oceansweep commited on
Commit
8a348ee
·
verified ·
1 Parent(s): d988bf2

Update App_Function_Libraries/RAG/RAG_Library_2.py

Browse files
App_Function_Libraries/RAG/RAG_Library_2.py CHANGED
@@ -1,795 +1,795 @@
1
- # RAG_Library_2.py
2
- # Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
3
- #
4
- # Import necessary modules and functions
5
- import configparser
6
- import logging
7
- import os
8
- import time
9
- from typing import Dict, Any, List, Optional
10
-
11
- from App_Function_Libraries.DB.Character_Chat_DB import get_character_chats, perform_full_text_search_chat, \
12
- fetch_keywords_for_chats, search_character_chat, search_character_cards, fetch_character_ids_by_keywords
13
- from App_Function_Libraries.DB.RAG_QA_Chat_DB import search_rag_chat, search_rag_notes
14
- #
15
- # Local Imports
16
- from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
17
- from App_Function_Libraries.RAG.RAG_Persona_Chat import perform_vector_search_chat
18
- from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_custom_openai
19
- from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article
20
- from App_Function_Libraries.DB.DB_Manager import fetch_keywords_for_media, search_media_db, get_notes_by_keywords, \
21
- search_conversations_by_keywords
22
- from App_Function_Libraries.Utils.Utils import load_comprehensive_config
23
- from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
24
- #
25
- # 3rd-Party Imports
26
- import openai
27
- from flashrank import Ranker, RerankRequest
28
- #
29
- ########################################################################################################################
30
- #
31
- # Functions:
32
-
33
- # Initialize OpenAI client (adjust this based on your API key management)
34
- openai.api_key = "your-openai-api-key"
35
-
36
- # Get the directory of the current script
37
- current_dir = os.path.dirname(os.path.abspath(__file__))
38
- # Construct the path to the config file
39
- config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
40
- # Read the config file
41
- config = configparser.ConfigParser()
42
- # Read the configuration file
43
- config.read('config.txt')
44
-
45
-
46
- search_functions = {
47
- "Media DB": search_media_db,
48
- "RAG Chat": search_rag_chat,
49
- "RAG Notes": search_rag_notes,
50
- "Character Chat": search_character_chat,
51
- "Character Cards": search_character_cards
52
- }
53
-
54
- # RAG pipeline function for web scraping
55
- # def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
56
- # try:
57
- # # Extract content
58
- # try:
59
- # article_data = scrape_article(url)
60
- # content = article_data['content']
61
- # title = article_data['title']
62
- # except Exception as e:
63
- # logging.error(f"Error scraping article: {str(e)}")
64
- # return {"error": "Failed to scrape article", "details": str(e)}
65
- #
66
- # # Store the article in the database and get the media_id
67
- # try:
68
- # media_id = add_media_to_database(url, title, 'article', content)
69
- # except Exception as e:
70
- # logging.error(f"Error adding article to database: {str(e)}")
71
- # return {"error": "Failed to store article in database", "details": str(e)}
72
- #
73
- # # Process and store content
74
- # collection_name = f"article_{media_id}"
75
- # try:
76
- # # Assuming you have a database object available, let's call it 'db'
77
- # db = get_database_connection()
78
- #
79
- # process_and_store_content(
80
- # database=db,
81
- # content=content,
82
- # collection_name=collection_name,
83
- # media_id=media_id,
84
- # file_name=title,
85
- # create_embeddings=True,
86
- # create_contextualized=True,
87
- # api_name=api_choice
88
- # )
89
- # except Exception as e:
90
- # logging.error(f"Error processing and storing content: {str(e)}")
91
- # return {"error": "Failed to process and store content", "details": str(e)}
92
- #
93
- # # Perform searches
94
- # try:
95
- # vector_results = vector_search(collection_name, query, k=5)
96
- # fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
97
- # except Exception as e:
98
- # logging.error(f"Error performing searches: {str(e)}")
99
- # return {"error": "Failed to perform searches", "details": str(e)}
100
- #
101
- # # Combine results with error handling for missing 'content' key
102
- # all_results = []
103
- # for result in vector_results + fts_results:
104
- # if isinstance(result, dict) and 'content' in result:
105
- # all_results.append(result['content'])
106
- # else:
107
- # logging.warning(f"Unexpected result format: {result}")
108
- # all_results.append(str(result))
109
- #
110
- # context = "\n".join(all_results)
111
- #
112
- # # Generate answer using the selected API
113
- # try:
114
- # answer = generate_answer(api_choice, context, query)
115
- # except Exception as e:
116
- # logging.error(f"Error generating answer: {str(e)}")
117
- # return {"error": "Failed to generate answer", "details": str(e)}
118
- #
119
- # return {
120
- # "answer": answer,
121
- # "context": context
122
- # }
123
- #
124
- # except Exception as e:
125
- # logging.error(f"Unexpected error in rag_pipeline: {str(e)}")
126
- # return {"error": "An unexpected error occurred", "details": str(e)}
127
-
128
-
129
- # RAG Search with keyword filtering
130
- # FIXME - Update each called function to support modifiable top-k results
131
- def enhanced_rag_pipeline(
132
- query: str,
133
- api_choice: str,
134
- keywords: Optional[str] = None,
135
- fts_top_k: int = 10,
136
- apply_re_ranking: bool = True,
137
- database_types: List[str] = ["Media DB"]
138
- ) -> Dict[str, Any]:
139
- """
140
- Perform full text search across specified database type.
141
-
142
- Args:
143
- query: Search query string
144
- api_choice: API to use for generating the response
145
- keywords: Optional list of media IDs to filter results
146
- fts_top_k: Maximum number of results to return
147
- apply_re_ranking: Whether to apply re-ranking to results
148
- database_types: Type of database to search
149
-
150
- Returns:
151
- Dictionary containing search results with content
152
- """
153
- log_counter("enhanced_rag_pipeline_attempt", labels={"api_choice": api_choice})
154
- start_time = time.time()
155
-
156
- try:
157
- # Load embedding provider from config, or fallback to 'openai'
158
- embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
159
- logging.debug(f"Using embedding provider: {embedding_provider}")
160
-
161
- # Initialize relevant IDs dictionary
162
- relevant_ids: Dict[str, Optional[List[str]]] = {}
163
-
164
- # Process keywords if provided
165
- if keywords:
166
- keyword_list = [k.strip().lower() for k in keywords.split(',')]
167
- logging.debug(f"enhanced_rag_pipeline - Keywords: {keyword_list}")
168
-
169
- try:
170
- for db_type in database_types:
171
- if db_type == "Media DB":
172
- media_ids = fetch_relevant_media_ids(keyword_list)
173
- relevant_ids[db_type] = [str(id_) for id_ in media_ids]
174
- elif db_type == "RAG Chat":
175
- conversations, _, _ = search_conversations_by_keywords(keywords=keyword_list)
176
- relevant_ids[db_type] = [str(conv['conversation_id']) for conv in conversations]
177
- elif db_type == "RAG Notes":
178
- notes, _, _ = get_notes_by_keywords(keyword_list)
179
- relevant_ids[db_type] = [str(note_id) for note_id, _, _, _ in notes]
180
- elif db_type == "Character Chat":
181
- relevant_ids[db_type] = [str(id_) for id_ in fetch_keywords_for_chats(keyword_list)]
182
- elif db_type == "Character Cards":
183
- relevant_ids[db_type] = [str(id_) for id_ in fetch_character_ids_by_keywords(keyword_list)]
184
- else:
185
- logging.error(f"Unsupported database type: {db_type}")
186
-
187
- logging.debug(f"enhanced_rag_pipeline - {db_type} relevant IDs: {relevant_ids[db_type]}")
188
- except Exception as e:
189
- logging.error(f"Error fetching relevant IDs: {str(e)}")
190
- relevant_ids = {db_type: None for db_type in database_types}
191
- else:
192
- relevant_ids = {db_type: None for db_type in database_types}
193
-
194
- # Perform vector search
195
- vector_results = []
196
- for db_type in database_types:
197
- try:
198
- db_relevant_ids = relevant_ids.get(db_type)
199
- results = perform_vector_search(query, db_relevant_ids, top_k=fts_top_k)
200
- vector_results.extend(results)
201
- logging.debug(f"\nenhanced_rag_pipeline - Vector search results for {db_type}: {results}")
202
- except Exception as e:
203
- logging.error(f"Error performing vector search on {db_type}: {str(e)}")
204
-
205
- # Perform vector search
206
- # FIXME
207
- #vector_results = perform_vector_search(query, relevant_media_ids)
208
- #ogging.debug(f"\n\nenhanced_rag_pipeline - Vector search results: {vector_results}")
209
-
210
- # Perform full-text search
211
- #v1
212
- #fts_results = perform_full_text_search(query, database_type, relevant_media_ids, fts_top_k)
213
-
214
- # v2
215
- # Perform full-text search across specified databases
216
- fts_results = []
217
- for db_type in database_types:
218
- try:
219
- db_relevant_ids = relevant_ids.get(db_type)
220
- db_results = perform_full_text_search(query, db_type, db_relevant_ids, fts_top_k)
221
- fts_results.extend(db_results)
222
- logging.debug(f"enhanced_rag_pipeline - FTS results for {db_type}: {db_results}")
223
- except Exception as e:
224
- logging.error(f"Error performing full-text search on {db_type}: {str(e)}")
225
-
226
- #logging.debug("\n\nenhanced_rag_pipeline - Full-text search results:")
227
- logging.debug(
228
- "\n\nenhanced_rag_pipeline - Full-text search results:\n" + "\n".join(
229
- [str(item) for item in fts_results]) + "\n"
230
- )
231
-
232
- # Combine results
233
- all_results = vector_results + fts_results
234
-
235
- # FIXME - specify model + add param to modify at call time
236
- # You can specify a model if necessary, e.g., model_name="ms-marco-MiniLM-L-12-v2"
237
- # Apply re-ranking if enabled and results exist
238
- if apply_re_ranking and all_results:
239
- logging.debug(f"\nenhanced_rag_pipeline - Applying Re-Ranking")
240
-
241
- if all_results:
242
- ranker = Ranker()
243
-
244
- # Prepare passages for re-ranking
245
- passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)]
246
- rerank_request = RerankRequest(query=query, passages=passages)
247
-
248
- # Rerank the results
249
- reranked_results = ranker.rerank(rerank_request)
250
-
251
- # Sort results based on the re-ranking score
252
- reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True)
253
-
254
- # Log reranked results
255
- logging.debug(f"\n\nenhanced_rag_pipeline - Reranked results: {reranked_results}")
256
-
257
- # Update all_results based on reranking
258
- all_results = [all_results[result['id']] for result in reranked_results]
259
-
260
- # Extract content from results (top fts_top_k by default)
261
- context = "\n".join([result['content'] for result in all_results[:fts_top_k]])
262
- #logging.debug(f"Context length: {len(context)}")
263
- logging.debug(f"Context: {context[:200]}")
264
-
265
- # Generate answer using the selected API
266
- answer = generate_answer(api_choice, context, query)
267
-
268
- if not all_results:
269
- logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
270
- return {
271
- "answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
272
- "context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
273
- }
274
-
275
- # Log metrics
276
- pipeline_duration = time.time() - start_time
277
- log_histogram("enhanced_rag_pipeline_duration", pipeline_duration, labels={"api_choice": api_choice})
278
- log_counter("enhanced_rag_pipeline_success", labels={"api_choice": api_choice})
279
-
280
- return {
281
- "answer": answer,
282
- "context": context
283
- }
284
-
285
- except Exception as e:
286
- log_counter("enhanced_rag_pipeline_error", labels={"api_choice": api_choice, "error": str(e)})
287
- logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
288
- logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
289
- return {
290
- "answer": "An error occurred while processing your request.",
291
- "context": ""
292
- }
293
-
294
-
295
-
296
- # Need to write a test for this function FIXME
297
- def generate_answer(api_choice: str, context: str, query: str) -> str:
298
- # Metrics
299
- log_counter("generate_answer_attempt", labels={"api_choice": api_choice})
300
- start_time = time.time()
301
- logging.debug("Entering generate_answer function")
302
- config = load_comprehensive_config()
303
- logging.debug(f"Config sections: {config.sections()}")
304
- prompt = f"Context: {context}\n\nQuestion: {query}"
305
- try:
306
- if api_choice == "OpenAI":
307
- from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai
308
- answer_generation_duration = time.time() - start_time
309
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
310
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
311
- return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
312
-
313
- elif api_choice == "Anthropic":
314
- from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic
315
- answer_generation_duration = time.time() - start_time
316
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
317
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
318
- return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
319
-
320
- elif api_choice == "Cohere":
321
- from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere
322
- answer_generation_duration = time.time() - start_time
323
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
324
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
325
- return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
326
-
327
- elif api_choice == "Groq":
328
- from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq
329
- answer_generation_duration = time.time() - start_time
330
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
331
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
332
- return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
333
-
334
- elif api_choice == "OpenRouter":
335
- from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter
336
- answer_generation_duration = time.time() - start_time
337
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
338
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
339
- return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
340
-
341
- elif api_choice == "HuggingFace":
342
- from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface
343
- answer_generation_duration = time.time() - start_time
344
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
345
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
346
- return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
347
-
348
- elif api_choice == "DeepSeek":
349
- from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek
350
- answer_generation_duration = time.time() - start_time
351
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
352
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
353
- return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
354
-
355
- elif api_choice == "Mistral":
356
- from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral
357
- answer_generation_duration = time.time() - start_time
358
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
359
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
360
- return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
361
-
362
- # Local LLM APIs
363
- elif api_choice == "Local-LLM":
364
- from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm
365
- answer_generation_duration = time.time() - start_time
366
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
367
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
368
- # FIXME
369
- return summarize_with_local_llm(config['Local-API']['local_llm_path'], prompt, "")
370
-
371
- elif api_choice == "Llama.cpp":
372
- from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama
373
- answer_generation_duration = time.time() - start_time
374
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
375
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
376
- return summarize_with_llama(prompt, "", config['Local-API']['llama_api_key'], None, None)
377
- elif api_choice == "Kobold":
378
- from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold
379
- answer_generation_duration = time.time() - start_time
380
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
381
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
382
- return summarize_with_kobold(prompt, config['Local-API']['kobold_api_key'], "", system_message=None, temp=None)
383
-
384
- elif api_choice == "Ooba":
385
- from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga
386
- answer_generation_duration = time.time() - start_time
387
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
388
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
389
- return summarize_with_oobabooga(prompt, config['Local-API']['ooba_api_key'], custom_prompt="", system_message=None, temp=None)
390
-
391
- elif api_choice == "TabbyAPI":
392
- from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi
393
- answer_generation_duration = time.time() - start_time
394
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
395
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
396
- return summarize_with_tabbyapi(prompt, None, None, None, None, )
397
-
398
- elif api_choice == "vLLM":
399
- from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm
400
- answer_generation_duration = time.time() - start_time
401
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
402
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
403
- return summarize_with_vllm(prompt, "", config['Local-API']['vllm_api_key'], None, None)
404
-
405
- elif api_choice.lower() == "ollama":
406
- from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama
407
- answer_generation_duration = time.time() - start_time
408
- log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
409
- log_counter("generate_answer_success", labels={"api_choice": api_choice})
410
- return summarize_with_ollama(prompt, "", config['Local-API']['ollama_api_IP'], config['Local-API']['ollama_api_key'], None, None, None)
411
-
412
- elif api_choice.lower() == "custom_openai_api":
413
- logging.debug(f"RAG Answer Gen: Trying with Custom_OpenAI API")
414
- summary = summarize_with_custom_openai(prompt, "", config['API']['custom_openai_api_key'], None,
415
- None)
416
- else:
417
- log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str()})
418
- raise ValueError(f"Unsupported API choice: {api_choice}")
419
- except Exception as e:
420
- log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str(e)})
421
- logging.error(f"Error in generate_answer: {str(e)}")
422
- return "An error occurred while generating the answer."
423
-
424
-
425
- def perform_vector_search(query: str, relevant_media_ids: List[str] = None, top_k=10) -> List[Dict[str, Any]]:
426
- log_counter("perform_vector_search_attempt")
427
- start_time = time.time()
428
- all_collections = chroma_client.list_collections()
429
- vector_results = []
430
- try:
431
- for collection in all_collections:
432
- collection_results = vector_search(collection.name, query, k=top_k)
433
- if not collection_results:
434
- continue # Skip empty results
435
- filtered_results = [
436
- result for result in collection_results
437
- if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids
438
- ]
439
- vector_results.extend(filtered_results)
440
- search_duration = time.time() - start_time
441
- log_histogram("perform_vector_search_duration", search_duration)
442
- log_counter("perform_vector_search_success", labels={"result_count": len(vector_results)})
443
- return vector_results
444
- except Exception as e:
445
- log_counter("perform_vector_search_error", labels={"error": str(e)})
446
- logging.error(f"Error in perform_vector_search: {str(e)}")
447
- raise
448
-
449
-
450
- # V2
451
- def perform_full_text_search(query: str, database_type: str, relevant_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]:
452
- """
453
- Perform full-text search on a specified database type.
454
-
455
- Args:
456
- query: Search query string
457
- database_type: Type of database to search ("Media DB", "RAG Chat", "RAG Notes", "Character Chat", "Character Cards")
458
- relevant_ids: Optional list of media IDs to filter results
459
- fts_top_k: Maximum number of results to return
460
-
461
- Returns:
462
- List of search results with content and metadata
463
- """
464
- log_counter("perform_full_text_search_attempt", labels={"database_type": database_type})
465
- start_time = time.time()
466
-
467
- try:
468
- # Set default for fts_top_k
469
- if fts_top_k is None:
470
- fts_top_k = 10
471
-
472
- # Call appropriate search function based on database type
473
- if database_type not in search_functions:
474
- raise ValueError(f"Unsupported database type: {database_type}")
475
-
476
- # Call the appropriate search function
477
- results = search_functions[database_type](query, fts_top_k, relevant_ids)
478
-
479
- search_duration = time.time() - start_time
480
- log_histogram("perform_full_text_search_duration", search_duration,
481
- labels={"database_type": database_type})
482
- log_counter("perform_full_text_search_success",
483
- labels={"database_type": database_type, "result_count": len(results)})
484
-
485
- return results
486
-
487
- except Exception as e:
488
- log_counter("perform_full_text_search_error",
489
- labels={"database_type": database_type, "error": str(e)})
490
- logging.error(f"Error in perform_full_text_search ({database_type}): {str(e)}")
491
- raise
492
-
493
-
494
- # v1
495
- # def perform_full_text_search(query: str, relevant_media_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]:
496
- # log_counter("perform_full_text_search_attempt")
497
- # start_time = time.time()
498
- # try:
499
- # fts_results = search_db(query, ["content"], "", page=1, results_per_page=fts_top_k or 10)
500
- # filtered_fts_results = [
501
- # {
502
- # "content": result['content'],
503
- # "metadata": {"media_id": result['id']}
504
- # }
505
- # for result in fts_results
506
- # if relevant_media_ids is None or result['id'] in relevant_media_ids
507
- # ]
508
- # search_duration = time.time() - start_time
509
- # log_histogram("perform_full_text_search_duration", search_duration)
510
- # log_counter("perform_full_text_search_success", labels={"result_count": len(filtered_fts_results)})
511
- # return filtered_fts_results
512
- # except Exception as e:
513
- # log_counter("perform_full_text_search_error", labels={"error": str(e)})
514
- # logging.error(f"Error in perform_full_text_search: {str(e)}")
515
- # raise
516
-
517
-
518
- def fetch_relevant_media_ids(keywords: List[str], top_k=10) -> List[int]:
519
- log_counter("fetch_relevant_media_ids_attempt", labels={"keyword_count": len(keywords)})
520
- start_time = time.time()
521
- relevant_ids = set()
522
- for keyword in keywords:
523
- try:
524
- media_ids = fetch_keywords_for_media(keyword)
525
- relevant_ids.update(media_ids)
526
- except Exception as e:
527
- log_counter("fetch_relevant_media_ids_error", labels={"error": str(e)})
528
- logging.error(f"Error fetching relevant media IDs for keyword '{keyword}': {str(e)}")
529
- # Continue processing other keywords
530
-
531
- fetch_duration = time.time() - start_time
532
- log_histogram("fetch_relevant_media_ids_duration", fetch_duration)
533
- log_counter("fetch_relevant_media_ids_success", labels={"result_count": len(relevant_ids)})
534
- return list(relevant_ids)
535
-
536
-
537
- def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]:
538
- log_counter("filter_results_by_keywords_attempt", labels={"result_count": len(results), "keyword_count": len(keywords)})
539
- start_time = time.time()
540
- if not keywords:
541
- return results
542
-
543
- filtered_results = []
544
- for result in results:
545
- try:
546
- metadata = result.get('metadata', {})
547
- if metadata is None:
548
- logging.warning(f"No metadata found for result: {result}")
549
- continue
550
- if not isinstance(metadata, dict):
551
- logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.")
552
- continue
553
-
554
- media_id = metadata.get('media_id')
555
- if media_id is None:
556
- logging.warning(f"No media_id found in metadata: {metadata}")
557
- continue
558
-
559
- media_keywords = fetch_keywords_for_media(media_id)
560
- if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords):
561
- filtered_results.append(result)
562
- except Exception as e:
563
- logging.error(f"Error processing result: {result}. Error: {str(e)}")
564
-
565
- filter_duration = time.time() - start_time
566
- log_histogram("filter_results_by_keywords_duration", filter_duration)
567
- log_counter("filter_results_by_keywords_success", labels={"filtered_count": len(filtered_results)})
568
- return filtered_results
569
-
570
- # FIXME: to be implememted
571
- def extract_media_id_from_result(result: str) -> Optional[int]:
572
- # Implement this function based on how you store the media_id in your results
573
- # For example, if it's stored at the beginning of each result:
574
- try:
575
- return int(result.split('_')[0])
576
- except (IndexError, ValueError):
577
- logging.error(f"Failed to extract media_id from result: {result}")
578
- return None
579
-
580
- #
581
- #
582
- ########################################################################################################################
583
-
584
-
585
- ############################################################################################################
586
- #
587
- # Chat RAG
588
-
589
- def enhanced_rag_pipeline_chat(query: str, api_choice: str, character_id: int, keywords: Optional[str] = None) -> Dict[str, Any]:
590
- """
591
- Enhanced RAG pipeline tailored for the Character Chat tab.
592
-
593
- Args:
594
- query (str): The user's input query.
595
- api_choice (str): The API to use for generating the response.
596
- character_id (int): The ID of the character being interacted with.
597
- keywords (Optional[str]): Comma-separated keywords to filter search results.
598
-
599
- Returns:
600
- Dict[str, Any]: Contains the generated answer and the context used.
601
- """
602
- log_counter("enhanced_rag_pipeline_chat_attempt", labels={"api_choice": api_choice, "character_id": character_id})
603
- start_time = time.time()
604
- try:
605
- # Load embedding provider from config, or fallback to 'openai'
606
- embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
607
- logging.debug(f"Using embedding provider: {embedding_provider}")
608
-
609
- # Process keywords if provided
610
- keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else []
611
- logging.debug(f"enhanced_rag_pipeline_chat - Keywords: {keyword_list}")
612
-
613
- # Fetch relevant chat IDs based on character_id and keywords
614
- if keyword_list:
615
- relevant_chat_ids = fetch_keywords_for_chats(keyword_list)
616
- else:
617
- relevant_chat_ids = fetch_all_chat_ids(character_id)
618
- logging.debug(f"enhanced_rag_pipeline_chat - Relevant chat IDs: {relevant_chat_ids}")
619
-
620
- if not relevant_chat_ids:
621
- logging.info(f"No chats found for the given keywords and character ID: {character_id}")
622
- # Fallback to generating answer without context
623
- answer = generate_answer(api_choice, "", query)
624
- # Metrics
625
- pipeline_duration = time.time() - start_time
626
- log_histogram("enhanced_rag_pipeline_chat_duration", pipeline_duration, labels={"api_choice": api_choice})
627
- log_counter("enhanced_rag_pipeline_chat_success",
628
- labels={"api_choice": api_choice, "character_id": character_id})
629
- return {
630
- "answer": answer,
631
- "context": ""
632
- }
633
-
634
- # Perform vector search within the relevant chats
635
- vector_results = perform_vector_search_chat(query, relevant_chat_ids)
636
- logging.debug(f"enhanced_rag_pipeline_chat - Vector search results: {vector_results}")
637
-
638
- # Perform full-text search within the relevant chats
639
- # FIXME - Update for DB Selection
640
- fts_results = perform_full_text_search_chat(query, relevant_chat_ids)
641
- logging.debug("enhanced_rag_pipeline_chat - Full-text search results:")
642
- logging.debug("\n".join([str(item) for item in fts_results]))
643
-
644
- # Combine results
645
- all_results = vector_results + fts_results
646
-
647
- apply_re_ranking = True
648
- if apply_re_ranking:
649
- logging.debug("enhanced_rag_pipeline_chat - Applying Re-Ranking")
650
- ranker = Ranker()
651
-
652
- # Prepare passages for re-ranking
653
- passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)]
654
- rerank_request = RerankRequest(query=query, passages=passages)
655
-
656
- # Rerank the results
657
- reranked_results = ranker.rerank(rerank_request)
658
-
659
- # Sort results based on the re-ranking score
660
- reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True)
661
-
662
- # Log reranked results
663
- logging.debug(f"enhanced_rag_pipeline_chat - Reranked results: {reranked_results}")
664
-
665
- # Update all_results based on reranking
666
- all_results = [all_results[result['id']] for result in reranked_results]
667
-
668
- # Extract context from top results (limit to top 10)
669
- context = "\n".join([result['content'] for result in all_results[:10]])
670
- logging.debug(f"Context length: {len(context)}")
671
- logging.debug(f"Context: {context[:200]}") # Log only the first 200 characters for brevity
672
-
673
- # Generate answer using the selected API
674
- answer = generate_answer(api_choice, context, query)
675
-
676
- if not all_results:
677
- logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
678
- return {
679
- "answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
680
- "context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
681
- }
682
-
683
- return {
684
- "answer": answer,
685
- "context": context
686
- }
687
-
688
- except Exception as e:
689
- log_counter("enhanced_rag_pipeline_chat_error", labels={"api_choice": api_choice, "character_id": character_id, "error": str(e)})
690
- logging.error(f"Error in enhanced_rag_pipeline_chat: {str(e)}")
691
- return {
692
- "answer": "An error occurred while processing your request.",
693
- "context": ""
694
- }
695
-
696
-
697
- def fetch_relevant_chat_ids(character_id: int, keywords: List[str]) -> List[int]:
698
- """
699
- Fetch chat IDs associated with a character and filtered by keywords.
700
-
701
- Args:
702
- character_id (int): The ID of the character.
703
- keywords (List[str]): List of keywords to filter chats.
704
-
705
- Returns:
706
- List[int]: List of relevant chat IDs.
707
- """
708
- log_counter("fetch_relevant_chat_ids_attempt", labels={"character_id": character_id, "keyword_count": len(keywords)})
709
- start_time = time.time()
710
- relevant_ids = set()
711
- try:
712
- media_ids = fetch_keywords_for_chats(keywords)
713
- fetch_duration = time.time() - start_time
714
- log_histogram("fetch_relevant_chat_ids_duration", fetch_duration)
715
- log_counter("fetch_relevant_chat_ids_success",
716
- labels={"character_id": character_id, "result_count": len(relevant_ids)})
717
- relevant_ids.update(media_ids)
718
- return list(relevant_ids)
719
- except Exception as e:
720
- log_counter("fetch_relevant_chat_ids_error", labels={"character_id": character_id, "error": str(e)})
721
- logging.error(f"Error fetching relevant chat IDs: {str(e)}")
722
- return []
723
-
724
-
725
- def fetch_all_chat_ids(character_id: int) -> List[int]:
726
- """
727
- Fetch all chat IDs associated with a specific character.
728
-
729
- Args:
730
- character_id (int): The ID of the character.
731
-
732
- Returns:
733
- List[int]: List of all chat IDs for the character.
734
- """
735
- log_counter("fetch_all_chat_ids_attempt", labels={"character_id": character_id})
736
- start_time = time.time()
737
- try:
738
- chats = get_character_chats(character_id=character_id)
739
- chat_ids = [chat['id'] for chat in chats]
740
- fetch_duration = time.time() - start_time
741
- log_histogram("fetch_all_chat_ids_duration", fetch_duration)
742
- log_counter("fetch_all_chat_ids_success", labels={"character_id": character_id, "chat_count": len(chat_ids)})
743
- return chat_ids
744
- except Exception as e:
745
- log_counter("fetch_all_chat_ids_error", labels={"character_id": character_id, "error": str(e)})
746
- logging.error(f"Error fetching all chat IDs for character {character_id}: {str(e)}")
747
- return []
748
-
749
- #
750
- # End of Chat RAG
751
- ############################################################################################################
752
-
753
- # Function to preprocess and store all existing content in the database
754
- # def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"):
755
- # unprocessed_media = get_unprocessed_media()
756
- # total_media = len(unprocessed_media)
757
- #
758
- # for index, row in enumerate(unprocessed_media, 1):
759
- # media_id, content, media_type, file_name = row
760
- # collection_name = f"{media_type}_{media_id}"
761
- #
762
- # logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}")
763
- #
764
- # try:
765
- # process_and_store_content(
766
- # database=database,
767
- # content=content,
768
- # collection_name=collection_name,
769
- # media_id=media_id,
770
- # file_name=file_name or f"{media_type}_{media_id}",
771
- # create_embeddings=True,
772
- # create_contextualized=create_contextualized,
773
- # api_name=api_name
774
- # )
775
- #
776
- # # Mark the media as processed in the database
777
- # mark_media_as_processed(database, media_id)
778
- #
779
- # logger.info(f"Successfully processed media ID {media_id}")
780
- # except Exception as e:
781
- # logger.error(f"Error processing media ID {media_id}: {str(e)}")
782
- #
783
- # logger.info("Finished preprocessing all unprocessed content")
784
-
785
- ############################################################################################################
786
- #
787
- # ElasticSearch Retriever
788
-
789
- # https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
790
- #
791
- # https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
792
-
793
- #
794
- # End of RAG_Library_2.py
795
- ############################################################################################################
 
1
+ # RAG_Library_2.py
2
+ # Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
3
+ #
4
+ # Import necessary modules and functions
5
+ import configparser
6
+ import logging
7
+ import os
8
+ import time
9
+ from typing import Dict, Any, List, Optional
10
+
11
+ from App_Function_Libraries.DB.Character_Chat_DB import get_character_chats, perform_full_text_search_chat, \
12
+ fetch_keywords_for_chats, search_character_chat, search_character_cards, fetch_character_ids_by_keywords
13
+ from App_Function_Libraries.DB.RAG_QA_Chat_DB import search_rag_chat, search_rag_notes
14
+ #
15
+ # Local Imports
16
+ from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
17
+ from App_Function_Libraries.RAG.RAG_Persona_Chat import perform_vector_search_chat
18
+ from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_custom_openai
19
+ from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article
20
+ from App_Function_Libraries.DB.DB_Manager import fetch_keywords_for_media, search_media_db, get_notes_by_keywords, \
21
+ search_conversations_by_keywords
22
+ from App_Function_Libraries.Utils.Utils import load_comprehensive_config
23
+ from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
24
+ #
25
+ # 3rd-Party Imports
26
+ import openai
27
+ from flashrank import Ranker, RerankRequest
28
+ #
29
+ ########################################################################################################################
30
+ #
31
+ # Functions:
32
+
33
+ # Initialize OpenAI client (adjust this based on your API key management)
34
+ openai.api_key = "your-openai-api-key"
35
+
36
+ # Get the directory of the current script
37
+ current_dir = os.path.dirname(os.path.abspath(__file__))
38
+ # Construct the path to the config file
39
+ config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
40
+ # Read the config file
41
+ config = configparser.ConfigParser()
42
+ # Read the configuration file
43
+ config.read('config.txt')
44
+
45
+
46
+ search_functions = {
47
+ "Media DB": search_media_db,
48
+ "RAG Chat": search_rag_chat,
49
+ "RAG Notes": search_rag_notes,
50
+ "Character Chat": search_character_chat,
51
+ "Character Cards": search_character_cards
52
+ }
53
+
54
+ # RAG pipeline function for web scraping
55
+ # def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
56
+ # try:
57
+ # # Extract content
58
+ # try:
59
+ # article_data = scrape_article(url)
60
+ # content = article_data['content']
61
+ # title = article_data['title']
62
+ # except Exception as e:
63
+ # logging.error(f"Error scraping article: {str(e)}")
64
+ # return {"error": "Failed to scrape article", "details": str(e)}
65
+ #
66
+ # # Store the article in the database and get the media_id
67
+ # try:
68
+ # media_id = add_media_to_database(url, title, 'article', content)
69
+ # except Exception as e:
70
+ # logging.error(f"Error adding article to database: {str(e)}")
71
+ # return {"error": "Failed to store article in database", "details": str(e)}
72
+ #
73
+ # # Process and store content
74
+ # collection_name = f"article_{media_id}"
75
+ # try:
76
+ # # Assuming you have a database object available, let's call it 'db'
77
+ # db = get_database_connection()
78
+ #
79
+ # process_and_store_content(
80
+ # database=db,
81
+ # content=content,
82
+ # collection_name=collection_name,
83
+ # media_id=media_id,
84
+ # file_name=title,
85
+ # create_embeddings=True,
86
+ # create_contextualized=True,
87
+ # api_name=api_choice
88
+ # )
89
+ # except Exception as e:
90
+ # logging.error(f"Error processing and storing content: {str(e)}")
91
+ # return {"error": "Failed to process and store content", "details": str(e)}
92
+ #
93
+ # # Perform searches
94
+ # try:
95
+ # vector_results = vector_search(collection_name, query, k=5)
96
+ # fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
97
+ # except Exception as e:
98
+ # logging.error(f"Error performing searches: {str(e)}")
99
+ # return {"error": "Failed to perform searches", "details": str(e)}
100
+ #
101
+ # # Combine results with error handling for missing 'content' key
102
+ # all_results = []
103
+ # for result in vector_results + fts_results:
104
+ # if isinstance(result, dict) and 'content' in result:
105
+ # all_results.append(result['content'])
106
+ # else:
107
+ # logging.warning(f"Unexpected result format: {result}")
108
+ # all_results.append(str(result))
109
+ #
110
+ # context = "\n".join(all_results)
111
+ #
112
+ # # Generate answer using the selected API
113
+ # try:
114
+ # answer = generate_answer(api_choice, context, query)
115
+ # except Exception as e:
116
+ # logging.error(f"Error generating answer: {str(e)}")
117
+ # return {"error": "Failed to generate answer", "details": str(e)}
118
+ #
119
+ # return {
120
+ # "answer": answer,
121
+ # "context": context
122
+ # }
123
+ #
124
+ # except Exception as e:
125
+ # logging.error(f"Unexpected error in rag_pipeline: {str(e)}")
126
+ # return {"error": "An unexpected error occurred", "details": str(e)}
127
+
128
+
129
+ # RAG Search with keyword filtering
130
+ # FIXME - Update each called function to support modifiable top-k results
131
+ def enhanced_rag_pipeline(
132
+ query: str,
133
+ api_choice: str,
134
+ keywords: Optional[str] = None,
135
+ fts_top_k: int = 10,
136
+ apply_re_ranking: bool = True,
137
+ database_types: List[str] = ["Media DB"]
138
+ ) -> Dict[str, Any]:
139
+ """
140
+ Perform full text search across specified database type.
141
+
142
+ Args:
143
+ query: Search query string
144
+ api_choice: API to use for generating the response
145
+ keywords: Optional list of media IDs to filter results
146
+ fts_top_k: Maximum number of results to return
147
+ apply_re_ranking: Whether to apply re-ranking to results
148
+ database_types: Type of database to search
149
+
150
+ Returns:
151
+ Dictionary containing search results with content
152
+ """
153
+ log_counter("enhanced_rag_pipeline_attempt", labels={"api_choice": api_choice})
154
+ start_time = time.time()
155
+
156
+ try:
157
+ # Load embedding provider from config, or fallback to 'openai'
158
+ embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
159
+ logging.debug(f"Using embedding provider: {embedding_provider}")
160
+
161
+ # Initialize relevant IDs dictionary
162
+ relevant_ids: Dict[str, Optional[List[str]]] = {}
163
+
164
+ # Process keywords if provided
165
+ if keywords:
166
+ keyword_list = [k.strip().lower() for k in keywords.split(',')]
167
+ logging.debug(f"enhanced_rag_pipeline - Keywords: {keyword_list}")
168
+
169
+ try:
170
+ for db_type in database_types:
171
+ if db_type == "Media DB":
172
+ media_ids = fetch_relevant_media_ids(keyword_list)
173
+ relevant_ids[db_type] = [str(id_) for id_ in media_ids]
174
+ elif db_type == "RAG Chat":
175
+ conversations, _, _ = search_conversations_by_keywords(keywords=keyword_list)
176
+ relevant_ids[db_type] = [str(conv['conversation_id']) for conv in conversations]
177
+ elif db_type == "RAG Notes":
178
+ notes, _, _ = get_notes_by_keywords(keyword_list)
179
+ relevant_ids[db_type] = [str(note_id) for note_id, _, _, _ in notes]
180
+ elif db_type == "Character Chat":
181
+ relevant_ids[db_type] = [str(id_) for id_ in fetch_keywords_for_chats(keyword_list)]
182
+ elif db_type == "Character Cards":
183
+ relevant_ids[db_type] = [str(id_) for id_ in fetch_character_ids_by_keywords(keyword_list)]
184
+ else:
185
+ logging.error(f"Unsupported database type: {db_type}")
186
+
187
+ logging.debug(f"enhanced_rag_pipeline - {db_type} relevant IDs: {relevant_ids[db_type]}")
188
+ except Exception as e:
189
+ logging.error(f"Error fetching relevant IDs: {str(e)}")
190
+ relevant_ids = {db_type: None for db_type in database_types}
191
+ else:
192
+ relevant_ids = {db_type: None for db_type in database_types}
193
+
194
+ # Perform vector search
195
+ vector_results = []
196
+ for db_type in database_types:
197
+ try:
198
+ db_relevant_ids = relevant_ids.get(db_type)
199
+ results = perform_vector_search(query, db_relevant_ids, top_k=fts_top_k)
200
+ vector_results.extend(results)
201
+ logging.debug(f"\nenhanced_rag_pipeline - Vector search results for {db_type}: {results}")
202
+ except Exception as e:
203
+ logging.error(f"Error performing vector search on {db_type}: {str(e)}")
204
+
205
+ # Perform vector search
206
+ # FIXME
207
+ #vector_results = perform_vector_search(query, relevant_media_ids)
208
+ #ogging.debug(f"\n\nenhanced_rag_pipeline - Vector search results: {vector_results}")
209
+
210
+ # Perform full-text search
211
+ #v1
212
+ #fts_results = perform_full_text_search(query, database_type, relevant_media_ids, fts_top_k)
213
+
214
+ # v2
215
+ # Perform full-text search across specified databases
216
+ fts_results = []
217
+ for db_type in database_types:
218
+ try:
219
+ db_relevant_ids = relevant_ids.get(db_type)
220
+ db_results = perform_full_text_search(query, db_type, db_relevant_ids, fts_top_k)
221
+ fts_results.extend(db_results)
222
+ logging.debug(f"enhanced_rag_pipeline - FTS results for {db_type}: {db_results}")
223
+ except Exception as e:
224
+ logging.error(f"Error performing full-text search on {db_type}: {str(e)}")
225
+
226
+ #logging.debug("\n\nenhanced_rag_pipeline - Full-text search results:")
227
+ logging.debug(
228
+ "\n\nenhanced_rag_pipeline - Full-text search results:\n" + "\n".join(
229
+ [str(item) for item in fts_results]) + "\n"
230
+ )
231
+
232
+ # Combine results
233
+ all_results = vector_results + fts_results
234
+
235
+ # FIXME - specify model + add param to modify at call time
236
+ # You can specify a model if necessary, e.g., model_name="ms-marco-MiniLM-L-12-v2"
237
+ # Apply re-ranking if enabled and results exist
238
+ if apply_re_ranking and all_results:
239
+ logging.debug(f"\nenhanced_rag_pipeline - Applying Re-Ranking")
240
+
241
+ if all_results:
242
+ ranker = Ranker()
243
+
244
+ # Prepare passages for re-ranking
245
+ passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)]
246
+ rerank_request = RerankRequest(query=query, passages=passages)
247
+
248
+ # Rerank the results
249
+ reranked_results = ranker.rerank(rerank_request)
250
+
251
+ # Sort results based on the re-ranking score
252
+ reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True)
253
+
254
+ # Log reranked results
255
+ logging.debug(f"\n\nenhanced_rag_pipeline - Reranked results: {reranked_results}")
256
+
257
+ # Update all_results based on reranking
258
+ all_results = [all_results[result['id']] for result in reranked_results]
259
+
260
+ # Extract content from results (top fts_top_k by default)
261
+ context = "\n".join([result['content'] for result in all_results[:fts_top_k]])
262
+ #logging.debug(f"Context length: {len(context)}")
263
+ logging.debug(f"Context: {context[:200]}")
264
+
265
+ # Generate answer using the selected API
266
+ answer = generate_answer(api_choice, context, query)
267
+
268
+ if not all_results:
269
+ logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
270
+ return {
271
+ "answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
272
+ "context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
273
+ }
274
+
275
+ # Log metrics
276
+ pipeline_duration = time.time() - start_time
277
+ log_histogram("enhanced_rag_pipeline_duration", pipeline_duration, labels={"api_choice": api_choice})
278
+ log_counter("enhanced_rag_pipeline_success", labels={"api_choice": api_choice})
279
+
280
+ return {
281
+ "answer": answer,
282
+ "context": context
283
+ }
284
+
285
+ except Exception as e:
286
+ log_counter("enhanced_rag_pipeline_error", labels={"api_choice": api_choice, "error": str(e)})
287
+ logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
288
+ logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
289
+ return {
290
+ "answer": "An error occurred while processing your request.",
291
+ "context": ""
292
+ }
293
+
294
+
295
+
296
+ # Need to write a test for this function FIXME
297
+ def generate_answer(api_choice: str, context: str, query: str) -> str:
298
+ # Metrics
299
+ log_counter("generate_answer_attempt", labels={"api_choice": api_choice})
300
+ start_time = time.time()
301
+ logging.debug("Entering generate_answer function")
302
+ config = load_comprehensive_config()
303
+ logging.debug(f"Config sections: {config.sections()}")
304
+ prompt = f"Context: {context}\n\nQuestion: {query}"
305
+ try:
306
+ if api_choice == "OpenAI":
307
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai
308
+ answer_generation_duration = time.time() - start_time
309
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
310
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
311
+ return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
312
+
313
+ elif api_choice == "Anthropic":
314
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic
315
+ answer_generation_duration = time.time() - start_time
316
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
317
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
318
+ return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
319
+
320
+ elif api_choice == "Cohere":
321
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere
322
+ answer_generation_duration = time.time() - start_time
323
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
324
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
325
+ return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
326
+
327
+ elif api_choice == "Groq":
328
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq
329
+ answer_generation_duration = time.time() - start_time
330
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
331
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
332
+ return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
333
+
334
+ elif api_choice == "OpenRouter":
335
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter
336
+ answer_generation_duration = time.time() - start_time
337
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
338
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
339
+ return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
340
+
341
+ elif api_choice == "HuggingFace":
342
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface
343
+ answer_generation_duration = time.time() - start_time
344
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
345
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
346
+ return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
347
+
348
+ elif api_choice == "DeepSeek":
349
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek
350
+ answer_generation_duration = time.time() - start_time
351
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
352
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
353
+ return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
354
+
355
+ elif api_choice == "Mistral":
356
+ from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral
357
+ answer_generation_duration = time.time() - start_time
358
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
359
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
360
+ return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
361
+
362
+ # Local LLM APIs
363
+ elif api_choice == "Local-LLM":
364
+ from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm
365
+ answer_generation_duration = time.time() - start_time
366
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
367
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
368
+ # FIXME
369
+ return summarize_with_local_llm(config['Local-API']['local_llm_path'], prompt, "")
370
+
371
+ elif api_choice == "Llama.cpp":
372
+ from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama
373
+ answer_generation_duration = time.time() - start_time
374
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
375
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
376
+ return summarize_with_llama(prompt, "", config['Local-API']['llama_api_key'], None, None)
377
+ elif api_choice == "Kobold":
378
+ from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold
379
+ answer_generation_duration = time.time() - start_time
380
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
381
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
382
+ return summarize_with_kobold(prompt, config['Local-API']['kobold_api_key'], "", system_message=None, temp=None)
383
+
384
+ elif api_choice == "Ooba":
385
+ from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga
386
+ answer_generation_duration = time.time() - start_time
387
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
388
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
389
+ return summarize_with_oobabooga(prompt, config['Local-API']['ooba_api_key'], custom_prompt="", system_message=None, temp=None)
390
+
391
+ elif api_choice == "TabbyAPI":
392
+ from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi
393
+ answer_generation_duration = time.time() - start_time
394
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
395
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
396
+ return summarize_with_tabbyapi(prompt, None, None, None, None, )
397
+
398
+ elif api_choice == "vLLM":
399
+ from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm
400
+ answer_generation_duration = time.time() - start_time
401
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
402
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
403
+ return summarize_with_vllm(prompt, "", config['Local-API']['vllm_api_key'], None, None)
404
+
405
+ elif api_choice.lower() == "ollama":
406
+ from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama
407
+ answer_generation_duration = time.time() - start_time
408
+ log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
409
+ log_counter("generate_answer_success", labels={"api_choice": api_choice})
410
+ return summarize_with_ollama(prompt, "", config['Local-API']['ollama_api_IP'], config['Local-API']['ollama_api_key'], None, None, None)
411
+
412
+ elif api_choice.lower() == "custom_openai_api":
413
+ logging.debug(f"RAG Answer Gen: Trying with Custom_OpenAI API")
414
+ summary = summarize_with_custom_openai(prompt, "", config['API']['custom_openai_api_key'], None,
415
+ None)
416
+ else:
417
+ log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str()})
418
+ raise ValueError(f"Unsupported API choice: {api_choice}")
419
+ except Exception as e:
420
+ log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str(e)})
421
+ logging.error(f"Error in generate_answer: {str(e)}")
422
+ return "An error occurred while generating the answer."
423
+
424
+
425
+ def perform_vector_search(query: str, relevant_media_ids: List[str] = None, top_k=10) -> List[Dict[str, Any]]:
426
+ log_counter("perform_vector_search_attempt")
427
+ start_time = time.time()
428
+ all_collections = chroma_client.list_collections()
429
+ vector_results = []
430
+ try:
431
+ for collection in all_collections:
432
+ collection_results = vector_search(collection.name, query, k=top_k)
433
+ if not collection_results:
434
+ continue # Skip empty results
435
+ filtered_results = [
436
+ result for result in collection_results
437
+ if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids
438
+ ]
439
+ vector_results.extend(filtered_results)
440
+ search_duration = time.time() - start_time
441
+ log_histogram("perform_vector_search_duration", search_duration)
442
+ log_counter("perform_vector_search_success", labels={"result_count": len(vector_results)})
443
+ return vector_results
444
+ except Exception as e:
445
+ log_counter("perform_vector_search_error", labels={"error": str(e)})
446
+ logging.error(f"Error in perform_vector_search: {str(e)}")
447
+ raise
448
+
449
+
450
+ # V2
451
+ def perform_full_text_search(query: str, database_type: str, relevant_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]:
452
+ """
453
+ Perform full-text search on a specified database type.
454
+
455
+ Args:
456
+ query: Search query string
457
+ database_type: Type of database to search ("Media DB", "RAG Chat", "RAG Notes", "Character Chat", "Character Cards")
458
+ relevant_ids: Optional list of media IDs to filter results
459
+ fts_top_k: Maximum number of results to return
460
+
461
+ Returns:
462
+ List of search results with content and metadata
463
+ """
464
+ log_counter("perform_full_text_search_attempt", labels={"database_type": database_type})
465
+ start_time = time.time()
466
+
467
+ try:
468
+ # Set default for fts_top_k
469
+ if fts_top_k is None:
470
+ fts_top_k = 10
471
+
472
+ # Call appropriate search function based on database type
473
+ if database_type not in search_functions:
474
+ raise ValueError(f"Unsupported database type: {database_type}")
475
+
476
+ # Call the appropriate search function
477
+ results = search_functions[database_type](query, fts_top_k, relevant_ids)
478
+
479
+ search_duration = time.time() - start_time
480
+ log_histogram("perform_full_text_search_duration", search_duration,
481
+ labels={"database_type": database_type})
482
+ log_counter("perform_full_text_search_success",
483
+ labels={"database_type": database_type, "result_count": len(results)})
484
+
485
+ return results
486
+
487
+ except Exception as e:
488
+ log_counter("perform_full_text_search_error",
489
+ labels={"database_type": database_type, "error": str(e)})
490
+ logging.error(f"Error in perform_full_text_search ({database_type}): {str(e)}")
491
+ raise
492
+
493
+
494
+ # v1
495
+ # def perform_full_text_search(query: str, relevant_media_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]:
496
+ # log_counter("perform_full_text_search_attempt")
497
+ # start_time = time.time()
498
+ # try:
499
+ # fts_results = search_db(query, ["content"], "", page=1, results_per_page=fts_top_k or 10)
500
+ # filtered_fts_results = [
501
+ # {
502
+ # "content": result['content'],
503
+ # "metadata": {"media_id": result['id']}
504
+ # }
505
+ # for result in fts_results
506
+ # if relevant_media_ids is None or result['id'] in relevant_media_ids
507
+ # ]
508
+ # search_duration = time.time() - start_time
509
+ # log_histogram("perform_full_text_search_duration", search_duration)
510
+ # log_counter("perform_full_text_search_success", labels={"result_count": len(filtered_fts_results)})
511
+ # return filtered_fts_results
512
+ # except Exception as e:
513
+ # log_counter("perform_full_text_search_error", labels={"error": str(e)})
514
+ # logging.error(f"Error in perform_full_text_search: {str(e)}")
515
+ # raise
516
+
517
+
518
+ def fetch_relevant_media_ids(keywords: List[str], top_k=10) -> List[int]:
519
+ log_counter("fetch_relevant_media_ids_attempt", labels={"keyword_count": len(keywords)})
520
+ start_time = time.time()
521
+ relevant_ids = set()
522
+ for keyword in keywords:
523
+ try:
524
+ media_ids = fetch_keywords_for_media(keyword)
525
+ relevant_ids.update(media_ids)
526
+ except Exception as e:
527
+ log_counter("fetch_relevant_media_ids_error", labels={"error": str(e)})
528
+ logging.error(f"Error fetching relevant media IDs for keyword '{keyword}': {str(e)}")
529
+ # Continue processing other keywords
530
+
531
+ fetch_duration = time.time() - start_time
532
+ log_histogram("fetch_relevant_media_ids_duration", fetch_duration)
533
+ log_counter("fetch_relevant_media_ids_success", labels={"result_count": len(relevant_ids)})
534
+ return list(relevant_ids)
535
+
536
+
537
+ def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]:
538
+ log_counter("filter_results_by_keywords_attempt", labels={"result_count": len(results), "keyword_count": len(keywords)})
539
+ start_time = time.time()
540
+ if not keywords:
541
+ return results
542
+
543
+ filtered_results = []
544
+ for result in results:
545
+ try:
546
+ metadata = result.get('metadata', {})
547
+ if metadata is None:
548
+ logging.warning(f"No metadata found for result: {result}")
549
+ continue
550
+ if not isinstance(metadata, dict):
551
+ logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.")
552
+ continue
553
+
554
+ media_id = metadata.get('media_id')
555
+ if media_id is None:
556
+ logging.warning(f"No media_id found in metadata: {metadata}")
557
+ continue
558
+
559
+ media_keywords = fetch_keywords_for_media(media_id)
560
+ if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords):
561
+ filtered_results.append(result)
562
+ except Exception as e:
563
+ logging.error(f"Error processing result: {result}. Error: {str(e)}")
564
+
565
+ filter_duration = time.time() - start_time
566
+ log_histogram("filter_results_by_keywords_duration", filter_duration)
567
+ log_counter("filter_results_by_keywords_success", labels={"filtered_count": len(filtered_results)})
568
+ return filtered_results
569
+
570
+ # FIXME: to be implememted
571
+ def extract_media_id_from_result(result: str) -> Optional[int]:
572
+ # Implement this function based on how you store the media_id in your results
573
+ # For example, if it's stored at the beginning of each result:
574
+ try:
575
+ return int(result.split('_')[0])
576
+ except (IndexError, ValueError):
577
+ logging.error(f"Failed to extract media_id from result: {result}")
578
+ return None
579
+
580
+ #
581
+ #
582
+ ########################################################################################################################
583
+
584
+
585
+ ############################################################################################################
586
+ #
587
+ # Chat RAG
588
+
589
+ def enhanced_rag_pipeline_chat(query: str, api_choice: str, character_id: int, keywords: Optional[str] = None) -> Dict[str, Any]:
590
+ """
591
+ Enhanced RAG pipeline tailored for the Character Chat tab.
592
+
593
+ Args:
594
+ query (str): The user's input query.
595
+ api_choice (str): The API to use for generating the response.
596
+ character_id (int): The ID of the character being interacted with.
597
+ keywords (Optional[str]): Comma-separated keywords to filter search results.
598
+
599
+ Returns:
600
+ Dict[str, Any]: Contains the generated answer and the context used.
601
+ """
602
+ log_counter("enhanced_rag_pipeline_chat_attempt", labels={"api_choice": api_choice, "character_id": character_id})
603
+ start_time = time.time()
604
+ try:
605
+ # Load embedding provider from config, or fallback to 'openai'
606
+ embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
607
+ logging.debug(f"Using embedding provider: {embedding_provider}")
608
+
609
+ # Process keywords if provided
610
+ keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else []
611
+ logging.debug(f"enhanced_rag_pipeline_chat - Keywords: {keyword_list}")
612
+
613
+ # Fetch relevant chat IDs based on character_id and keywords
614
+ if keyword_list:
615
+ relevant_chat_ids = fetch_keywords_for_chats(keyword_list)
616
+ else:
617
+ relevant_chat_ids = fetch_all_chat_ids(character_id)
618
+ logging.debug(f"enhanced_rag_pipeline_chat - Relevant chat IDs: {relevant_chat_ids}")
619
+
620
+ if not relevant_chat_ids:
621
+ logging.info(f"No chats found for the given keywords and character ID: {character_id}")
622
+ # Fallback to generating answer without context
623
+ answer = generate_answer(api_choice, "", query)
624
+ # Metrics
625
+ pipeline_duration = time.time() - start_time
626
+ log_histogram("enhanced_rag_pipeline_chat_duration", pipeline_duration, labels={"api_choice": api_choice})
627
+ log_counter("enhanced_rag_pipeline_chat_success",
628
+ labels={"api_choice": api_choice, "character_id": character_id})
629
+ return {
630
+ "answer": answer,
631
+ "context": ""
632
+ }
633
+
634
+ # Perform vector search within the relevant chats
635
+ vector_results = perform_vector_search_chat(query, relevant_chat_ids)
636
+ logging.debug(f"enhanced_rag_pipeline_chat - Vector search results: {vector_results}")
637
+
638
+ # Perform full-text search within the relevant chats
639
+ # FIXME - Update for DB Selection
640
+ fts_results = perform_full_text_search_chat(query, relevant_chat_ids)
641
+ logging.debug("enhanced_rag_pipeline_chat - Full-text search results:")
642
+ logging.debug("\n".join([str(item) for item in fts_results]))
643
+
644
+ # Combine results
645
+ all_results = vector_results + fts_results
646
+
647
+ apply_re_ranking = True
648
+ if apply_re_ranking:
649
+ logging.debug("enhanced_rag_pipeline_chat - Applying Re-Ranking")
650
+ ranker = Ranker()
651
+
652
+ # Prepare passages for re-ranking
653
+ passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)]
654
+ rerank_request = RerankRequest(query=query, passages=passages)
655
+
656
+ # Rerank the results
657
+ reranked_results = ranker.rerank(rerank_request)
658
+
659
+ # Sort results based on the re-ranking score
660
+ reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True)
661
+
662
+ # Log reranked results
663
+ logging.debug(f"enhanced_rag_pipeline_chat - Reranked results: {reranked_results}")
664
+
665
+ # Update all_results based on reranking
666
+ all_results = [all_results[result['id']] for result in reranked_results]
667
+
668
+ # Extract context from top results (limit to top 10)
669
+ context = "\n".join([result['content'] for result in all_results[:10]])
670
+ logging.debug(f"Context length: {len(context)}")
671
+ logging.debug(f"Context: {context[:200]}") # Log only the first 200 characters for brevity
672
+
673
+ # Generate answer using the selected API
674
+ answer = generate_answer(api_choice, context, query)
675
+
676
+ if not all_results:
677
+ logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
678
+ return {
679
+ "answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
680
+ "context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
681
+ }
682
+
683
+ return {
684
+ "answer": answer,
685
+ "context": context
686
+ }
687
+
688
+ except Exception as e:
689
+ log_counter("enhanced_rag_pipeline_chat_error", labels={"api_choice": api_choice, "character_id": character_id, "error": str(e)})
690
+ logging.error(f"Error in enhanced_rag_pipeline_chat: {str(e)}")
691
+ return {
692
+ "answer": "An error occurred while processing your request.",
693
+ "context": ""
694
+ }
695
+
696
+
697
+ def fetch_relevant_chat_ids(character_id: int, keywords: List[str]) -> List[int]:
698
+ """
699
+ Fetch chat IDs associated with a character and filtered by keywords.
700
+
701
+ Args:
702
+ character_id (int): The ID of the character.
703
+ keywords (List[str]): List of keywords to filter chats.
704
+
705
+ Returns:
706
+ List[int]: List of relevant chat IDs.
707
+ """
708
+ log_counter("fetch_relevant_chat_ids_attempt", labels={"character_id": character_id, "keyword_count": len(keywords)})
709
+ start_time = time.time()
710
+ relevant_ids = set()
711
+ try:
712
+ media_ids = fetch_keywords_for_chats(keywords)
713
+ fetch_duration = time.time() - start_time
714
+ log_histogram("fetch_relevant_chat_ids_duration", fetch_duration)
715
+ log_counter("fetch_relevant_chat_ids_success",
716
+ labels={"character_id": character_id, "result_count": len(relevant_ids)})
717
+ relevant_ids.update(media_ids)
718
+ return list(relevant_ids)
719
+ except Exception as e:
720
+ log_counter("fetch_relevant_chat_ids_error", labels={"character_id": character_id, "error": str(e)})
721
+ logging.error(f"Error fetching relevant chat IDs: {str(e)}")
722
+ return []
723
+
724
+
725
+ def fetch_all_chat_ids(character_id: int) -> List[int]:
726
+ """
727
+ Fetch all chat IDs associated with a specific character.
728
+
729
+ Args:
730
+ character_id (int): The ID of the character.
731
+
732
+ Returns:
733
+ List[int]: List of all chat IDs for the character.
734
+ """
735
+ log_counter("fetch_all_chat_ids_attempt", labels={"character_id": character_id})
736
+ start_time = time.time()
737
+ try:
738
+ chats = get_character_chats(character_id=character_id)
739
+ chat_ids = [chat['id'] for chat in chats]
740
+ fetch_duration = time.time() - start_time
741
+ log_histogram("fetch_all_chat_ids_duration", fetch_duration)
742
+ log_counter("fetch_all_chat_ids_success", labels={"character_id": character_id, "chat_count": len(chat_ids)})
743
+ return chat_ids
744
+ except Exception as e:
745
+ log_counter("fetch_all_chat_ids_error", labels={"character_id": character_id, "error": str(e)})
746
+ logging.error(f"Error fetching all chat IDs for character {character_id}: {str(e)}")
747
+ return []
748
+
749
+ #
750
+ # End of Chat RAG
751
+ ############################################################################################################
752
+
753
+ # Function to preprocess and store all existing content in the database
754
+ # def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"):
755
+ # unprocessed_media = get_unprocessed_media()
756
+ # total_media = len(unprocessed_media)
757
+ #
758
+ # for index, row in enumerate(unprocessed_media, 1):
759
+ # media_id, content, media_type, file_name = row
760
+ # collection_name = f"{media_type}_{media_id}"
761
+ #
762
+ # logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}")
763
+ #
764
+ # try:
765
+ # process_and_store_content(
766
+ # database=database,
767
+ # content=content,
768
+ # collection_name=collection_name,
769
+ # media_id=media_id,
770
+ # file_name=file_name or f"{media_type}_{media_id}",
771
+ # create_embeddings=True,
772
+ # create_contextualized=create_contextualized,
773
+ # api_name=api_name
774
+ # )
775
+ #
776
+ # # Mark the media as processed in the database
777
+ # mark_media_as_processed(database, media_id)
778
+ #
779
+ # logger.info(f"Successfully processed media ID {media_id}")
780
+ # except Exception as e:
781
+ # logger.error(f"Error processing media ID {media_id}: {str(e)}")
782
+ #
783
+ # logger.info("Finished preprocessing all unprocessed content")
784
+
785
+ ############################################################################################################
786
+ #
787
+ # ElasticSearch Retriever
788
+
789
+ # https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
790
+ #
791
+ # https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
792
+
793
+ #
794
+ # End of RAG_Library_2.py
795
+ ############################################################################################################