthropic: Extracting text from the segments file")
|
814 |
+
text = extract_text_from_segments(segments)
|
815 |
+
|
816 |
+
headers = {
|
817 |
+
'x-api-key': api_key,
|
818 |
+
'anthropic-version': '2023-06-01',
|
819 |
+
'Content-Type': 'application/json'
|
820 |
+
}
|
821 |
+
|
822 |
+
logging.debug("anthropic: Prepping data + prompt for submittal")
|
823 |
+
user_message = {
|
824 |
+
"role": "user",
|
825 |
+
"content": f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points"
|
826 |
+
}
|
827 |
+
|
828 |
+
data = {
|
829 |
+
"model": model,
|
830 |
+
"max_tokens": 4096, # max _possible_ tokens to return
|
831 |
+
"messages": [user_message],
|
832 |
+
"stop_sequences": ["\n\nHuman:"],
|
833 |
+
"temperature": 0.7,
|
834 |
+
"top_k": 0,
|
835 |
+
"top_p": 1.0,
|
836 |
+
"metadata": {
|
837 |
+
"user_id": "example_user_id",
|
838 |
+
},
|
839 |
+
"stream": False,
|
840 |
+
"system": "You are a professional summarizer."
|
841 |
+
}
|
842 |
+
|
843 |
+
logging.debug("anthropic: Posting request to API")
|
844 |
+
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
|
845 |
+
|
846 |
+
# Check if the status code indicates success
|
847 |
+
if response.status_code == 200:
|
848 |
+
logging.debug("anthropic: Post submittal successful")
|
849 |
+
response_data = response.json()
|
850 |
+
try:
|
851 |
+
summary = response_data['content'][0]['text'].strip()
|
852 |
+
logging.debug("anthropic: Summarization succesful")
|
853 |
+
print("Summary processed successfully.")
|
854 |
+
return summary
|
855 |
+
except (IndexError, KeyError) as e:
|
856 |
+
logging.debug("anthropic: Unexpected data in response")
|
857 |
+
print("Unexpected response format from Claude API:", response.text)
|
858 |
+
return None
|
859 |
+
elif response.status_code == 500: # Handle internal server error specifically
|
860 |
+
logging.debug("anthropic: Internal server error")
|
861 |
+
print("Internal server error from API. Retrying may be necessary.")
|
862 |
+
return None
|
863 |
+
else:
|
864 |
+
logging.debug(f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}")
|
865 |
+
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
|
866 |
+
return None
|
867 |
+
|
868 |
+
except Exception as e:
|
869 |
+
logging.debug("anthropic: Error in processing: %s", str(e))
|
870 |
+
print("Error occurred while processing summary with anthropic:", str(e))
|
871 |
+
return None
|
872 |
+
|
873 |
+
|
874 |
+
|
875 |
+
# Summarize with Cohere
|
876 |
+
def summarize_with_cohere(api_key, file_path, model):
|
877 |
+
try:
|
878 |
+
logging.basicConfig(level=logging.DEBUG)
|
879 |
+
logging.debug("cohere: Loading JSON data")
|
880 |
+
with open(file_path, 'r') as file:
|
881 |
+
segments = json.load(file)
|
882 |
+
|
883 |
+
logging.debug(f"cohere: Extracting text from segments file")
|
884 |
+
text = extract_text_from_segments(segments)
|
885 |
+
|
886 |
+
headers = {
|
887 |
+
'accept': 'application/json',
|
888 |
+
'content-type': 'application/json',
|
889 |
+
'Authorization': f'Bearer {api_key}'
|
890 |
+
}
|
891 |
+
|
892 |
+
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
|
893 |
+
data = {
|
894 |
+
"chat_history": [
|
895 |
+
{"role": "USER", "message": prompt_text}
|
896 |
+
],
|
897 |
+
"message": "Please provide a summary.",
|
898 |
+
"model": model,
|
899 |
+
"connectors": [{"id": "web-search"}]
|
900 |
+
}
|
901 |
+
|
902 |
+
logging.debug("cohere: Submitting request to API endpoint")
|
903 |
+
print("cohere: Submitting request to API endpoint")
|
904 |
+
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
|
905 |
+
response_data = response.json()
|
906 |
+
logging.debug("API Response Data: %s", response_data)
|
907 |
+
|
908 |
+
if response.status_code == 200:
|
909 |
+
if 'text' in response_data:
|
910 |
+
summary = response_data['text'].strip()
|
911 |
+
logging.debug("cohere: Summarization successful")
|
912 |
+
print("Summary processed successfully.")
|
913 |
+
return summary
|
914 |
+
else:
|
915 |
+
logging.error("Expected data not found in API response.")
|
916 |
+
return "Expected data not found in API response."
|
917 |
+
else:
|
918 |
+
logging.error(f"cohere: API request failed with status code {response.status_code}: {resposne.text}")
|
919 |
+
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
|
920 |
+
return f"cohere: API request failed: {response.text}"
|
921 |
+
|
922 |
+
except Exception as e:
|
923 |
+
logging.error("cohere: Error in processing: %s", str(e))
|
924 |
+
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
|
925 |
+
|
926 |
+
|
927 |
+
|
928 |
+
# https://console.groq.com/docs/quickstart
|
929 |
+
def summarize_with_groq(api_key, file_path, model):
|
930 |
+
try:
|
931 |
+
logging.debug("groq: Loading JSON data")
|
932 |
+
with open(file_path, 'r') as file:
|
933 |
+
segments = json.load(file)
|
934 |
+
|
935 |
+
logging.debug(f"groq: Extracting text from segments file")
|
936 |
+
text = extract_text_from_segments(segments)
|
937 |
+
|
938 |
+
headers = {
|
939 |
+
'Authorization': f'Bearer {api_key}',
|
940 |
+
'Content-Type': 'application/json'
|
941 |
+
}
|
942 |
+
|
943 |
+
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
|
944 |
+
data = {
|
945 |
+
"messages": [
|
946 |
+
{
|
947 |
+
"role": "user",
|
948 |
+
"content": prompt_text
|
949 |
+
}
|
950 |
+
],
|
951 |
+
"model": model
|
952 |
+
}
|
953 |
+
|
954 |
+
logging.debug("groq: Submitting request to API endpoint")
|
955 |
+
print("groq: Submitting request to API endpoint")
|
956 |
+
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
|
957 |
+
|
958 |
+
response_data = response.json()
|
959 |
+
logging.debug("API Response Data: %s", response_data)
|
960 |
+
|
961 |
+
if response.status_code == 200:
|
962 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
963 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
964 |
+
logging.debug("groq: Summarization successful")
|
965 |
+
print("Summarization successful.")
|
966 |
+
return summary
|
967 |
+
else:
|
968 |
+
logging.error("Expected data not found in API response.")
|
969 |
+
return "Expected data not found in API response."
|
970 |
+
else:
|
971 |
+
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
|
972 |
+
return f"groq: API request failed: {response.text}"
|
973 |
+
|
974 |
+
except Exception as e:
|
975 |
+
logging.error("groq: Error in processing: %s", str(e))
|
976 |
+
return f"groq: Error occurred while processing summary with groq: {str(e)}"
|
977 |
+
|
978 |
+
|
979 |
+
#################################
|
980 |
+
#
|
981 |
+
# Local Summarization
|
982 |
+
|
983 |
+
def summarize_with_llama(api_url, file_path, token):
|
984 |
+
try:
|
985 |
+
logging.debug("llama: Loading JSON data")
|
986 |
+
with open(file_path, 'r') as file:
|
987 |
+
segments = json.load(file)
|
988 |
+
|
989 |
+
logging.debug(f"llama: Extracting text from segments file")
|
990 |
+
text = extract_text_from_segments(segments) # Define this function to extract text properly
|
991 |
+
|
992 |
+
headers = {
|
993 |
+
'accept': 'application/json',
|
994 |
+
'content-type': 'application/json',
|
995 |
+
}
|
996 |
+
if len(token)>5:
|
997 |
+
headers['Authorization'] = f'Bearer {token}'
|
998 |
+
|
999 |
+
|
1000 |
+
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
|
1001 |
+
data = {
|
1002 |
+
"prompt": prompt_text
|
1003 |
+
}
|
1004 |
+
|
1005 |
+
logging.debug("llama: Submitting request to API endpoint")
|
1006 |
+
print("llama: Submitting request to API endpoint")
|
1007 |
+
response = requests.post(api_url, headers=headers, json=data)
|
1008 |
+
response_data = response.json()
|
1009 |
+
logging.debug("API Response Data: %s", response_data)
|
1010 |
+
|
1011 |
+
if response.status_code == 200:
|
1012 |
+
#if 'X' in response_data:
|
1013 |
+
logging.debug(response_data)
|
1014 |
+
summary = response_data['content'].strip()
|
1015 |
+
logging.debug("llama: Summarization successful")
|
1016 |
+
print("Summarization successful.")
|
1017 |
+
return summary
|
1018 |
+
else:
|
1019 |
+
logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}")
|
1020 |
+
return f"llama: API request failed: {response.text}"
|
1021 |
+
|
1022 |
+
except Exception as e:
|
1023 |
+
logging.error("llama: Error in processing: %s", str(e))
|
1024 |
+
return f"llama: Error occurred while processing summary with llama: {str(e)}"
|
1025 |
+
|
1026 |
+
|
1027 |
+
|
1028 |
+
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
|
1029 |
+
def summarize_with_kobold(api_url, file_path):
|
1030 |
+
try:
|
1031 |
+
logging.debug("kobold: Loading JSON data")
|
1032 |
+
with open(file_path, 'r') as file:
|
1033 |
+
segments = json.load(file)
|
1034 |
+
|
1035 |
+
logging.debug(f"kobold: Extracting text from segments file")
|
1036 |
+
text = extract_text_from_segments(segments)
|
1037 |
+
|
1038 |
+
headers = {
|
1039 |
+
'accept': 'application/json',
|
1040 |
+
'content-type': 'application/json',
|
1041 |
+
}
|
1042 |
+
# FIXME
|
1043 |
+
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the above text."
|
1044 |
+
logging.debug(prompt_text)
|
1045 |
+
# Values literally c/p from the api docs....
|
1046 |
+
data = {
|
1047 |
+
"max_context_length": 8096,
|
1048 |
+
"max_length": 4096,
|
1049 |
+
"prompt": prompt_text,
|
1050 |
+
}
|
1051 |
+
|
1052 |
+
logging.debug("kobold: Submitting request to API endpoint")
|
1053 |
+
print("kobold: Submitting request to API endpoint")
|
1054 |
+
response = requests.post(api_url, headers=headers, json=data)
|
1055 |
+
response_data = response.json()
|
1056 |
+
logging.debug("kobold: API Response Data: %s", response_data)
|
1057 |
+
|
1058 |
+
if response.status_code == 200:
|
1059 |
+
if 'results' in response_data and len(response_data['results']) > 0:
|
1060 |
+
summary = response_data['results'][0]['text'].strip()
|
1061 |
+
logging.debug("kobold: Summarization successful")
|
1062 |
+
print("Summarization successful.")
|
1063 |
+
return summary
|
1064 |
+
else:
|
1065 |
+
logging.error("Expected data not found in API response.")
|
1066 |
+
return "Expected data not found in API response."
|
1067 |
+
else:
|
1068 |
+
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
|
1069 |
+
return f"kobold: API request failed: {response.text}"
|
1070 |
+
|
1071 |
+
except Exception as e:
|
1072 |
+
logging.error("kobold: Error in processing: %s", str(e))
|
1073 |
+
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
|
1074 |
+
|
1075 |
+
|
1076 |
+
|
1077 |
+
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
|
1078 |
+
def summarize_with_oobabooga(api_url, file_path):
|
1079 |
+
try:
|
1080 |
+
logging.debug("ooba: Loading JSON data")
|
1081 |
+
with open(file_path, 'r') as file:
|
1082 |
+
segments = json.load(file)
|
1083 |
+
|
1084 |
+
logging.debug(f"ooba: Extracting text from segments file\n\n\n")
|
1085 |
+
text = extract_text_from_segments(segments)
|
1086 |
+
logging.debug(f"ooba: Finished extracting text from segments file")
|
1087 |
+
|
1088 |
+
headers = {
|
1089 |
+
'accept': 'application/json',
|
1090 |
+
'content-type': 'application/json',
|
1091 |
+
}
|
1092 |
+
|
1093 |
+
prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a french bakery baking cakes. It is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are my favorite."
|
1094 |
+
# prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable
|
1095 |
+
prompt_text += "\n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
|
1096 |
+
|
1097 |
+
data = {
|
1098 |
+
"mode": "chat",
|
1099 |
+
"character": "Example",
|
1100 |
+
"messages": [{"role": "user", "content": prompt_text}]
|
1101 |
+
}
|
1102 |
+
|
1103 |
+
logging.debug("ooba: Submitting request to API endpoint")
|
1104 |
+
print("ooba: Submitting request to API endpoint")
|
1105 |
+
response = requests.post(api_url, headers=headers, json=data, verify=False)
|
1106 |
+
logging.debug("ooba: API Response Data: %s", response)
|
1107 |
+
|
1108 |
+
if response.status_code == 200:
|
1109 |
+
response_data = response.json()
|
1110 |
+
summary = response.json()['choices'][0]['message']['content']
|
1111 |
+
logging.debug("ooba: Summarization successful")
|
1112 |
+
print("Summarization successful.")
|
1113 |
+
return summary
|
1114 |
+
else:
|
1115 |
+
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
|
1116 |
+
return f"ooba: API request failed with status code {response.status_code}: {response.text}"
|
1117 |
+
|
1118 |
+
except Exception as e:
|
1119 |
+
logging.error("ooba: Error in processing: %s", str(e))
|
1120 |
+
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
|
1121 |
+
|
1122 |
+
|
1123 |
+
|
1124 |
+
def save_summary_to_file(summary, file_path):
|
1125 |
+
summary_file_path = file_path.replace('.segments.json', '_summary.txt')
|
1126 |
+
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
|
1127 |
+
with open(summary_file_path, 'w') as file:
|
1128 |
+
file.write(summary)
|
1129 |
+
logging.info(f"Summary saved to file: {summary_file_path}")
|
1130 |
+
|
1131 |
+
#
|
1132 |
+
#
|
1133 |
+
####################################################################################################################################
|
1134 |
+
|
1135 |
+
|
1136 |
+
|
1137 |
+
|
1138 |
+
|
1139 |
+
|
1140 |
+
####################################################################################################################################
|
1141 |
+
# Gradio UI
|
1142 |
+
#
|
1143 |
+
|
1144 |
+
# Only to be used when configured with Gradio for HF Space
|
1145 |
+
def summarize_with_huggingface(api_key, file_path):
|
1146 |
+
logging.debug(f"huggingface: Summarization process starting...")
|
1147 |
+
try:
|
1148 |
+
logging.debug("huggingface: Loading json data for summarization")
|
1149 |
+
with open(file_path, 'r') as file:
|
1150 |
+
segments = json.load(file)
|
1151 |
+
|
1152 |
+
logging.debug("huggingface: Extracting text from the segments")
|
1153 |
+
text = ' '.join([segment['text'] for segment in segments])
|
1154 |
+
|
1155 |
+
api_key = os.environ.get('HF_TOKEN')
|
1156 |
+
headers = {
|
1157 |
+
"Authorization": f"Bearer {api_key}"
|
1158 |
+
}
|
1159 |
+
model = "microsoft/Phi-3-mini-128k-instruct"
|
1160 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
1161 |
+
data = {
|
1162 |
+
"inputs": text,
|
1163 |
+
"parameters": {"max_length": 512, "min_length": 100} # You can adjust max_length and min_length as needed
|
1164 |
+
}
|
1165 |
+
|
1166 |
+
logging.debug("huggingface: Submitting request...")
|
1167 |
+
response = requests.post(API_URL, headers=headers, json=data)
|
1168 |
+
|
1169 |
+
if response.status_code == 200:
|
1170 |
+
summary = response.json()[0]['summary_text']
|
1171 |
+
logging.debug("huggingface: Summarization successful")
|
1172 |
+
print("Summarization successful.")
|
1173 |
+
return summary
|
1174 |
+
else:
|
1175 |
+
logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}")
|
1176 |
+
return f"Failed to process summary, status code {response.status_code}: {response.text}"
|
1177 |
+
except Exception as e:
|
1178 |
+
logging.error("huggingface: Error in processing: %s", str(e))
|
1179 |
+
print(f"Error occurred while processing summary with huggingface: {str(e)}")
|
1180 |
+
return None
|
1181 |
+
|
1182 |
+
|
1183 |
+
|
1184 |
+
def same_auth(username, password):
|
1185 |
+
return username == password
|
1186 |
+
|
1187 |
+
|
1188 |
+
|
1189 |
+
def launch_ui(demo_mode=False):
|
1190 |
+
def process_transcription(json_data):
|
1191 |
+
if json_data:
|
1192 |
+
return "\n".join([item["text"] for item in json_data])
|
1193 |
+
else:
|
1194 |
+
return ""
|
1195 |
+
|
1196 |
+
inputs = [
|
1197 |
+
gr.components.Textbox(label="URL"),
|
1198 |
+
gr.components.Number(value=2, label="Number of Speakers"),
|
1199 |
+
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
1200 |
+
gr.components.Number(value=0, label="Offset")
|
1201 |
+
]
|
1202 |
+
|
1203 |
+
if not demo_mode:
|
1204 |
+
inputs.extend([
|
1205 |
+
gr.components.Dropdown(choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], value="anthropic", label="API Name"),
|
1206 |
+
gr.components.Textbox(label="API Key"),
|
1207 |
+
gr.components.Checkbox(value=False, label="VAD Filter"),
|
1208 |
+
gr.components.Checkbox(value=False, label="Download Video")
|
1209 |
+
])
|
1210 |
+
|
1211 |
+
iface = gr.Interface(
|
1212 |
+
fn=lambda *args: process_url(*args, demo_mode=demo_mode),
|
1213 |
+
inputs=inputs,
|
1214 |
+
outputs=[
|
1215 |
+
gr.components.Textbox(label="Transcription", value=lambda: "", max_lines=10),
|
1216 |
+
gr.components.Textbox(label="Summary"),
|
1217 |
+
gr.components.File(label="Download Transcription as JSON"),
|
1218 |
+
gr.components.File(label="Download Summary as text", visible=lambda summary_file_path: summary_file_path is not None)
|
1219 |
+
],
|
1220 |
+
title="Video Transcription and Summarization",
|
1221 |
+
description="Submit a video URL for transcription and summarization.",
|
1222 |
+
allow_flagging="never"
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
iface.launch(share=True)
|
1226 |
+
|
1227 |
+
#
|
1228 |
+
#
|
1229 |
+
#####################################################################################################################################
|
1230 |
+
|
1231 |
+
|
1232 |
+
|
1233 |
+
|
1234 |
+
|
1235 |
+
|
1236 |
+
|
1237 |
+
####################################################################################################################################
|
1238 |
+
# Main()
|
1239 |
+
#
|
1240 |
+
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False, download_video_flag=False):
|
1241 |
+
if input_path is None and args.user_interface:
|
1242 |
+
return []
|
1243 |
+
start_time = time.monotonic()
|
1244 |
+
paths = [] # Initialize paths as an empty list
|
1245 |
+
if os.path.isfile(input_path) and input_path.endswith('.txt'):
|
1246 |
+
logging.debug("MAIN: User passed in a text file, processing text file...")
|
1247 |
+
paths = read_paths_from_file(input_path)
|
1248 |
+
elif os.path.exists(input_path):
|
1249 |
+
logging.debug("MAIN: Local file path detected")
|
1250 |
+
paths = [input_path]
|
1251 |
+
elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict:
|
1252 |
+
logging.debug("MAIN: YouTube playlist detected")
|
1253 |
+
print("\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a text file that you can then pass into this script though! (It may not work... playlist support seems spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython diarizer.py <playlist text file name>\n\n""")
|
1254 |
+
return
|
1255 |
+
else:
|
1256 |
+
paths = [input_path]
|
1257 |
+
results = []
|
1258 |
+
|
1259 |
+
for path in paths:
|
1260 |
+
try:
|
1261 |
+
if path.startswith('http'):
|
1262 |
+
logging.debug("MAIN: URL Detected")
|
1263 |
+
info_dict = get_youtube(path)
|
1264 |
+
if info_dict:
|
1265 |
+
logging.debug("MAIN: Creating path for video file...")
|
1266 |
+
download_path = create_download_directory(info_dict['title'])
|
1267 |
+
logging.debug("MAIN: Path created successfully")
|
1268 |
+
logging.debug("MAIN: Downloading video from yt_dlp...")
|
1269 |
+
video_path = download_video(path, download_path, info_dict, download_video_flag)
|
1270 |
+
logging.debug("MAIN: Video downloaded successfully")
|
1271 |
+
logging.debug("MAIN: Converting video file to WAV...")
|
1272 |
+
audio_file = convert_to_wav(video_path, offset)
|
1273 |
+
logging.debug("MAIN: Audio file converted succesfully")
|
1274 |
+
else:
|
1275 |
+
if os.path.exists(path):
|
1276 |
+
logging.debug("MAIN: Local file path detected")
|
1277 |
+
download_path, info_dict, audio_file = process_local_file(path)
|
1278 |
+
else:
|
1279 |
+
logging.error(f"File does not exist: {path}")
|
1280 |
+
continue
|
1281 |
+
|
1282 |
+
if info_dict:
|
1283 |
+
logging.debug("MAIN: Creating transcription file from WAV")
|
1284 |
+
segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter)
|
1285 |
+
transcription_result = {
|
1286 |
+
'video_path': path,
|
1287 |
+
'audio_file': audio_file,
|
1288 |
+
'transcription': segments
|
1289 |
+
}
|
1290 |
+
results.append(transcription_result)
|
1291 |
+
logging.info(f"Transcription complete: {audio_file}")
|
1292 |
+
|
1293 |
+
# Perform summarization based on the specified API
|
1294 |
+
if api_name and api_key:
|
1295 |
+
logging.debug(f"MAIN: Summarization being performed by {api_name}")
|
1296 |
+
json_file_path = audio_file.replace('.wav', '.segments.json')
|
1297 |
+
if api_name.lower() == 'openai':
|
1298 |
+
api_key = openai_api_key
|
1299 |
+
try:
|
1300 |
+
logging.debug(f"MAIN: trying to summarize with openAI")
|
1301 |
+
summary = summarize_with_openai(api_key, json_file_path, openai_model)
|
1302 |
+
except requests.exceptions.ConnectionError:
|
1303 |
+
r.status_code = "Connection: "
|
1304 |
+
elif api_name.lower() == 'anthropic':
|
1305 |
+
api_key = anthropic_api_key
|
1306 |
+
try:
|
1307 |
+
logging.debug(f"MAIN: Trying to summarize with anthropic")
|
1308 |
+
summary = summarize_with_claude(api_key, json_file_path, anthropic_model)
|
1309 |
+
except requests.exceptions.ConnectionError:
|
1310 |
+
r.status_code = "Connection: "
|
1311 |
+
elif api_name.lower() == 'cohere':
|
1312 |
+
api_key = cohere_api_key
|
1313 |
+
try:
|
1314 |
+
logging.debug(f"MAIN: Trying to summarize with cohere")
|
1315 |
+
summary = summarize_with_cohere(api_key, json_file_path, cohere_model)
|
1316 |
+
except requests.exceptions.ConnectionError:
|
1317 |
+
r.status_code = "Connection: "
|
1318 |
+
elif api_name.lower() == 'groq':
|
1319 |
+
api_key = groq_api_key
|
1320 |
+
try:
|
1321 |
+
logging.debug(f"MAIN: Trying to summarize with Groq")
|
1322 |
+
summary = summarize_with_groq(api_key, json_file_path, groq_model)
|
1323 |
+
except requests.exceptions.ConnectionError:
|
1324 |
+
r.status_code = "Connection: "
|
1325 |
+
elif api_name.lower() == 'llama':
|
1326 |
+
token = llama_api_key
|
1327 |
+
llama_ip = llama_api_IP
|
1328 |
+
try:
|
1329 |
+
logging.debug(f"MAIN: Trying to summarize with Llama.cpp")
|
1330 |
+
summary = summarize_with_llama(llama_ip, json_file_path, token)
|
1331 |
+
except requests.exceptions.ConnectionError:
|
1332 |
+
r.status_code = "Connection: "
|
1333 |
+
elif api_name.lower() == 'kobold':
|
1334 |
+
token = kobold_api_key
|
1335 |
+
kobold_ip = kobold_api_IP
|
1336 |
+
try:
|
1337 |
+
logging.debug(f"MAIN: Trying to summarize with kobold.cpp")
|
1338 |
+
summary = summarize_with_kobold(kobold_ip, json_file_path)
|
1339 |
+
except requests.exceptions.ConnectionError:
|
1340 |
+
r.status_code = "Connection: "
|
1341 |
+
elif api_name.lower() == 'ooba':
|
1342 |
+
token = ooba_api_key
|
1343 |
+
ooba_ip = ooba_api_IP
|
1344 |
+
try:
|
1345 |
+
logging.debug(f"MAIN: Trying to summarize with oobabooga")
|
1346 |
+
summary = summarize_with_oobabooga(ooba_ip, json_file_path)
|
1347 |
+
except requests.exceptions.ConnectionError:
|
1348 |
+
r.status_code = "Connection: "
|
1349 |
+
if api_name.lower() == 'huggingface':
|
1350 |
+
api_key = huggingface_api_key
|
1351 |
+
try:
|
1352 |
+
logging.debug(f"MAIN: Trying to summarize with huggingface")
|
1353 |
+
summarize_with_huggingface(api_key, json_file_path)
|
1354 |
+
except requests.exceptions.ConnectionError:
|
1355 |
+
r.status_code = "Connection: "
|
1356 |
+
|
1357 |
+
else:
|
1358 |
+
logging.warning(f"Unsupported API: {api_name}")
|
1359 |
+
summary = None
|
1360 |
+
|
1361 |
+
if summary:
|
1362 |
+
transcription_result['summary'] = summary
|
1363 |
+
logging.info(f"Summary generated using {api_name} API")
|
1364 |
+
save_summary_to_file(summary, json_file_path)
|
1365 |
+
else:
|
1366 |
+
logging.warning(f"Failed to generate summary using {api_name} API")
|
1367 |
+
else:
|
1368 |
+
logging.info("No API specified. Summarization will not be performed")
|
1369 |
+
except Exception as e:
|
1370 |
+
logging.error(f"Error processing path: {path}")
|
1371 |
+
logging.error(str(e))
|
1372 |
+
end_time = time.monotonic()
|
1373 |
+
#print("Total program execution time: " + timedelta(seconds=end_time - start_time))
|
1374 |
+
|
1375 |
+
return results
|
1376 |
+
|
1377 |
+
|
1378 |
+
|
1379 |
+
if __name__ == "__main__":
|
1380 |
+
parser = argparse.ArgumentParser(description='Transcribe and summarize videos.')
|
1381 |
+
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
|
1382 |
+
parser.add_argument('-v','--video', action='store_true', help='Download the video instead of just the audio')
|
1383 |
+
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
|
1384 |
+
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
|
1385 |
+
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
|
1386 |
+
parser.add_argument('-wm', '--whisper_model', type=str, default='small.en', help='Whisper model (default: small.en)')
|
1387 |
+
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
1388 |
+
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
1389 |
+
parser.add_argument('-log', '--log_level', type=str, default='INFO', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
|
1390 |
+
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
1391 |
+
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
1392 |
+
#parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
1393 |
+
args = parser.parse_args()
|
1394 |
+
|
1395 |
+
# Since this is running in HF....
|
1396 |
+
args.user_interface = True
|
1397 |
+
if args.user_interface:
|
1398 |
+
launch_ui(demo_mode=args.demo_mode)
|
1399 |
+
else:
|
1400 |
+
if not args.input_path:
|
1401 |
+
parser.print_help()
|
1402 |
+
sys.exit(1)
|
1403 |
+
|
1404 |
+
logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
1405 |
+
|
1406 |
+
logging.info('Starting the transcription and summarization process.')
|
1407 |
+
logging.info(f'Input path: {args.input_path}')
|
1408 |
+
logging.info(f'API Name: {args.api_name}')
|
1409 |
+
logging.debug(f'API Key: {args.api_key}') # ehhhhh
|
1410 |
+
logging.info(f'Number of speakers: {args.num_speakers}')
|
1411 |
+
logging.info(f'Whisper model: {args.whisper_model}')
|
1412 |
+
logging.info(f'Offset: {args.offset}')
|
1413 |
+
logging.info(f'VAD filter: {args.vad_filter}')
|
1414 |
+
logging.info(f'Log Level: {args.log_level}') #lol
|
1415 |
+
|
1416 |
+
if args.api_name and args.api_key:
|
1417 |
+
logging.info(f'API: {args.api_name}')
|
1418 |
+
logging.info('Summarization will be performed.')
|
1419 |
+
else:
|
1420 |
+
logging.info('No API specified. Summarization will not be performed.')
|
1421 |
+
|
1422 |
+
logging.debug("Platform check being performed...")
|
1423 |
+
platform_check()
|
1424 |
+
logging.debug("CUDA check being performed...")
|
1425 |
+
cuda_check()
|
1426 |
+
logging.debug("ffmpeg check being performed...")
|
1427 |
+
check_ffmpeg()
|
1428 |
+
|
1429 |
+
try:
|
1430 |
+
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, vad_filter=args.vad_filter, download_video_flag=args.video)
|
1431 |
+
logging.info('Transcription process completed.')
|
1432 |
+
except Exception as e:
|
1433 |
+
logging.error('An error occurred during the transcription process.')
|
1434 |
+
logging.error(str(e))
|
1435 |
+
sys.exit(1)
|
1436 |
+
|