diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -1,832 +1,401 @@ -#!/usr/bin/env python3 -import argparse -import asyncio -import atexit -import configparser -import hashlib -import json -import logging -import os -import platform -import re -import shutil -import signal -import sqlite3 -import subprocess -import sys -import time -from multiprocessing import process -from typing import List, Tuple, Optional, Dict, Callable -import zipfile -from datetime import datetime -from typing import List, Tuple -from typing import Optional -import webbrowser - -from bs4 import BeautifulSoup -import gradio as gr -from huggingface_hub import InferenceClient -from playwright.async_api import async_playwright -import requests -from requests.exceptions import RequestException -from SQLite_DB import * -import tiktoken -import trafilatura -import unicodedata -import yt_dlp -# OpenAI Tokenizer support -from openai import OpenAI -from tqdm import tqdm -import tiktoken - -####################### - -log_level = "DEBUG" -logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s') -os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" - -# -# -####### -# Function Sections -# -# Database Setup -# Config Loading -# System Checks -# DataBase Functions -# Processing Paths and local file handling -# Video Download/Handling -# Audio Transcription -# Diarization -# Chunking-related Techniques & Functions -# Tokenization-related Techniques & Functions -# Summarizers -# Gradio UI -# Main -# -####### - -# To Do -# Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb - - +# Huggingface app.py file +# I just dumped the code from everything into this file +# sue me. + +# Article_Extractor_Lib.py +######################################### +# Article Extraction Library +# This library is used to handle scraping and extraction of articles from web pages. +# Currently, uses a combination of beatifulsoup4 and trafilatura to extract article text. +# Firecrawl would be a better option for this, but it is not yet implemented. #### -# -# TL/DW: Too Long Didn't Watch -# -# Project originally created by https://github.com/the-crypt-keeper -# Modifications made by https://github.com/rmusser01 -# All credit to the original authors, I've just glued shit together. -# -# -# Usage: -# -# Download Audio only from URL -> Transcribe audio: -# python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s` -# -# Download Audio+Video from URL -> Transcribe audio from Video:** -# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s` -# -# Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:** -# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api ` - Make sure to put your API key into `config.txt` under the appropriate API variable -# -# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:** -# python summarize.py ./local/file_on_your/system --api_name ` -# -# Run it as a WebApp** -# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it. -# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server. -# -### -####################### -# Random issues I've encountered and how I solved them: -# 1. Something about cuda nn library missing, even though cuda is installed... -# https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk. +#################### +# Function List # -# 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme' -# Resolved through adding --user to the pip install command +# 1. get_page_title(url) +# 2. get_article_text(url) +# 3. get_article_title(article_url_arg) # -# -####################### +#################### -####################### -# DB Setup -# Handled by SQLite_DB.py +# Import necessary libraries +import os +import logging +import huggingface_hub +import tokenizers +import torchvision +import transformers +# 3rd-Party Imports +import asyncio +import playwright +from playwright.async_api import async_playwright +from bs4 import BeautifulSoup +import requests +import trafilatura -####################### -###################### -# Global Variables -global local_llm_model, \ - userOS, \ - processing_choice, \ - segments, \ - detail_level_number, \ - summary, \ - audio_file, \ - detail_level +####################################################################################################################### +# Function Definitions +# -process = None +def get_page_title(url: str) -> str: + try: + response = requests.get(url) + response.raise_for_status() + soup = BeautifulSoup(response.text, 'html.parser') + title_tag = soup.find('title') + return title_tag.string.strip() if title_tag else "Untitled" + except requests.RequestException as e: + logging.error(f"Error fetching page title: {e}") + return "Untitled" -####################### -# Config loading -# +def get_artice_title(article_url_arg: str) -> str: + # Use beautifulsoup to get the page title - Really should be using ytdlp for this.... + article_title = get_page_title(article_url_arg) -# Read configuration from file -config = configparser.ConfigParser() -config.read('config.txt') -# API Keys -anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None) -logging.debug(f"Loaded Anthropic API Key: {anthropic_api_key}") +def scrape_article(url): + async def fetch_html(url: str) -> str: + async with async_playwright() as p: + browser = await p.chromium.launch(headless=True) + context = await browser.new_context( + user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3") + page = await context.new_page() + await page.goto(url) + await page.wait_for_load_state("networkidle") # Wait for the network to be idle + content = await page.content() + await browser.close() + return content -cohere_api_key = config.get('API', 'cohere_api_key', fallback=None) -logging.debug(f"Loaded cohere API Key: {cohere_api_key}") + def extract_article_data(html: str) -> dict: + downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False) + if downloaded: + metadata = trafilatura.extract_metadata(html) + if metadata: + return { + 'title': metadata.title if metadata.title else 'N/A', + 'author': metadata.author if metadata.author else 'N/A', + 'content': downloaded, + 'date': metadata.date if metadata.date else 'N/A', + } + else: + print("Metadata extraction failed.") + return None + else: + print("Content extraction failed.") + return None -groq_api_key = config.get('API', 'groq_api_key', fallback=None) -logging.debug(f"Loaded groq API Key: {groq_api_key}") + def convert_html_to_markdown(html: str) -> str: + soup = BeautifulSoup(html, 'html.parser') + # Convert each paragraph to markdown + for para in soup.find_all('p'): + para.append('\n') # Add a newline at the end of each paragraph for markdown separation -openai_api_key = config.get('API', 'openai_api_key', fallback=None) -logging.debug(f"Loaded openAI Face API Key: {openai_api_key}") + # Use .get_text() with separator to keep paragraph separation + text = soup.get_text(separator='\n\n') -huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None) -logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}") + return text -# Models -anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229') -cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus') -groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192') -openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo') -huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus') + async def fetch_and_extract_article(url: str): + html = await fetch_html(url) + print("HTML Content:", html[:500]) # Print first 500 characters of the HTML for inspection + article_data = extract_article_data(html) + if article_data: + article_data['content'] = convert_html_to_markdown(article_data['content']) + return article_data + else: + return None -# Local-Models -kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') -kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='') -llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions') -llama_api_key = config.get('Local-API', 'llama_api_key', fallback='') -ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions') -ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='') -tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') -tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None) -vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions') -vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None) + # Using asyncio.run to handle event loop creation and execution + article_data = asyncio.run(fetch_and_extract_article(url)) + return article_data -# Chunk settings for timed chunking summarization -DEFAULT_CHUNK_DURATION = config.getint('Settings', 'chunk_duration', fallback='30') -WORDS_PER_SECOND = config.getint('Settings', 'words_per_second', fallback='3') +# +# +####################################################################################################################### -# Retrieve output paths from the configuration file -output_path = config.get('Paths', 'output_path', fallback='results') -# Retrieve processing choice from the configuration file -processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') +# Article_Summarization_Lib.py +######################################### +# Article Summarization Library +# This library is used to handle summarization of articles. -# Log file -# logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG) +# +#### +#################### +# Function List # +# 1. # -####################### +#################### -# Dirty hack - sue me. -os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' -whisper_models = ["small", "medium", "small.en", "medium.en"] -source_languages = { - "en": "English", - "zh": "Chinese", - "de": "German", - "es": "Spanish", - "ru": "Russian", - "ko": "Korean", - "fr": "French" -} -source_language_list = [key[0] for key in source_languages.items()] -print(r"""_____ _ ________ _ _ -|_ _|| | / /| _ \| | | | _ - | | | | / / | | | || | | |(_) - | | | | / / | | | || |/\| | - | | | |____ / / | |/ / \ /\ / _ - \_/ \_____//_/ |___/ \/ \/ (_) +# Import necessary libraries +import datetime +from datetime import datetime +import json +import os +import logging +# 3rd-Party Imports +import bs4 +import huggingface_hub +import tokenizers +import torchvision +import transformers - _ _ -| | | | -| |_ ___ ___ | | ___ _ __ __ _ -| __| / _ \ / _ \ | | / _ \ | '_ \ / _` | -| |_ | (_) || (_) | | || (_) || | | || (_| | _ - \__| \___/ \___/ |_| \___/ |_| |_| \__, |( ) - __/ ||/ - |___/ - _ _ _ _ _ _ _ - | |(_) | | ( )| | | | | | - __| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__ - / _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \ -| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | | - \__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_| -""") -time.sleep(1) ####################################################################################################################### -# System Checks +# Function Definitions # -# - -# Perform Platform Check -userOS = "" +def ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, custom_prompt): + try: + # Check if content is not empty or whitespace + if not content.strip(): + raise ValueError("Content is empty.") -def platform_check(): - global userOS - if platform.system() == "Linux": - print("Linux OS detected \n Running Linux appropriate commands") - userOS = "Linux" - elif platform.system() == "Windows": - print("Windows OS detected \n Running Windows appropriate commands") - userOS = "Windows" - else: - print("Other OS detected \n Maybe try running things manually?") - exit() + db = Database() + create_tables() + keyword_list = keywords.split(',') if keywords else ["default"] + keyword_str = ', '.join(keyword_list) + # Set default values for missing fields + url = url or 'Unknown' + title = title or 'Unknown' + author = author or 'Unknown' + keywords = keywords or 'default' + summary = summary or 'No summary available' + ingestion_date = ingestion_date or datetime.datetime.now().strftime('%Y-%m-%d') -# Check for NVIDIA GPU and CUDA availability -def cuda_check(): - global processing_choice - try: - nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode() - if "NVIDIA-SMI" in nvidia_smi: - print("NVIDIA GPU with CUDA is available.") - processing_choice = "cuda" # Set processing_choice to gpu if NVIDIA GPU with CUDA is available - else: - print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") - processing_choice = "cpu" # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available - except subprocess.CalledProcessError: - print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") - processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails + # Log the values of all fields before calling add_media_with_keywords + logging.debug(f"URL: {url}") + logging.debug(f"Title: {title}") + logging.debug(f"Author: {author}") + logging.debug(f"Content: {content[:50]}... (length: {len(content)})") # Log first 50 characters of content + logging.debug(f"Keywords: {keywords}") + logging.debug(f"Summary: {summary}") + logging.debug(f"Ingestion Date: {ingestion_date}") + logging.debug(f"Custom Prompt: {custom_prompt}") + # Check if any required field is empty and log the specific missing field + if not url: + logging.error("URL is missing.") + raise ValueError("URL is missing.") + if not title: + logging.error("Title is missing.") + raise ValueError("Title is missing.") + if not content: + logging.error("Content is missing.") + raise ValueError("Content is missing.") + if not keywords: + logging.error("Keywords are missing.") + raise ValueError("Keywords are missing.") + if not summary: + logging.error("Summary is missing.") + raise ValueError("Summary is missing.") + if not ingestion_date: + logging.error("Ingestion date is missing.") + raise ValueError("Ingestion date is missing.") + if not custom_prompt: + logging.error("Custom prompt is missing.") + raise ValueError("Custom prompt is missing.") -# Ask user if they would like to use either their GPU or their CPU for transcription -def decide_cpugpu(): - global processing_choice - processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ") - if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"): - print("You've chosen to use the GPU.") - logging.debug("GPU is being used for processing") - processing_choice = "cuda" - elif processing_input.lower() == "cpu" or processing_input == "2": - print("You've chosen to use the CPU.") - logging.debug("CPU is being used for processing") - processing_choice = "cpu" - else: - print("Invalid choice. Please select either GPU or CPU.") - + # Add media with keywords to the database + result = add_media_with_keywords( + url=url, + title=title, + media_type='article', + content=content, + keywords=keyword_str or "article_default", + prompt=custom_prompt or None, + summary=summary or "No summary generated", + transcription_model=None, # or some default value if applicable + author=author or 'Unknown', + ingestion_date=ingestion_date + ) + return result + except Exception as e: + logging.error(f"Failed to ingest article to the database: {e}") + return str(e) -# check for existence of ffmpeg -def check_ffmpeg(): - if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")): - logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder") - pass - else: - logging.debug("ffmpeg not installed on the local system/in local PATH") - print( - "ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of " - "choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/") - if userOS == "Windows": - download_ffmpeg() - elif userOS == "Linux": - print( - "You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg'," - "'dnf install ffmpeg' or 'pacman', etc.") - else: - logging.debug("running an unsupported OS") - print("You're running an unspported/Un-tested OS") - exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)") - if exit_script == "y" or "yes" or "1": - exit() +def scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_article_title): + # Step 1: Scrape the article + article_data = scrape_article(url) + print(f"Scraped Article Data: {article_data}") # Debugging statement + if not article_data: + return "Failed to scrape the article." -# Download ffmpeg -def download_ffmpeg(): - user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ") - if user_choice.lower() == 'yes' or 'y' or '1': - print("Downloading ffmpeg") - url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip" - response = requests.get(url) + # Use the custom title if provided, otherwise use the scraped title + title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled') + author = article_data.get('author', 'Unknown') + content = article_data.get('content', '') + ingestion_date = datetime.now().strftime('%Y-%m-%d') - if response.status_code == 200: - print("Saving ffmpeg zip file") - logging.debug("Saving ffmpeg zip file") - zip_path = "ffmpeg-release-essentials.zip" - with open(zip_path, 'wb') as file: - file.write(response.content) + print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement - logging.debug("Extracting the 'ffmpeg.exe' file from the zip") - print("Extracting ffmpeg.exe from zip file to '/Bin' folder") - with zipfile.ZipFile(zip_path, 'r') as zip_ref: - ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe" + # Custom prompt for the article + article_custom_prompt = custom_prompt_arg or "Summarize this article." - logging.debug("checking if the './Bin' folder exists, creating if not") - bin_folder = "Bin" - if not os.path.exists(bin_folder): - logging.debug("Creating a folder for './Bin', it didn't previously exist") - os.makedirs(bin_folder) + # Step 2: Summarize the article + summary = None + if api_name: + logging.debug(f"Article_Summarizer: Summarization being performed by {api_name}") - logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder") - zip_ref.extract(ffmpeg_path, path=bin_folder) + # Sanitize filename for saving the JSON file + sanitized_title = sanitize_filename(title) + json_file_path = os.path.join("Results", f"{sanitized_title}_segments.json") - logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder") - src_path = os.path.join(bin_folder, ffmpeg_path) - dst_path = os.path.join(bin_folder, "ffmpeg.exe") - shutil.move(src_path, dst_path) + with open(json_file_path, 'w') as json_file: + json.dump([{'text': content}], json_file, indent=2) - logging.debug("Removing ffmpeg zip file") - print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)") - os.remove(zip_path) + try: + if api_name.lower() == 'openai': + # def summarize_with_openai(api_key, input_data, custom_prompt_arg) + summary = summarize_with_openai(api_key, json_file_path, article_custom_prompt) - logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.") - print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.") - else: - logging.error("Failed to download the zip file.") - print("Failed to download the zip file.") - else: - logging.debug("User chose to not download ffmpeg") - print("ffmpeg will not be downloaded.") + elif api_name.lower() == "anthropic": + # def summarize_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5): + summary = summarize_with_anthropic(api_key, json_file_path, article_custom_prompt) + elif api_name.lower() == "cohere": + # def summarize_with_cohere(api_key, input_data, model, custom_prompt_arg) + summary = summarize_with_cohere(api_key, json_file_path, article_custom_prompt) + elif api_name.lower() == "groq": + logging.debug(f"MAIN: Trying to summarize with groq") + # def summarize_with_groq(api_key, input_data, model, custom_prompt_arg): + summary = summarize_with_groq(api_key, json_file_path, article_custom_prompt) -# -# -####################################################################################################################### + elif api_name.lower() == "openrouter": + logging.debug(f"MAIN: Trying to summarize with OpenRouter") + # def summarize_with_openrouter(api_key, input_data, custom_prompt_arg): + summary = summarize_with_openrouter(api_key, json_file_path, article_custom_prompt) + elif api_name.lower() == "deepseek": + logging.debug(f"MAIN: Trying to summarize with DeepSeek") + # def summarize_with_deepseek(api_key, input_data, custom_prompt_arg): + summary = summarize_with_deepseek(api_key, json_file_path, article_custom_prompt) -######################################################################################################################## -# DB Setup -# -# + elif api_name.lower() == "llama.cpp": + logging.debug(f"MAIN: Trying to summarize with Llama.cpp") + # def summarize_with_llama(api_url, file_path, token, custom_prompt) + summary = summarize_with_llama(json_file_path, article_custom_prompt) -# FIXME + elif api_name.lower() == "kobold": + logging.debug(f"MAIN: Trying to summarize with Kobold.cpp") + # def summarize_with_kobold(input_data, kobold_api_token, custom_prompt_input, api_url): + summary = summarize_with_kobold(json_file_path, api_key, article_custom_prompt) -# DB Functions -# create_tables() -# add_keyword() -# delete_keyword() -# add_keyword() -# add_media_with_keywords() -# search_db() -# format_results() -# search_and_display() -# export_to_csv() -# is_valid_url() -# is_valid_date() + elif api_name.lower() == "ooba": + # def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url): + summary = summarize_with_oobabooga(json_file_path, api_key, article_custom_prompt) -# -# -######################################################################################################################## + elif api_name.lower() == "tabbyapi": + # def summarize_with_tabbyapi(input_data, tabby_model, custom_prompt_input, api_key=None, api_IP): + summary = summarize_with_tabbyapi(json_file_path, article_custom_prompt) + elif api_name.lower() == "vllm": + logging.debug(f"MAIN: Trying to summarize with VLLM") + # def summarize_with_vllm(api_key, input_data, custom_prompt_input): + summary = summarize_with_vllm(json_file_path, article_custom_prompt) -######################################################################################################################## -# Processing Paths and local file handling -# -# + elif api_name.lower() == "local-llm": + logging.debug(f"MAIN: Trying to summarize with Local LLM") + summary = summarize_with_local_llm(json_file_path, article_custom_prompt) -def read_paths_from_file(file_path): - """ Reads a file containing URLs or local file paths and returns them as a list. """ - paths = [] # Initialize paths as an empty list - with open(file_path, 'r') as file: - paths = [line.strip() for line in file] - return paths + elif api_name.lower() == "huggingface": + logging.debug(f"MAIN: Trying to summarize with huggingface") + # def summarize_with_huggingface(api_key, input_data, custom_prompt_arg): + summarize_with_huggingface(api_key, json_file_path, article_custom_prompt) + # Add additional API handlers here... + except requests.exceptions.ConnectionError as e: + logging.error(f"Connection error while trying to summarize with {api_name}: {str(e)}") + if summary: + logging.info(f"Article_Summarizer: Summary generated using {api_name} API") + save_summary_to_file(summary, json_file_path) + else: + summary = "Summary not available" + logging.warning(f"Failed to generate summary using {api_name} API") -def process_path(path): - """ Decides whether the path is a URL or a local file and processes accordingly. """ - if path.startswith('http'): - logging.debug("file is a URL") - # For YouTube URLs, modify to download and extract info - return get_youtube(path) - elif os.path.exists(path): - logging.debug("File is a path") - # For local files, define a function to handle them - return process_local_file(path) else: - logging.error(f"Path does not exist: {path}") - return None - - -# FIXME -def process_local_file(file_path): - logging.info(f"Processing local file: {file_path}") - title = normalize_title(os.path.splitext(os.path.basename(file_path))[0]) - info_dict = {'title': title} - logging.debug(f"Creating {title} directory...") - download_path = create_download_directory(title) - logging.debug(f"Converting '{title}' to an audio file (wav).") - audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction - logging.debug(f"'{title}' successfully converted to an audio file (wav).") - return download_path, info_dict, audio_file + summary = "Article Summarization: No API provided for summarization." + print(f"Summary: {summary}") # Debugging statement -# -# -####################################################################################################################### + # Step 3: Ingest the article into the database + ingestion_result = ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, + article_custom_prompt) + return f"Title: {title}\nAuthor: {author}\nIngestion Result: {ingestion_result}\n\nSummary: {summary}\n\nArticle Contents: {content}" -####################################################################################################################### -# Online Article Extraction / Handling -# -def get_page_title(url: str) -> str: - try: - response = requests.get(url) - response.raise_for_status() - soup = BeautifulSoup(response.text, 'html.parser') - title_tag = soup.find('title') - return title_tag.string.strip() if title_tag else "Untitled" - except requests.RequestException as e: - logging.error(f"Error fetching page title: {e}") - return "Untitled" +def ingest_unstructured_text(text, custom_prompt, api_name, api_key, keywords, custom_article_title): + title = custom_article_title.strip() if custom_article_title else "Unstructured Text" + author = "Unknown" + ingestion_date = datetime.now().strftime('%Y-%m-%d') + # Summarize the unstructured text + if api_name: + json_file_path = f"Results/{title.replace(' ', '_')}_segments.json" + with open(json_file_path, 'w') as json_file: + json.dump([{'text': text}], json_file, indent=2) -def get_article_text(url: str) -> str: - pass + if api_name.lower() == 'openai': + summary = summarize_with_openai(api_key, json_file_path, custom_prompt) + # Add other APIs as needed + else: + summary = "Unsupported API." + else: + summary = "No API provided for summarization." + # Ingest the unstructured text into the database + ingestion_result = ingest_article_to_db('Unstructured Text', title, author, text, keywords, summary, ingestion_date, + custom_prompt) + return f"Title: {title}\nSummary: {summary}\nIngestion Result: {ingestion_result}" -def get_artice_title(article_url_arg: str) -> str: - # Use beautifulsoup to get the page title - Really should be using ytdlp for this.... - article_title = get_page_title(article_url_arg) # # ####################################################################################################################### - -####################################################################################################################### -# Video Download/Handling +# Audio_Transcription_Lib.py +######################################### +# Transcription Library +# This library is used to perform transcription of audio files. +# Currently, uses faster_whisper for transcription. # - -def sanitize_filename(filename): - return re.sub(r'[<>:"/\\|?*]', '_', filename) +#### +import configparser +#################### +# Function List +# +# 1. convert_to_wav(video_file_path, offset=0, overwrite=False) +# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False) +# +#################### -def get_video_info(url: str) -> dict: - ydl_opts = { - 'quiet': True, - 'no_warnings': True, - 'skip_download': True, - } - with yt_dlp.YoutubeDL(ydl_opts) as ydl: - try: - info_dict = ydl.extract_info(url, download=False) - return info_dict - except Exception as e: - logging.error(f"Error extracting video info: {e}") - return None - - -def process_url(url, - num_speakers, - whisper_model, - custom_prompt, - offset, - api_name, - api_key, - vad_filter, - download_video, - download_audio, - rolling_summarization, - detail_level, - question_box, - keywords, - chunk_summarization, - chunk_duration_input, - words_per_second_input, - ): - # Validate input - if not url: - return "No URL provided.", "No URL provided.", None, None, None, None, None, None - - if not is_valid_url(url): - return "Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None - - print("API Name received:", api_name) # Debugging line - - logging.info(f"Processing URL: {url}") - video_file_path = None - - try: - # Instantiate the database, db as a instance of the Database class - db = Database() - media_url = url - - info_dict = get_youtube(url) # Extract video information using yt_dlp - media_title = info_dict['title'] if 'title' in info_dict else 'Untitled' - - results = main(url, api_name=api_name, api_key=api_key, - num_speakers=num_speakers, - whisper_model=whisper_model, - offset=offset, - vad_filter=vad_filter, - download_video_flag=download_video, - custom_prompt=custom_prompt, - overwrite=args.overwrite, - rolling_summarization=rolling_summarization, - detail=detail_level, - keywords=keywords, - chunk_summarization=chunk_summarization, - chunk_duration=chunk_duration_input, - words_per_second=words_per_second_input, - ) - - if not results: - return "No URL provided.", "No URL provided.", None, None, None, None, None, None - - transcription_result = results[0] - transcription_text = json.dumps(transcription_result['transcription'], indent=2) - summary_text = transcription_result.get('summary', 'Summary not available') - - # Prepare file paths for transcription and summary - # Sanitize filenames - audio_file_sanitized = sanitize_filename(transcription_result['audio_file']) - json_file_path = audio_file_sanitized.replace('.wav', '.segments_pretty.json') - summary_file_path = audio_file_sanitized.replace('.wav', '_summary.txt') - - logging.debug(f"Transcription result: {transcription_result}") - logging.debug(f"Audio file path: {transcription_result['audio_file']}") - - # Write the transcription to the JSON File - try: - with open(json_file_path, 'w') as json_file: - json.dump(transcription_result['transcription'], json_file, indent=2) - except IOError as e: - logging.error(f"Error writing transcription to JSON file: {e}") - - # Write the summary to the summary file - with open(summary_file_path, 'w') as summary_file: - summary_file.write(summary_text) - - if download_video: - video_file_path = transcription_result['video_path'] if 'video_path' in transcription_result else None - - # Check if files exist before returning paths - if not os.path.exists(json_file_path): - raise FileNotFoundError(f"File not found: {json_file_path}") - if not os.path.exists(summary_file_path): - raise FileNotFoundError(f"File not found: {summary_file_path}") - - formatted_transcription = format_transcription(transcription_result) - - # Check for chunk summarization - if chunk_summarization: - chunk_duration = chunk_duration_input if chunk_duration_input else DEFAULT_CHUNK_DURATION - words_per_second = words_per_second_input if words_per_second_input else WORDS_PER_SECOND - summary_text = summarize_chunks(api_name, api_key, transcription_result['transcription'], chunk_duration, - words_per_second) - - # FIXME - This is a mess - # # Check for time-based chunking summarization - # if time_based_summarization: - # logging.info("MAIN: Time-based Summarization") - # - # # Set the json_file_path - # json_file_path = audio_file.replace('.wav', '.segments.json') - # - # # Perform time-based summarization - # summary = time_chunk_summarize(api_name, api_key, json_file_path, time_chunk_duration, custom_prompt) - # - # # Handle the summarized output - # if summary: - # transcription_result['summary'] = summary - # logging.info("MAIN: Time-based Summarization successful.") - # save_summary_to_file(summary, json_file_path) - # else: - # logging.warning("MAIN: Time-based Summarization failed.") - - # Add media to the database - try: - # Ensure these variables are correctly populated - custom_prompt = args.custom_prompt if args.custom_prompt else ("\n\nabove is the transcript of a video " - "Please read through the transcript carefully. Identify the main topics that are discussed over the " - "course of the transcript. Then, summarize the key points about each main topic in a concise bullet " - "point. The bullet points should cover the key information conveyed about each topic in the video, " - "but should be much shorter than the full transcript. Please output your bullet point summary inside " - " tags.") - - db = Database() - create_tables() - media_url = url - # FIXME - IDK? - video_info = get_video_info(media_url) - media_title = get_page_title(media_url) - media_type = "video" - media_content = transcription_text - keyword_list = keywords.split(',') if keywords else ["default"] - media_keywords = ', '.join(keyword_list) - media_author = "auto_generated" - media_ingestion_date = datetime.now().strftime('%Y-%m-%d') - transcription_model = whisper_model # Add the transcription model used - - # Log the values before calling the function - logging.info(f"Media URL: {media_url}") - logging.info(f"Media Title: {media_title}") - logging.info(f"Media Type: {media_type}") - logging.info(f"Media Content: {media_content}") - logging.info(f"Media Keywords: {media_keywords}") - logging.info(f"Media Author: {media_author}") - logging.info(f"Ingestion Date: {media_ingestion_date}") - logging.info(f"Custom Prompt: {custom_prompt}") - logging.info(f"Summary Text: {summary_text}") - logging.info(f"Transcription Model: {transcription_model}") - - # Check if any required field is empty - if not media_url or not media_title or not media_type or not media_content or not media_keywords or not custom_prompt or not summary_text: - raise InputError("Please provide all required fields.") - - add_media_with_keywords( - url=media_url, - title=media_title, - media_type=media_type, - content=media_content, - keywords=media_keywords, - prompt=custom_prompt, - summary=summary_text, - transcription_model=transcription_model, # Pass the transcription model - author=media_author, - ingestion_date=media_ingestion_date - ) - except Exception as e: - logging.error(f"Failed to add media to the database: {e}") - - if summary_file_path and os.path.exists(summary_file_path): - return transcription_text, summary_text, json_file_path, summary_file_path, video_file_path, None # audio_file_path - else: - return transcription_text, summary_text, json_file_path, None, video_file_path, None # audio_file_path - except Exception as e: - logging.error(f"Error processing URL: {e}") - return str(e), 'Error processing the request.', None, None, None, None - - -def create_download_directory(title): - base_dir = "Results" - # Remove characters that are illegal in Windows filenames and normalize - safe_title = normalize_title(title) - logging.debug(f"{title} successfully normalized") - session_path = os.path.join(base_dir, safe_title) - if not os.path.exists(session_path): - os.makedirs(session_path, exist_ok=True) - logging.debug(f"Created directory for downloaded video: {session_path}") - else: - logging.debug(f"Directory already exists for downloaded video: {session_path}") - return session_path - - -def normalize_title(title): - # Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters - title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii') - title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', - '').replace( - '<', '').replace('>', '').replace('|', '') - return title - - -def get_youtube(video_url): - ydl_opts = { - 'format': 'bestaudio[ext=m4a]', - 'noplaylist': False, - 'quiet': True, - 'extract_flat': True - } - with yt_dlp.YoutubeDL(ydl_opts) as ydl: - logging.debug("About to extract youtube info") - info_dict = ydl.extract_info(video_url, download=False) - logging.debug("Youtube info successfully extracted") - return info_dict - - -def get_playlist_videos(playlist_url): - ydl_opts = { - 'extract_flat': True, - 'skip_download': True, - 'quiet': True - } - - with yt_dlp.YoutubeDL(ydl_opts) as ydl: - info = ydl.extract_info(playlist_url, download=False) - - if 'entries' in info: - video_urls = [entry['url'] for entry in info['entries']] - playlist_title = info['title'] - return video_urls, playlist_title - else: - print("No videos found in the playlist.") - return [], None - - -def save_to_file(video_urls, filename): - with open(filename, 'w') as file: - file.write('\n'.join(video_urls)) - print(f"Video URLs saved to {filename}") - - -def download_video(video_url, download_path, info_dict, download_video_flag): - logging.debug("About to normalize downloaded video title") - title = normalize_title(info_dict['title']) - - if not download_video_flag: - file_path = os.path.join(download_path, f"{title}.m4a") - ydl_opts = { - 'format': 'bestaudio[ext=m4a]', - 'outtmpl': file_path, - } - with yt_dlp.YoutubeDL(ydl_opts) as ydl: - logging.debug("yt_dlp: About to download audio with youtube-dl") - ydl.download([video_url]) - logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") - return file_path - else: - video_file_path = os.path.join(download_path, f"{title}_video.mp4") - audio_file_path = os.path.join(download_path, f"{title}_audio.m4a") - ydl_opts_video = { - 'format': 'bestvideo[ext=mp4]', - 'outtmpl': video_file_path, - } - ydl_opts_audio = { - 'format': 'bestaudio[ext=m4a]', - 'outtmpl': audio_file_path, - } - - with yt_dlp.YoutubeDL(ydl_opts_video) as ydl: - logging.debug("yt_dlp: About to download video with youtube-dl") - ydl.download([video_url]) - logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") - - with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl: - logging.debug("yt_dlp: About to download audio with youtube-dl") - ydl.download([video_url]) - logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") - - output_file_path = os.path.join(download_path, f"{title}.mp4") - - if sys.platform.startswith('win'): - logging.debug("Running ffmpeg on Windows...") - ffmpeg_command = [ - '.\\Bin\\ffmpeg.exe', - '-i', video_file_path, - '-i', audio_file_path, - '-c:v', 'copy', - '-c:a', 'copy', - output_file_path - ] - subprocess.run(ffmpeg_command, check=True) - elif userOS == "Linux": - logging.debug("Running ffmpeg on Linux...") - ffmpeg_command = [ - 'ffmpeg', - '-i', video_file_path, - '-i', audio_file_path, - '-c:v', 'copy', - '-c:a', 'copy', - output_file_path - ] - subprocess.run(ffmpeg_command, check=True) - else: - logging.error("ffmpeg: Unsupported operating system for video download and merging.") - raise RuntimeError("ffmpeg: Unsupported operating system for video download and merging.") - os.remove(video_file_path) - os.remove(audio_file_path) - - return output_file_path - - -def read_paths_from_file(file_path: str) -> List[str]: - """Read paths from a text file.""" - with open(file_path, 'r') as file: - paths = file.readlines() - return [path.strip() for path in paths] - - -def save_summary_to_file(summary: str, file_path: str): - """Save summary to a JSON file.""" - summary_data = {'summary': summary, 'generated_at': datetime.now().isoformat()} - with open(file_path, 'w') as file: - json.dump(summary_data, file, indent=4) - - -def extract_text_from_segments(segments: List[Dict]) -> str: - """Extract text from segments.""" - return " ".join([segment['text'] for segment in segments]) - - -# -# -####################################################################################################################### +# Import necessary libraries to run solo for testing +import json +import logging +import os +import sys +import subprocess +import time ####################################################################################################################### -# Audio Transcription +# Function Definitions # + # Convert video .m4a into .wav using ffmpeg # ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav" # https://www.gyan.dev/ffmpeg/builds/ @@ -886,15 +455,19 @@ def convert_to_wav(video_file_path, offset=0, overwrite=False): logging.error("Error executing FFmpeg command: %s", str(e)) raise RuntimeError("Error converting video file to WAV") except Exception as e: - logging.error("Unexpected error occurred: %s", str(e)) - raise RuntimeError("Error converting video file to WAV") + logging.error("speech-to-text: Error transcribing audio: %s", str(e)) + return {"error": str(e)} return out_path # Transcribe .wav into .segments.json -def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False): +def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='medium.en', vad_filter=False): logging.info('speech-to-text: Loading faster_whisper model: %s', whisper_model) from faster_whisper import WhisperModel + # Retrieve processing choice from the configuration file + config = configparser.ConfigParser() + config.read('config.txt') + processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') model = WhisperModel(whisper_model, device=f"{processing_choice}") time_start = time.time() if audio_file_path is None: @@ -920,21 +493,26 @@ def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='sm segments = [] for segment_chunk in segments_raw: chunk = { - "start": segment_chunk.start, - "end": segment_chunk.end, - "text": segment_chunk.text + "Time_Start": segment_chunk.start, + "Time_End": segment_chunk.end, + "Text": segment_chunk.text } logging.debug("Segment: %s", chunk) segments.append(chunk) logging.info("speech-to-text: Transcription completed with faster_whisper") + # Create a dictionary with the 'segments' key + output_data = {'segments': segments} + # Save prettified JSON + logging.info("speech-to-text: Saving prettified JSON to %s", prettified_out_file) with open(prettified_out_file, 'w') as f: - json.dump(segments, f, indent=2) + json.dump(output_data, f, indent=2) # Save non-prettified JSON + logging.info("speech-to-text: Saving JSON to %s", out_file) with open(out_file, 'w') as f: - json.dump(segments, f) + json.dump(output_data, f) except Exception as e: logging.error("speech-to-text: Error transcribing audio: %s", str(e)) @@ -942,182 +520,82 @@ def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='sm return segments + # # ####################################################################################################################### +from transformers import GPT2Tokenizer +import nltk +import re -####################################################################################################################### -# Diarization -# -# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1 -# embedding_model = "pyannote/embedding", embedding_size=512 -# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192 -# def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0): -# """ -# 1. Generating speaker embeddings for each segments. -# 2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. -# """ -# try: -# from pyannote.audio import Audio -# from pyannote.core import Segment -# from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding -# import numpy as np -# import pandas as pd -# from sklearn.cluster import AgglomerativeClustering -# from sklearn.metrics import silhouette_score -# import tqdm -# import wave -# -# embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) -# -# -# _,file_ending = os.path.splitext(f'{video_file_path}') -# audio_file = video_file_path.replace(file_ending, ".wav") -# out_file = video_file_path.replace(file_ending, ".diarize.json") -# -# logging.debug("getting duration of audio file") -# with contextlib.closing(wave.open(audio_file,'r')) as f: -# frames = f.getnframes() -# rate = f.getframerate() -# duration = frames / float(rate) -# logging.debug("duration of audio file obtained") -# print(f"duration of audio file: {duration}") -# -# def segment_embedding(segment): -# logging.debug("Creating embedding") -# audio = Audio() -# start = segment["start"] -# end = segment["end"] -# -# # Enforcing a minimum segment length -# if end-start < 0.3: -# padding = 0.3-(end-start) -# start -= padding/2 -# end += padding/2 -# print('Padded segment because it was too short:',segment) -# -# # Whisper overshoots the end timestamp in the last segment -# end = min(duration, end) -# # clip audio and embed -# clip = Segment(start, end) -# waveform, sample_rate = audio.crop(audio_file, clip) -# return embedding_model(waveform[None]) -# -# embeddings = np.zeros(shape=(len(segments), embedding_size)) -# for i, segment in enumerate(tqdm.tqdm(segments)): -# embeddings[i] = segment_embedding(segment) -# embeddings = np.nan_to_num(embeddings) -# print(f'Embedding shape: {embeddings.shape}') -# -# if num_speakers == 0: -# # Find the best number of speakers -# score_num_speakers = {} -# -# for num_speakers in range(2, 10+1): -# clustering = AgglomerativeClustering(num_speakers).fit(embeddings) -# score = silhouette_score(embeddings, clustering.labels_, metric='euclidean') -# score_num_speakers[num_speakers] = score -# best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x]) -# print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score") -# else: -# best_num_speaker = num_speakers -# -# # Assign speaker label -# clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings) -# labels = clustering.labels_ -# for i in range(len(segments)): -# segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) -# -# with open(out_file,'w') as f: -# f.write(json.dumps(segments, indent=2)) -# -# # Make CSV output -# def convert_time(secs): -# return datetime.timedelta(seconds=round(secs)) -# -# objects = { -# 'Start' : [], -# 'End': [], -# 'Speaker': [], -# 'Text': [] -# } -# text = '' -# for (i, segment) in enumerate(segments): -# if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: -# objects['Start'].append(str(convert_time(segment["start"]))) -# objects['Speaker'].append(segment["speaker"]) -# if i != 0: -# objects['End'].append(str(convert_time(segments[i - 1]["end"]))) -# objects['Text'].append(text) -# text = '' -# text += segment["text"] + ' ' -# objects['End'].append(str(convert_time(segments[i - 1]["end"]))) -# objects['Text'].append(text) -# -# save_path = video_file_path.replace(file_ending, ".csv") -# df_results = pd.DataFrame(objects) -# df_results.to_csv(save_path) -# return df_results, save_path -# -# except Exception as e: -# raise RuntimeError("Error Running inference with local model", e) -# -# -####################################################################################################################### +# FIXME - Make sure it only downloads if it already exists, and does a check first. +# Ensure NLTK data is downloaded +def ntlk_prep(): + nltk.download('punkt') -####################################################################################################################### -# Chunking-related Techniques & Functions -# -# +# Load GPT2 tokenizer +tokenizer = GPT2Tokenizer.from_pretrained("gpt2") -######### Words-per-second Chunking ######### -def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: - words = transcript.split() - words_per_chunk = chunk_duration * words_per_second - chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] - return chunks +def load_document(file_path): + with open(file_path, 'r') as file: + text = file.read() + return re.sub('\s+', ' ', text).strip() -def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, - words_per_second: int) -> str: - if api_name not in summarizers: # See 'summarizers' dict in the main script - return f"Unsupported API: {api_name}" - summarizer = summarizers[api_name] - text = extract_text_from_segments(transcript) - chunks = chunk_transcript(text, chunk_duration, words_per_second) +# Chunk based on maximum number of words, using ' ' (space) as a delimiter +def chunk_text_by_words(text, max_words=300): + words = text.split() + chunks = [' '.join(words[i:i + max_words]) for i in range(0, len(words), max_words)] + return chunks - summaries = [] - for chunk in chunks: - if api_name == 'openai': - # Ensure the correct model and prompt are passed - summaries.append(summarizer(api_key, chunk, custom_prompt)) - else: - summaries.append(summarizer(api_key, chunk)) - return "\n\n".join(summaries) +# Chunk based on sentences, not exceeding a max amount, using nltk +def chunk_text_by_sentences(text, max_sentences=10): + sentences = nltk.tokenize.sent_tokenize(text) + chunks = [' '.join(sentences[i:i + max_sentences]) for i in range(0, len(sentences), max_sentences)] + return chunks -################## #################### +# Chunk text by paragraph, marking paragraphs by (delimiter) '\n\n' +def chunk_text_by_paragraphs(text, max_paragraphs=5): + paragraphs = text.split('\n\n') + chunks = ['\n\n'.join(paragraphs[i:i + max_paragraphs]) for i in range(0, len(paragraphs), max_paragraphs)] + return chunks -######### Token-size Chunking ######### FIXME - OpenAI only currently -# This is dirty and shameful and terrible. It should be replaced with a proper implementation. -# anyways lets get to it.... +# Naive chunking based on token count +def chunk_text_by_tokens(text, max_tokens=1000): + tokens = tokenizer.encode(text) + chunks = [tokenizer.decode(tokens[i:i + max_tokens]) for i in range(0, len(tokens), max_tokens)] + return chunks -def get_chat_completion(messages, model='gpt-4-turbo'): - response = client.chat.completions.create( - model=model, - messages=messages, - temperature=0, - ) - return response.choices[0].message.content +# Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number +def chunk_text_hybrid(text, max_tokens=1000): + sentences = nltk.tokenize.sent_tokenize(text) + chunks = [] + current_chunk = [] + current_length = 0 + for sentence in sentences: + tokens = tokenizer.encode(sentence) + if current_length + len(tokens) <= max_tokens: + current_chunk.append(sentence) + current_length += len(tokens) + else: + chunks.append(' '.join(current_chunk)) + current_chunk = [sentence] + current_length = len(tokens) -# This function chunks a text into smaller pieces based on a maximum token count and a delimiter + if current_chunk: + chunks.append(' '.join(current_chunk)) + + return chunks + +# Thanks openai def chunk_on_delimiter(input_string: str, max_tokens: int, delimiter: str) -> List[str]: @@ -1130,758 +608,1006 @@ def chunk_on_delimiter(input_string: str, return combined_chunks -# This function combines text chunks into larger blocks without exceeding a specified token count. -# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow. -def combine_chunks_with_no_minimum( - chunks: List[str], - max_tokens: int, - chunk_delimiter="\n\n", - header: Optional[str] = None, - add_ellipsis_for_overflow=False, -) -> Tuple[List[str], List[int]]: - dropped_chunk_count = 0 - output = [] # list to hold the final combined chunks - output_indices = [] # list to hold the indices of the final combined chunks - candidate = ( - [] if header is None else [header] - ) # list to hold the current combined chunk candidate - candidate_indices = [] - for chunk_i, chunk in enumerate(chunks): - chunk_with_header = [chunk] if header is None else [header, chunk] - # FIXME MAKE NOT OPENAI SPECIFIC - if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens: - print(f"warning: chunk overflow") - if ( - add_ellipsis_for_overflow - # FIXME MAKE NOT OPENAI SPECIFIC - and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens - ): - candidate.append("...") - dropped_chunk_count += 1 - continue # this case would break downstream assumptions - # estimate token count with the current chunk added - # FIXME MAKE NOT OPENAI SPECIFIC - extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk]))) - # If the token count exceeds max_tokens, add the current candidate to output and start a new candidate - if extended_candidate_token_count > max_tokens: - output.append(chunk_delimiter.join(candidate)) - output_indices.append(candidate_indices) - candidate = chunk_with_header # re-initialize candidate - candidate_indices = [chunk_i] - # otherwise keep extending the candidate - else: - candidate.append(chunk) - candidate_indices.append(chunk_i) - # add the remaining candidate to output if it's not empty - if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0): - output.append(chunk_delimiter.join(candidate)) - output_indices.append(candidate_indices) - return output, output_indices, dropped_chunk_count - - -def rolling_summarize(text: str, - detail: float = 0, - model: str = 'gpt-4-turbo', - additional_instructions: Optional[str] = None, - minimum_chunk_size: Optional[int] = 500, - chunk_delimiter: str = ".", - summarize_recursively=False, - verbose=False): +def rolling_summarize_function(text: str, + detail: float = 0, + api_name: str = None, + api_key: str = None, + model: str = None, + custom_prompt: str = None, + chunk_by_words: bool = False, + max_words: int = 300, + chunk_by_sentences: bool = False, + max_sentences: int = 10, + chunk_by_paragraphs: bool = False, + max_paragraphs: int = 5, + chunk_by_tokens: bool = False, + max_tokens: int = 1000, + summarize_recursively=False, + verbose=False): """ Summarizes a given text by splitting it into chunks, each of which is summarized individually. - The level of detail in the summary can be adjusted, and the process can optionally be made recursive. - - Parameters: - text (str): The text to be summarized. - detail (float, optional): A value between 0 and 1 - indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more - detailed summary. Defaults to 0. - model (str, optional): The model to use for generating summaries. Defaults to - 'gpt-3.5-turbo'. - additional_instructions (Optional[str], optional): Additional instructions to provide to the - model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text - chunks. Defaults to 500. - chunk_delimiter (str, optional): The delimiter used to split the text into chunks. - Defaults to ".". - summarize_recursively (bool, optional): If True, summaries are generated recursively, - using previous summaries for context. - verbose (bool, optional): If True, prints detailed information about the - chunking process. + Allows selecting the method for chunking (words, sentences, paragraphs, tokens). + + Parameters: + - text (str): The text to be summarized. + - detail (float, optional): A value between 0 and 1 indicating the desired level of detail in the summary. + - api_name (str, optional): Name of the API to use for summarization. + - api_key (str, optional): API key for the specified API. + - model (str, optional): Model identifier for the summarization engine. + - custom_prompt (str, optional): Custom prompt for the summarization. + - chunk_by_words (bool, optional): If True, chunks the text by words. + - max_words (int, optional): Maximum number of words per chunk. + - chunk_by_sentences (bool, optional): If True, chunks the text by sentences. + - max_sentences (int, optional): Maximum number of sentences per chunk. + - chunk_by_paragraphs (bool, optional): If True, chunks the text by paragraphs. + - max_paragraphs (int, optional): Maximum number of paragraphs per chunk. + - chunk_by_tokens (bool, optional): If True, chunks the text by tokens. + - max_tokens (int, optional): Maximum number of tokens per chunk. + - summarize_recursively (bool, optional): If True, summaries are generated recursively. + - verbose (bool, optional): If verbose, prints additional output. Returns: - - str: The final compiled summary of the text. - - The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count - based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If - `summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the - summarization process. The function returns a compiled summary of all chunks. + - str: The final compiled summary of the text. """ - # check detail is set correctly - assert 0 <= detail <= 1 - - # interpolate the number of chunks based to get specified level of detail - max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter)) - min_chunks = 1 - num_chunks = int(min_chunks + detail * (max_chunks - min_chunks)) - - # adjust chunk_size based on interpolated number of chunks - # FIXME MAKE NOT OPENAI SPECIFIC - document_length = len(openai_tokenize(text)) - chunk_size = max(minimum_chunk_size, document_length // num_chunks) - text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter) - if verbose: - print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.") - # FIXME MAKE NOT OPENAI SPECIFIC - print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}") - - # set system message - system_message_content = "Rewrite this text in summarized form." - if additional_instructions is not None: - system_message_content += f"\n\n{additional_instructions}" + def extract_text_from_segments(segments): + text = ' '.join([segment['Text'] for segment in segments if 'Text' in segment]) + return text + # Validate input + if not text: + raise ValueError("Input text cannot be empty.") + if any([max_words <= 0, max_sentences <= 0, max_paragraphs <= 0, max_tokens <= 0]): + raise ValueError("All maximum chunk size parameters must be positive integers.") + global segments + + if isinstance(text, dict) and 'transcription' in text: + text = extract_text_from_segments(text['transcription']) + elif isinstance(text, list): + text = extract_text_from_segments(text) + + # Select the chunking function based on the method specified + if chunk_by_words: + chunks = chunk_text_by_words(text, max_words) + elif chunk_by_sentences: + chunks = chunk_text_by_sentences(text, max_sentences) + elif chunk_by_paragraphs: + chunks = chunk_text_by_paragraphs(text, max_paragraphs) + elif chunk_by_tokens: + chunks = chunk_text_by_tokens(text, max_tokens) + else: + chunks = [text] + # Process each chunk for summarization accumulated_summaries = [] - for chunk in tqdm(text_chunks): + for chunk in chunks: if summarize_recursively and accumulated_summaries: # Creating a structured prompt for recursive summarization - accumulated_summaries_string = '\n\n'.join(accumulated_summaries) - user_message_content = f"Previous summaries:\n\n{accumulated_summaries_string}\n\nText to summarize next:\n\n{chunk}" + previous_summaries = '\n\n'.join(accumulated_summaries) + user_message_content = f"Previous summaries:\n\n{previous_summaries}\n\nText to summarize next:\n\n{chunk}" else: # Directly passing the chunk for summarization without recursive context user_message_content = chunk - # Constructing messages based on whether recursive summarization is applied - messages = [ - {"role": "system", "content": system_message_content}, - {"role": "user", "content": user_message_content} - ] - - # Assuming this function gets the completion and works as expected - response = get_chat_completion(messages, model=model) - accumulated_summaries.append(response) + # Extracting the completion from the response + try: + if api_name.lower() == 'openai': + # def summarize_with_openai(api_key, input_data, custom_prompt_arg) + summary = summarize_with_openai(user_message_content, text, custom_prompt) - # Compile final summary from partial summaries - global final_summary - final_summary = '\n\n'.join(accumulated_summaries) + elif api_name.lower() == "anthropic": + # def summarize_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5): + summary = summarize_with_anthropic(user_message_content, text, custom_prompt) + elif api_name.lower() == "cohere": + # def summarize_with_cohere(api_key, input_data, model, custom_prompt_arg) + summary = summarize_with_cohere(user_message_content, text, custom_prompt) - return final_summary + elif api_name.lower() == "groq": + logging.debug(f"MAIN: Trying to summarize with groq") + # def summarize_with_groq(api_key, input_data, model, custom_prompt_arg): + summary = summarize_with_groq(user_message_content, text, custom_prompt) + elif api_name.lower() == "openrouter": + logging.debug(f"MAIN: Trying to summarize with OpenRouter") + # def summarize_with_openrouter(api_key, input_data, custom_prompt_arg): + summary = summarize_with_openrouter(user_message_content, text, custom_prompt) -####################################### + elif api_name.lower() == "deepseek": + logging.debug(f"MAIN: Trying to summarize with DeepSeek") + # def summarize_with_deepseek(api_key, input_data, custom_prompt_arg): + summary = summarize_with_deepseek(api_key, user_message_content,custom_prompt) + elif api_name.lower() == "llama.cpp": + logging.debug(f"MAIN: Trying to summarize with Llama.cpp") + # def summarize_with_llama(api_url, file_path, token, custom_prompt) + summary = summarize_with_llama(user_message_content, custom_prompt) -######### Words-per-second Chunking ######### -# FIXME - WHole section needs to be re-written -def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: - words = transcript.split() - words_per_chunk = chunk_duration * words_per_second - chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] - return chunks + elif api_name.lower() == "kobold": + logging.debug(f"MAIN: Trying to summarize with Kobold.cpp") + # def summarize_with_kobold(input_data, kobold_api_token, custom_prompt_input, api_url): + summary = summarize_with_kobold(user_message_content, api_key, custom_prompt) + elif api_name.lower() == "ooba": + # def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url): + summary = summarize_with_oobabooga(user_message_content, api_key, custom_prompt) -def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, - words_per_second: int) -> str: - if api_name not in summarizers: # See 'summarizers' dict in the main script - return f"Unsupported API: {api_name}" + elif api_name.lower() == "tabbyapi": + # def summarize_with_tabbyapi(input_data, tabby_model, custom_prompt_input, api_key=None, api_IP): + summary = summarize_with_tabbyapi(user_message_content, custom_prompt) - if not transcript: - logging.error("Empty or None transcript provided to summarize_chunks") - return "Error: Empty or None transcript provided" + elif api_name.lower() == "vllm": + logging.debug(f"MAIN: Trying to summarize with VLLM") + # def summarize_with_vllm(api_key, input_data, custom_prompt_input): + summary = summarize_with_vllm(user_message_content, custom_prompt) - text = extract_text_from_segments(transcript) - chunks = chunk_transcript(text, chunk_duration, words_per_second) + elif api_name.lower() == "local-llm": + logging.debug(f"MAIN: Trying to summarize with Local LLM") + summary = summarize_with_local_llm(user_message_content, custom_prompt) - custom_prompt = args.custom_prompt + elif api_name.lower() == "huggingface": + logging.debug(f"MAIN: Trying to summarize with huggingface") + # def summarize_with_huggingface(api_key, input_data, custom_prompt_arg): + summarize_with_huggingface(api_key, user_message_content, custom_prompt) + # Add additional API handlers here... + else: + logging.warning(f"Unsupported API: {api_name}") + summary = None + except requests.exceptions.ConnectionError: + logging.error("Connection error while summarizing") + summary = None + except Exception as e: + logging.error(f"Error summarizing with {api_name}: {str(e)}") + summary = None - summaries = [] - for chunk in chunks: - if api_name == 'openai': - # Ensure the correct model and prompt are passed - summaries.append(summarize_with_openai(api_key, chunk, custom_prompt)) - elif api_name == 'anthropic': - summaries.append(summarize_with_cohere(api_key, chunk, anthropic_model, custom_prompt)) - elif api_name == 'cohere': - summaries.append(summarize_with_claude(api_key, chunk, cohere_model, custom_prompt)) - elif api_name == 'groq': - summaries.append(summarize_with_groq(api_key, chunk, groq_model, custom_prompt)) - elif api_name == 'llama': - summaries.append(summarize_with_llama(llama_api_IP, chunk, api_key, custom_prompt)) - elif api_name == 'kobold': - summaries.append(summarize_with_kobold(kobold_api_IP, chunk, api_key, custom_prompt)) - elif api_name == 'ooba': - summaries.append(summarize_with_oobabooga(ooba_api_IP, chunk, api_key, custom_prompt)) - elif api_name == 'tabbyapi': - summaries.append(summarize_with_vllm(api_key, tabby_api_IP, chunk, llm_model, custom_prompt)) - elif api_name == 'local-llm': - summaries.append(summarize_with_local_llm(chunk, custom_prompt)) + if summary: + logging.info(f"Summary generated using {api_name} API") + accumulated_summaries.append(summary) else: - return f"Unsupported API: {api_name}" + logging.warning(f"Failed to generate summary using {api_name} API") - return "\n\n".join(summaries) + # Compile final summary from partial summaries + final_summary = '\n\n'.join(accumulated_summaries) + return final_summary -####################################### -# -# -####################################################################################################################### +# Sample text for testing +sample_text = """ +Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence +concerned with the interactions between computers and human language, in particular how to program computers +to process and analyze large amounts of natural language data. The result is a computer capable of "understanding" +the contents of documents, including the contextual nuances of the language within them. The technology can then +accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves. +Challenges in natural language processing frequently involve speech recognition, natural language understanding, +and natural language generation. -####################################################################################################################### -# Tokenization-related Techniques & Functions +Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled +"Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence. +""" + +# Example usage of different chunking methods +# print("Chunking by words:") +# print(chunk_text_by_words(sample_text, max_words=50)) +# +# print("\nChunking by sentences:") +# print(chunk_text_by_sentences(sample_text, max_sentences=2)) # +# print("\nChunking by paragraphs:") +# print(chunk_text_by_paragraphs(sample_text, max_paragraphs=1)) # +# print("\nChunking by tokens:") +# print(chunk_text_by_tokens(sample_text, max_tokens=50)) +# +# print("\nHybrid chunking:") +# print(chunk_text_hybrid(sample_text, max_tokens=50)) -def openai_tokenize(text: str) -> List[str]: - encoding = tiktoken.encoding_for_model('gpt-4-turbo') - return encoding.encode(text) -# openai summarize chunks +# Local_File_Processing_Lib.py +######################################### +# Local File Processing and File Path Handling Library +# This library is used to handle processing local filepaths and URLs. +# It checks for the OS, the availability of the GPU, and the availability of the ffmpeg executable. +# If the GPU is available, it asks the user if they would like to use it for processing. +# If ffmpeg is not found, it asks the user if they would like to download it. +# The script will exit if the user chooses not to download ffmpeg. +#### + +#################### +# Function List # +# 1. read_paths_from_file(file_path) +# 2. process_path(path) +# 3. process_local_file(file_path) +# 4. read_paths_from_file(file_path: str) -> List[str] # -####################################################################################################################### +#################### + +# Import necessary libraries +import os +import logging ####################################################################################################################### -# Website-related Techniques & Functions -# +# Function Definitions # -def scrape_article(url): - async def fetch_html(url: str) -> str: - async with async_playwright() as p: - browser = await p.chromium.launch(headless=True) - context = await browser.new_context( - user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3") - page = await context.new_page() - await page.goto(url) - await page.wait_for_load_state("networkidle") # Wait for the network to be idle - content = await page.content() - await browser.close() - return content +def read_paths_from_file(file_path): + """ Reads a file containing URLs or local file paths and returns them as a list. """ + paths = [] # Initialize paths as an empty list + with open(file_path, 'r') as file: + paths = file.readlines() + return [path.strip() for path in paths] - def extract_article_data(html: str) -> dict: - downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False) - if downloaded: - metadata = trafilatura.extract_metadata(html) - if metadata: - return { - 'title': metadata.title if metadata.title else 'N/A', - 'author': metadata.author if metadata.author else 'N/A', - 'content': downloaded, - 'date': metadata.date if metadata.date else 'N/A', - } - else: - print("Metadata extraction failed.") - return None - else: - print("Content extraction failed.") - return None - def convert_html_to_markdown(html: str) -> str: - soup = BeautifulSoup(html, 'html.parser') - # Convert each paragraph to markdown - for para in soup.find_all('p'): - para.append('\n') # Add a newline at the end of each paragraph for markdown separation +def process_path(path): + """ Decides whether the path is a URL or a local file and processes accordingly. """ + if path.startswith('http'): + logging.debug("file is a URL") + # For YouTube URLs, modify to download and extract info + return get_youtube(path) + elif os.path.exists(path): + logging.debug("File is a path") + # For local files, define a function to handle them + return process_local_file(path) + else: + logging.error(f"Path does not exist: {path}") + return None - # Use .get_text() with separator to keep paragraph separation - text = soup.get_text(separator='\n\n') - return text +# FIXME - async def fetch_and_extract_article(url: str): - html = await fetch_html(url) - print("HTML Content:", html[:500]) # Print first 500 characters of the HTML for inspection - article_data = extract_article_data(html) - if article_data: - article_data['content'] = convert_html_to_markdown(article_data['content']) - return article_data - else: - return None +def process_local_file(file_path): + logging.info(f"Processing local file: {file_path}") + file_extension = os.path.splitext(file_path)[1].lower() - # Using asyncio.run to handle event loop creation and execution - article_data = asyncio.run(fetch_and_extract_article(url)) - return article_data + if file_extension == '.txt': + # Handle text file containing URLs + with open(file_path, 'r') as file: + urls = file.read().splitlines() + return None, None, urls + else: + # Handle video file + title = normalize_title(os.path.splitext(os.path.basename(file_path))[0]) + info_dict = {'title': title} + logging.debug(f"Creating {title} directory...") + download_path = create_download_directory(title) + logging.debug(f"Converting '{title}' to an audio file (wav).") + audio_file = convert_to_wav(file_path) + logging.debug(f"'{title}' successfully converted to an audio file (wav).") + return download_path, info_dict, audio_file -def ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, custom_prompt): - try: - # Check if content is not empty or whitespace - if not content.strip(): - raise ValueError("Content is empty.") - db = Database() - create_tables() - keyword_list = keywords.split(',') if keywords else ["default"] - keyword_str = ', '.join(keyword_list) - # Set default values for missing fields - url = url or 'Unknown' - title = title or 'Unknown' - author = author or 'Unknown' - keywords = keywords or 'default' - summary = summary or 'No summary available' - ingestion_date = ingestion_date or datetime.now().strftime('%Y-%m-%d') - # Log the values of all fields before calling add_media_with_keywords - logging.debug(f"URL: {url}") - logging.debug(f"Title: {title}") - logging.debug(f"Author: {author}") - logging.debug(f"Content: {content[:50]}... (length: {len(content)})") # Log first 50 characters of content - logging.debug(f"Keywords: {keywords}") - logging.debug(f"Summary: {summary}") - logging.debug(f"Ingestion Date: {ingestion_date}") - logging.debug(f"Custom Prompt: {custom_prompt}") +# +# +####################################################################################################################### - # Check if any required field is empty and log the specific missing field - if not url: - logging.error("URL is missing.") - raise ValueError("URL is missing.") - if not title: - logging.error("Title is missing.") - raise ValueError("Title is missing.") - if not content: - logging.error("Content is missing.") - raise ValueError("Content is missing.") - if not keywords: - logging.error("Keywords are missing.") - raise ValueError("Keywords are missing.") - if not summary: - logging.error("Summary is missing.") - raise ValueError("Summary is missing.") - if not ingestion_date: - logging.error("Ingestion date is missing.") - raise ValueError("Ingestion date is missing.") - if not custom_prompt: - logging.error("Custom prompt is missing.") - raise ValueError("Custom prompt is missing.") - # Add media with keywords to the database - result = add_media_with_keywords( - url=url, - title=title, - media_type='article', - content=content, - keywords=keyword_str or "article_default", - prompt=custom_prompt or None, - summary=summary or "No summary generated", - transcription_model=None, # or some default value if applicable - author=author or 'Unknown', - ingestion_date=ingestion_date - ) - return result - except Exception as e: - logging.error(f"Failed to ingest article to the database: {e}") - return str(e) -def scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_article_title): - # Step 1: Scrape the article - article_data = scrape_article(url) - print(f"Scraped Article Data: {article_data}") # Debugging statement - if not article_data: - return "Failed to scrape the article." - # Use the custom title if provided, otherwise use the scraped title - title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled') - author = article_data.get('author', 'Unknown') - content = article_data.get('content', '') - ingestion_date = datetime.now().strftime('%Y-%m-%d') - print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement - - # Custom prompt for the article - article_custom_prompt = custom_prompt_arg or "Summarize this article." +# Local_LLM_Inference_Engine_Lib.py +######################################### +# Local LLM Inference Engine Library +# This library is used to handle downloading, configuring, and launching the Local LLM Inference Engine +# via (llama.cpp via llamafile) +# +# +#### +import atexit +import hashlib +#################### +# Function List +# +# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename) +# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5) +# 3. verify_checksum(file_path, expected_checksum) +# 4. cleanup_process() +# 5. signal_handler(sig, frame) +# 6. local_llm_function() +# 7. launch_in_new_terminal_windows(executable, args) +# 8. launch_in_new_terminal_linux(executable, args) +# 9. launch_in_new_terminal_mac(executable, args) +# +#################### - # Step 2: Summarize the article - summary = None - if api_name: - logging.debug(f"Article_Summarizer: Summarization being performed by {api_name}") +# Import necessary libraries +import json +import logging +from multiprocessing import Process as MpProcess +import requests +import sys +import os +# Import 3rd-pary Libraries +import gradio as gr +from tqdm import tqdm - # Sanitize filename for saving the JSON file - sanitized_title = sanitize_filename(title) - json_file_path = os.path.join("Results", f"{sanitized_title}_segments.json") - with open(json_file_path, 'w') as json_file: - json.dump([{'text': content}], json_file, indent=2) - try: - if api_name.lower() == 'openai': - openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None) - logging.debug(f"Article_Summarizer: trying to summarize with openAI") - summary = summarize_with_openai(openai_api_key, json_file_path, article_custom_prompt) - elif api_name.lower() == "anthropic": - anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with anthropic") - summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model, - custom_prompt_arg=article_custom_prompt) - elif api_name.lower() == "cohere": - cohere_api_key = api_key if api_key else config.get('API', 'cohere_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with cohere") - summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model, - custom_prompt_arg=article_custom_prompt) - elif api_name.lower() == "groq": - groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with Groq") - summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, - custom_prompt_arg=article_custom_prompt) - elif api_name.lower() == "llama": - llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None) - llama_ip = llama_api_IP - logging.debug(f"Article_Summarizer: Trying to summarize with Llama.cpp") - summary = summarize_with_llama(llama_ip, json_file_path, llama_token, article_custom_prompt) - elif api_name.lower() == "kobold": - kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None) - kobold_ip = kobold_api_IP - logging.debug(f"Article_Summarizer: Trying to summarize with kobold.cpp") - summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, article_custom_prompt) - elif api_name.lower() == "ooba": - ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None) - ooba_ip = ooba_api_IP - logging.debug(f"Article_Summarizer: Trying to summarize with oobabooga") - summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, article_custom_prompt) - elif api_name.lower() == "tabbyapi": - tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None) - tabbyapi_ip = tabby_api_IP - logging.debug(f"Article_Summarizer: Trying to summarize with tabbyapi") - tabby_model = llm_model - summary = summarize_with_tabbyapi(tabbyapi_key, tabbyapi_ip, json_file_path, tabby_model, - article_custom_prompt) - elif api_name.lower() == "vllm": - logging.debug(f"Article_Summarizer: Trying to summarize with VLLM") - summary = summarize_with_vllm(vllm_api_url, vllm_api_key, llm_model, json_file_path, - article_custom_prompt) - elif api_name.lower() == "huggingface": - huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with huggingface") - summary = summarize_with_huggingface(huggingface_api_key, json_file_path, article_custom_prompt) - except requests.exceptions.ConnectionError as e: - logging.error(f"Connection error while trying to summarize with {api_name}: {str(e)}") +####################################################################################################################### +# Function Definitions +# - if summary: - logging.info(f"Article_Summarizer: Summary generated using {api_name} API") - save_summary_to_file(summary, json_file_path) - else: - summary = "Summary not available" - logging.warning(f"Failed to generate summary using {api_name} API") +# Download latest llamafile from Github + # Example usage + #repo = "Mozilla-Ocho/llamafile" + #asset_name_prefix = "llamafile-" + #output_filename = "llamafile" + #download_latest_llamafile(repo, asset_name_prefix, output_filename) +# THIS SHOULD ONLY BE CALLED IF THE USER IS USING THE GUI TO SETUP LLAMAFILE +# Function is used to download only llamafile +def download_latest_llamafile_no_model(output_filename): + # Check if the file already exists + print("Checking for and downloading Llamafile it it doesn't already exist...") + if os.path.exists(output_filename): + print("Llamafile already exists. Skipping download.") + logging.debug(f"{output_filename} already exists. Skipping download.") + llamafile_exists = True else: - summary = "Article Summarization: No API provided for summarization." + llamafile_exists = False - print(f"Summary: {summary}") # Debugging statement + if llamafile_exists == True: + pass + else: + # Establish variables for Llamafile download + repo = "Mozilla-Ocho/llamafile" + asset_name_prefix = "llamafile-" + # Get the latest release information + latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" + response = requests.get(latest_release_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch latest release info: {response.status_code}") - # Step 3: Ingest the article into the database - ingestion_result = ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, - article_custom_prompt) + latest_release_data = response.json() + tag_name = latest_release_data['tag_name'] - return f"Title: {title}\nAuthor: {author}\nSummary: {summary}\nIngestion Result: {ingestion_result}" + # Get the release details using the tag name + release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" + response = requests.get(release_details_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") + release_data = response.json() + assets = release_data.get('assets', []) -def ingest_unstructured_text(text, custom_prompt, api_name, api_key, keywords, custom_article_title): - title = custom_article_title.strip() if custom_article_title else "Unstructured Text" - author = "Unknown" - ingestion_date = datetime.now().strftime('%Y-%m-%d') + # Find the asset with the specified prefix + asset_url = None + for asset in assets: + if re.match(f"{asset_name_prefix}.*", asset['name']): + asset_url = asset['browser_download_url'] + break - # Summarize the unstructured text - if api_name: - json_file_path = f"Results/{title.replace(' ', '_')}_segments.json" - with open(json_file_path, 'w') as json_file: - json.dump([{'text': text}], json_file, indent=2) + if not asset_url: + raise Exception(f"No asset found with prefix {asset_name_prefix}") - if api_name.lower() == 'openai': - summary = summarize_with_openai(api_key, json_file_path, custom_prompt) - # Add other APIs as needed - else: - summary = "Unsupported API." - else: - summary = "No API provided for summarization." + # Download the asset + response = requests.get(asset_url) + if response.status_code != 200: + raise Exception(f"Failed to download asset: {response.status_code}") - # Ingest the unstructured text into the database - ingestion_result = ingest_article_to_db('Unstructured Text', title, author, text, keywords, summary, ingestion_date, - custom_prompt) - return f"Title: {title}\nSummary: {summary}\nIngestion Result: {ingestion_result}" + print("Llamafile downloaded successfully.") + logging.debug("Main: Llamafile downloaded successfully.") + # Save the file + with open(output_filename, 'wb') as file: + file.write(response.content) -# -# -####################################################################################################################### + logging.debug(f"Downloaded {output_filename} from {asset_url}") + print(f"Downloaded {output_filename} from {asset_url}") + return output_filename -####################################################################################################################### -# Summarizers -# -# +# FIXME - Add option in GUI for selecting the other models for download +# Should only be called from 'local_llm_gui_function' - if its called from anywhere else, shits broken. +# Function is used to download llamafile + A model from Huggingface +def download_latest_llamafile_through_gui(repo, asset_name_prefix, output_filename): + # Check if the file already exists + print("Checking for and downloading Llamafile it it doesn't already exist...") + if os.path.exists(output_filename): + print("Llamafile already exists. Skipping download.") + logging.debug(f"{output_filename} already exists. Skipping download.") + llamafile_exists = True + else: + llamafile_exists = False -# Fixme , function is replicated.... -def extract_text_from_segments(segments): - logging.debug(f"Main: extracting text from {segments}") - text = ' '.join([segment['text'] for segment in segments]) - logging.debug(f"Main: Successfully extracted text from {segments}") - return text + if llamafile_exists == True: + pass + else: + # Get the latest release information + latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" + response = requests.get(latest_release_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch latest release info: {response.status_code}") + latest_release_data = response.json() + tag_name = latest_release_data['tag_name'] -def summarize_with_openai(api_key, file_path, custom_prompt_arg): - try: - logging.debug("openai: Loading json data for summarization") - with open(file_path, 'r') as file: - segments = json.load(file) + # Get the release details using the tag name + release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" + response = requests.get(release_details_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") - open_ai_model = openai_model or 'gpt-4-turbo' + release_data = response.json() + assets = release_data.get('assets', []) - logging.debug("openai: Extracting text from the segments") - text = extract_text_from_segments(segments) + # Find the asset with the specified prefix + asset_url = None + for asset in assets: + if re.match(f"{asset_name_prefix}.*", asset['name']): + asset_url = asset['browser_download_url'] + break - headers = { - 'Authorization': f'Bearer {api_key}', - 'Content-Type': 'application/json' - } + if not asset_url: + raise Exception(f"No asset found with prefix {asset_name_prefix}") - logging.debug(f"openai: API Key is: {api_key}") - logging.debug("openai: Preparing data + prompt for submittal") - openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - data = { - "model": open_ai_model, - "messages": [ - { - "role": "system", - "content": "You are a professional summarizer." - }, - { - "role": "user", - "content": openai_prompt - } - ], - "max_tokens": 8192, # Adjust tokens as needed - "temperature": 0.1 - } - logging.debug("openai: Posting request") - response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) + # Download the asset + response = requests.get(asset_url) + if response.status_code != 200: + raise Exception(f"Failed to download asset: {response.status_code}") - if response.status_code == 200: - response_data = response.json() - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("openai: Summarization successful") - print("openai: Summarization successful.") - return summary - else: - logging.warning("openai: Summary not found in the response data") - return "openai: Summary not available" - else: - logging.debug("openai: Summarization failed") - print("openai: Failed to process summary:", response.text) - return "openai: Failed to process summary" - except Exception as e: - logging.debug("openai: Error in processing: %s", str(e)) - print("openai: Error occurred while processing summary with openai:", str(e)) - return "openai: Error occurred while processing summary" + print("Llamafile downloaded successfully.") + logging.debug("Main: Llamafile downloaded successfully.") + # Save the file + with open(output_filename, 'wb') as file: + file.write(response.content) -def summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5): - try: - logging.debug("anthropic: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) + logging.debug(f"Downloaded {output_filename} from {asset_url}") + print(f"Downloaded {output_filename} from {asset_url}") - logging.debug("anthropic: Extracting text from the segments file") - text = extract_text_from_segments(segments) + # Check to see if the LLM already exists, and if not, download the LLM + print("Checking for and downloading LLM from Huggingface if needed...") + logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") + mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile" + Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + Phi_3_mini_128k_instruct_Q8_0_gguf = "Phi-3-mini-128k-instruct-Q8_0.gguf" + if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + print("Model is already downloaded. Skipping download.") + pass + elif os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8): + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + print("Model is already downloaded. Skipping download.") + pass + elif os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + print("Model is already downloaded. Skipping download.") + pass + else: + logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") + print("Downloading LLM from Huggingface...") + time.sleep(1) + print("Gonna be a bit...") + time.sleep(1) + print("Like seriously, an 8GB file...") + time.sleep(2) + # Not needed for GUI + # dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ") + #if dl_check == "N" or dl_check == "n": + # exit() + x = 2 + if x != 1: + print("Uhhhh how'd you get here...?") + exit() + else: + print("Downloading LLM from Huggingface...") + # Establish hash values for LLM models + mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06" + samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" + mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" + global llm_choice + + # FIXME - llm_choice + llm_choice = 2 + llm_choice = input("Which LLM model would you like to download? 1. Mistral-7B-Instruct-v0.2-GGUF or 2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) (plain or 'custom') or MS Flavor: Phi-3-mini-128k-instruct-Q8_0.gguf \n\n\tPress '1' or '2' or '3' to specify: ") + while llm_choice != "1" and llm_choice != "2" and llm_choice != "3": + print("Invalid choice. Please try again.") + if llm_choice == "1": + llm_download_model = "Mistral-7B-Instruct-v0.2-Q8.llamafile" + mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" + llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + elif llm_choice == "2": + llm_download_model = "Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf" + samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" + llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 + llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + elif llm_choice == "3": + llm_download_model = "Phi-3-mini-128k-instruct-Q8_0.gguf" + Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 = "6817b66d1c3c59ab06822e9732f0e594eea44e64cae2110906eac9d17f75d193" + llm_download_model_hash = Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 + llamafile_llm_output_filename = "Phi-3-mini-128k-instruct-Q8_0.gguf" + llamafile_llm_url = "https://huggingface.co/gaianet/Phi-3-mini-128k-instruct-GGUF/resolve/main/Phi-3-mini-128k-instruct-Q8_0.gguf?download=true" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + elif llm_choice == "4": # FIXME - and meta_Llama_3_8B_Instruct_Q8_0_llamafile_exists == False: + meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" + llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 + llamafile_llm_output_filename = " Meta-Llama-3-8B-Instruct.Q8_0.llamafile" + llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true" + else: + print("Invalid choice. Please try again.") + return output_filename - headers = { - 'x-api-key': api_key, - 'anthropic-version': '2023-06-01', - 'Content-Type': 'application/json' - } - anthropic_prompt = custom_prompt_arg # Sanitize the custom prompt - logging.debug(f"anthropic: Prompt is {anthropic_prompt}") - user_message = { - "role": "user", - "content": f"{text} \n\n\n\n{anthropic_prompt}" - } - - data = { - "model": model, - "max_tokens": 4096, # max _possible_ tokens to return - "messages": [user_message], - "stop_sequences": ["\n\nHuman:"], - "temperature": 0.1, - "top_k": 0, - "top_p": 1.0, - "metadata": { - "user_id": "example_user_id", - }, - "stream": False, - "system": "You are a professional summarizer." - } +# Maybe replace/ dead code? FIXME +# Function is used to download llamafile + A model from Huggingface +def download_latest_llamafile(repo, asset_name_prefix, output_filename): + # Check if the file already exists + print("Checking for and downloading Llamafile it it doesn't already exist...") + if os.path.exists(output_filename): + print("Llamafile already exists. Skipping download.") + logging.debug(f"{output_filename} already exists. Skipping download.") + llamafile_exists = True + else: + llamafile_exists = False - for attempt in range(max_retries): - try: - logging.debug("anthropic: Posting request to API") - response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) + if llamafile_exists == True: + pass + else: + # Get the latest release information + latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" + response = requests.get(latest_release_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch latest release info: {response.status_code}") - # Check if the status code indicates success - if response.status_code == 200: - logging.debug("anthropic: Post submittal successful") - response_data = response.json() - try: - summary = response_data['content'][0]['text'].strip() - logging.debug("anthropic: Summarization successful") - print("Summary processed successfully.") - return summary - except (IndexError, KeyError) as e: - logging.debug("anthropic: Unexpected data in response") - print("Unexpected response format from Claude API:", response.text) - return None - elif response.status_code == 500: # Handle internal server error specifically - logging.debug("anthropic: Internal server error") - print("Internal server error from API. Retrying may be necessary.") - time.sleep(retry_delay) - else: - logging.debug( - f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") - print(f"Failed to process summary, status code {response.status_code}: {response.text}") - return None + latest_release_data = response.json() + tag_name = latest_release_data['tag_name'] - except RequestException as e: - logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") - if attempt < max_retries - 1: - time.sleep(retry_delay) - else: - return f"anthropic: Network error: {str(e)}" + # Get the release details using the tag name + release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" + response = requests.get(release_details_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") - except FileNotFoundError as e: - logging.error(f"anthropic: File not found: {file_path}") - return f"anthropic: File not found: {file_path}" - except json.JSONDecodeError as e: - logging.error(f"anthropic: Invalid JSON format in file: {file_path}") - return f"anthropic: Invalid JSON format in file: {file_path}" - except Exception as e: - logging.error(f"anthropic: Error in processing: {str(e)}") - return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}" + release_data = response.json() + assets = release_data.get('assets', []) + # Find the asset with the specified prefix + asset_url = None + for asset in assets: + if re.match(f"{asset_name_prefix}.*", asset['name']): + asset_url = asset['browser_download_url'] + break -# Summarize with Cohere -def summarize_with_cohere(api_key, file_path, model, custom_prompt_arg): - try: - logging.debug("cohere: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) + if not asset_url: + raise Exception(f"No asset found with prefix {asset_name_prefix}") - logging.debug(f"cohere: Extracting text from segments file") - text = extract_text_from_segments(segments) - api_key = os.environ.get(COHERE_TOKEN) - headers = { - 'accept': 'application/json', - 'content-type': 'application/json', - 'Authorization': f'Bearer {api_key}' - } + # Download the asset + response = requests.get(asset_url) + if response.status_code != 200: + raise Exception(f"Failed to download asset: {response.status_code}") - cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - logging.debug("cohere: Prompt being sent is {cohere_prompt}") + print("Llamafile downloaded successfully.") + logging.debug("Main: Llamafile downloaded successfully.") - data = { - "chat_history": [ - {"role": "USER", "message": cohere_prompt} - ], - "message": "Please provide a summary.", - "model": model, - "connectors": [{"id": "web-search"}] - } + # Save the file + with open(output_filename, 'wb') as file: + file.write(response.content) - logging.debug("cohere: Submitting request to API endpoint") - print("cohere: Submitting request to API endpoint") - response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) - response_data = response.json() - logging.debug("API Response Data: %s", response_data) + logging.debug(f"Downloaded {output_filename} from {asset_url}") + print(f"Downloaded {output_filename} from {asset_url}") - if response.status_code == 200: - if 'text' in response_data: - summary = response_data['text'].strip() - logging.debug("cohere: Summarization successful") - print("Summary processed successfully.") - return summary - else: - logging.error("Expected data not found in API response.") - return "Expected data not found in API response." + # Check to see if the LLM already exists, and if not, download the LLM + print("Checking for and downloading LLM from Huggingface if needed...") + logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") + mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile" + Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + Phi_3_mini_128k_instruct_Q8_0_gguf = "Phi-3-mini-128k-instruct-Q8_0.gguf" + if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + print("Model is already downloaded. Skipping download.") + pass + elif os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8): + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + print("Model is already downloaded. Skipping download.") + pass + elif os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + print("Model is already downloaded. Skipping download.") + pass + else: + logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") + print("Downloading LLM from Huggingface...") + time.sleep(1) + print("Gonna be a bit...") + time.sleep(1) + print("Like seriously, an 8GB file...") + time.sleep(2) + dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ") + if dl_check == "N" or dl_check == "n": + exit() else: - logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}") - print(f"Failed to process summary, status code {response.status_code}: {response.text}") - return f"cohere: API request failed: {response.text}" - - except Exception as e: - logging.error("cohere: Error in processing: %s", str(e)) - return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" + print("Downloading LLM from Huggingface...") + # Establish hash values for LLM models + mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06" + samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" + mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" + + # FIXME - llm_choice + llm_choice = 2 + llm_choice = input("Which LLM model would you like to download? 1. Mistral-7B-Instruct-v0.2-GGUF or 2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) (plain or 'custom') or MS Flavor: Phi-3-mini-128k-instruct-Q8_0.gguf \n\n\tPress '1' or '2' or '3' to specify: ") + while llm_choice != "1" and llm_choice != "2" and llm_choice != "3": + print("Invalid choice. Please try again.") + if llm_choice == "1": + llm_download_model = "Mistral-7B-Instruct-v0.2-Q8.llamafile" + mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" + llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + elif llm_choice == "2": + llm_download_model = "Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf" + samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" + llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 + llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b_bulleted-notes_GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + elif llm_choice == "3": + llm_download_model = "Phi-3-mini-128k-instruct-Q8_0.gguf" + Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 = "6817b66d1c3c59ab06822e9732f0e594eea44e64cae2110906eac9d17f75d193" + llm_download_model_hash = Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 + llamafile_llm_output_filename = "Phi-3-mini-128k-instruct-Q8_0.gguf" + llamafile_llm_url = "https://huggingface.co/gaianet/Phi-3-mini-128k-instruct-GGUF/resolve/main/Phi-3-mini-128k-instruct-Q8_0.gguf?download=true" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + elif llm_choice == "4": # FIXME - and meta_Llama_3_8B_Instruct_Q8_0_llamafile_exists == False: + meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" + llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 + llamafile_llm_output_filename = " Meta-Llama-3-8B-Instruct.Q8_0.llamafile" + llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true" + else: + print("Invalid choice. Please try again.") + return output_filename -# https://console.groq.com/docs/quickstart -def summarize_with_groq(api_key, file_path, model, custom_prompt_arg): - try: - logging.debug("groq: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) +def download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5): + temp_path = dest_path + '.tmp' - logging.debug(f"groq: Extracting text from segments file") - text = extract_text_from_segments(segments) + for attempt in range(max_retries): + try: + # Check if a partial download exists and get its size + resume_header = {} + if os.path.exists(temp_path): + resume_header = {'Range': f'bytes={os.path.getsize(temp_path)}-'} - headers = { - 'Authorization': f'Bearer {api_key}', - 'Content-Type': 'application/json' - } + response = requests.get(url, stream=True, headers=resume_header) + response.raise_for_status() - groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - logging.debug("groq: Prompt being sent is {groq_prompt}") + # Get the total file size from headers + total_size = int(response.headers.get('content-length', 0)) + initial_pos = os.path.getsize(temp_path) if os.path.exists(temp_path) else 0 - data = { - "messages": [ - { - "role": "user", - "content": groq_prompt - } - ], - "model": model - } + mode = 'ab' if 'Range' in response.headers else 'wb' + with open(temp_path, mode) as temp_file, tqdm( + total=total_size, unit='B', unit_scale=True, desc=dest_path, initial=initial_pos, ascii=True + ) as pbar: + for chunk in response.iter_content(chunk_size=8192): + if chunk: # filter out keep-alive new chunks + temp_file.write(chunk) + pbar.update(len(chunk)) - logging.debug("groq: Submitting request to API endpoint") - print("groq: Submitting request to API endpoint") - response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) + # Verify the checksum if provided + if expected_checksum: + if not verify_checksum(temp_path, expected_checksum): + os.remove(temp_path) + raise ValueError("Downloaded file's checksum does not match the expected checksum") - response_data = response.json() - logging.debug("API Response Data: %s", response_data) + # Move the file to the final destination + os.rename(temp_path, dest_path) + print("Download complete and verified!") + return dest_path - if response.status_code == 200: - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("groq: Summarization successful") - print("Summarization successful.") - return summary + except Exception as e: + print(f"Attempt {attempt + 1} failed: {e}") + if attempt < max_retries - 1: + print(f"Retrying in {delay} seconds...") + time.sleep(delay) else: - logging.error("Expected data not found in API response.") - return "Expected data not found in API response." - else: - logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") - return f"groq: API request failed: {response.text}" - - except Exception as e: - logging.error("groq: Error in processing: %s", str(e)) - return f"groq: Error occurred while processing summary with groq: {str(e)}" + print("Max retries reached. Download failed.") + raise +# FIXME / IMPLEMENT FULLY +# File download verification +#mistral_7b_llamafile_instruct_v02_q8_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" +#global mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 +#mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" -################################# -# -# Local Summarization +#mistral_7b_v02_instruct_model_q8_gguf_url = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true" +#global mistral_7b_instruct_v0_2_q8_gguf_sha256 +#mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06" -def summarize_with_local_llm(file_path, custom_prompt_arg): - try: - logging.debug("Local LLM: Loading json data for summarization") - with open(file_path, 'r') as file: - segments = json.load(file) +#samantha_instruct_model_q8_gguf_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b_bulleted-notes_GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" +#global samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 +#samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" - logging.debug("Local LLM: Extracting text from the segments") - text = extract_text_from_segments(segments) - headers = { - 'Content-Type': 'application/json' - } - logging.debug("Local LLM: Preparing data + prompt for submittal") - local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - data = { - "messages": [ +def verify_checksum(file_path, expected_checksum): + sha256_hash = hashlib.sha256() + with open(file_path, 'rb') as f: + for byte_block in iter(lambda: f.read(4096), b''): + sha256_hash.update(byte_block) + return sha256_hash.hexdigest() == expected_checksum + +process = None +# Function to close out llamafile process on script exit. +def cleanup_process(): + global process + if process is not None: + process.kill() + logging.debug("Main: Terminated the external process") + + +def signal_handler(sig, frame): + logging.info('Signal handler called with signal: %s', sig) + cleanup_process() + sys.exit(0) + + +# FIXME - Add callout to gradio UI +def local_llm_function(): + global process + repo = "Mozilla-Ocho/llamafile" + asset_name_prefix = "llamafile-" + useros = os.name + if useros == "nt": + output_filename = "llamafile.exe" + else: + output_filename = "llamafile" + print( + "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while") + print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") + print("WARNING - Hope you're comfy. Or it's already downloaded.") + time.sleep(6) + logging.debug("Main: Checking and downloading Llamafile from Github if needed...") + llamafile_path = download_latest_llamafile(repo, asset_name_prefix, output_filename) + logging.debug("Main: Llamafile downloaded successfully.") + + # FIXME - llm_choice + global llm_choice + llm_choice = 1 + # Launch the llamafile in an external process with the specified argument + if llm_choice == 1: + arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"] + elif llm_choice == 2: + arguments = ["--ctx-size", "8192 ", " -m", "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"] + elif llm_choice == 3: + arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"] + elif llm_choice == 4: + arguments = ["--ctx-size", "8192 ", " -m", "llama-3"] # FIXME + + try: + logging.info("Main: Launching the LLM (llamafile) in an external terminal window...") + if useros == "nt": + launch_in_new_terminal_windows(llamafile_path, arguments) + elif useros == "posix": + launch_in_new_terminal_linux(llamafile_path, arguments) + else: + launch_in_new_terminal_mac(llamafile_path, arguments) + # FIXME - pid doesn't exist in this context + #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") + atexit.register(cleanup_process, process) + except Exception as e: + logging.error(f"Failed to launch the process: {e}") + print(f"Failed to launch the process: {e}") + + +# This function is used to dl a llamafile binary + the Samantha Mistral Finetune model. +# It should only be called when the user is using the GUI to set up and interact with Llamafile. +def local_llm_gui_function(am_noob, verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value, + model_checked, model_value, hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value, + ctx_size_checked, ctx_size_value, ngl_checked, ngl_value, host_checked, host_value, port_checked, + port_value): + # Identify running OS + useros = os.name + if useros == "nt": + output_filename = "llamafile.exe" + else: + output_filename = "llamafile" + + # Build up the commands for llamafile + built_up_args = [] + + # Identify if the user wants us to do everything for them + if am_noob == True: + print("You're a noob. (lol j/k; they're good settings)") + + # Setup variables for Model download from HF + repo = "Mozilla-Ocho/llamafile" + asset_name_prefix = "llamafile-" + print( + "WARNING - Checking for existence of llamafile or HuggingFace model (GGUF type), downloading if needed...This could be a while") + print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") + print("WARNING - Hope you're comfy. Or it's already downloaded.") + time.sleep(6) + logging.debug("Main: Checking for Llamafile and downloading from Github if needed...\n\tAlso checking for a " + "local LLM model...\n\tDownloading if needed...\n\tThis could take a while...\n\tWill be the " + "'samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf' model...") + llamafile_path = download_latest_llamafile_through_gui(repo, asset_name_prefix, output_filename) + logging.debug("Main: Llamafile downloaded successfully.") + + arguments = [] + # FIXME - llm_choice + # This is the gui, we can add this as options later + llm_choice = 2 + # Launch the llamafile in an external process with the specified argument + if llm_choice == 1: + arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"] + elif llm_choice == 2: + arguments = """--ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf""" + elif llm_choice == 3: + arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"] + elif llm_choice == 4: + arguments = ["--ctx-size", "8192 ", " -m", "llama-3"] + + try: + logging.info("Main(Local-LLM-GUI-noob): Launching the LLM (llamafile) in an external terminal window...") + + if useros == "nt": + command = 'start cmd /k "llamafile.exe --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"' + subprocess.Popen(command, shell=True) + elif useros == "posix": + command = "llamafile --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + subprocess.Popen(command, shell=True) + else: + command = "llamafile.exe --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + subprocess.Popen(command, shell=True) + # FIXME - pid doesn't exist in this context + # logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") + atexit.register(cleanup_process, process) + except Exception as e: + logging.error(f"Failed to launch the process: {e}") + print(f"Failed to launch the process: {e}") + + else: + print("You're not a noob.") + llamafile_path = download_latest_llamafile_no_model(output_filename) + if verbose_checked == True: + print("Verbose mode enabled.") + built_up_args.append("--verbose") + if threads_checked == True: + print(f"Threads enabled with value: {threads_value}") + built_up_args.append(f"--threads {threads_value}") + if http_threads_checked == True: + print(f"HTTP Threads enabled with value: {http_threads_value}") + built_up_args.append(f"--http-threads {http_threads_value}") + if model_checked == True: + print(f"Model enabled with value: {model_value}") + built_up_args.append(f"--model {model_value}") + if hf_repo_checked == True: + print(f"Huggingface repo enabled with value: {hf_repo_value}") + built_up_args.append(f"--hf-repo {hf_repo_value}") + if hf_file_checked == True: + print(f"Huggingface file enabled with value: {hf_file_value}") + built_up_args.append(f"--hf-file {hf_file_value}") + if ctx_size_checked == True: + print(f"Context size enabled with value: {ctx_size_value}") + built_up_args.append(f"--ctx-size {ctx_size_value}") + if ngl_checked == True: + print(f"NGL enabled with value: {ngl_value}") + built_up_args.append(f"--ngl {ngl_value}") + if host_checked == True: + print(f"Host enabled with value: {host_value}") + built_up_args.append(f"--host {host_value}") + if port_checked == True: + print(f"Port enabled with value: {port_value}") + built_up_args.append(f"--port {port_value}") + + # Lets go ahead and finally launch the bastard... + try: + logging.info("Main(Local-LLM-GUI-Main): Launching the LLM (llamafile) in an external terminal window...") + if useros == "nt": + launch_in_new_terminal_windows(llamafile_path, built_up_args) + elif useros == "posix": + launch_in_new_terminal_linux(llamafile_path, built_up_args) + else: + launch_in_new_terminal_mac(llamafile_path, built_up_args) + # FIXME - pid doesn't exist in this context + #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") + atexit.register(cleanup_process, process) + except Exception as e: + logging.error(f"Failed to launch the process: {e}") + print(f"Failed to launch the process: {e}") + + +# Launch the executable in a new terminal window # FIXME - really should figure out a cleaner way of doing this... +def launch_in_new_terminal_windows(executable, args): + command = f'start cmd /k "{executable} {" ".join(args)}"' + subprocess.Popen(command, shell=True) + + +# FIXME +def launch_in_new_terminal_linux(executable, args): + command = f'gnome-terminal -- {executable} {" ".join(args)}' + subprocess.Popen(command, shell=True) + + +# FIXME +def launch_in_new_terminal_mac(executable, args): + command = f'open -a Terminal.app {executable} {" ".join(args)}' + subprocess.Popen(command, shell=True) + + +# Local_Summarization_Lib.py +######################################### +# Local Summarization Library +# This library is used to perform summarization with a 'local' inference engine. +# +#### + +#################### +# Function List +# FIXME - UPDATE Function Arguments +# 1. summarize_with_local_llm(text, custom_prompt_arg) +# 2. summarize_with_llama(api_url, text, token, custom_prompt) +# 3. summarize_with_kobold(api_url, text, kobold_api_token, custom_prompt) +# 4. summarize_with_oobabooga(api_url, text, ooba_api_token, custom_prompt) +# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) +# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) +# 7. save_summary_to_file(summary, file_path) +# +# +#################### + + +# Import necessary libraries +import os +import logging +from typing import Callable + +from openai import OpenAI + + + +####################################################################################################################### +# Function Definitions +# + +def summarize_with_local_llm(input_data, custom_prompt_arg): + try: + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("Local LLM: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("openai: Using provided string data for summarization") + data = input_data + + logging.debug(f"Local LLM: Loaded data: {data}") + logging.debug(f"Local LLM: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("Local LLM: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Invalid input data format") + + headers = { + 'Content-Type': 'application/json' + } + + logging.debug("Local LLM: Preparing data + prompt for submittal") + local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + data = { + "messages": [ { "role": "system", "content": "You are a professional summarizer." @@ -1915,21 +1641,53 @@ def summarize_with_local_llm(file_path, custom_prompt_arg): print("Error occurred while processing summary with Local LLM:", str(e)) return "Local LLM: Error occurred while processing summary" -def summarize_with_llama(api_url, file_path, token, custom_prompt): +def summarize_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/completion", api_key=None): + loaded_config_data = load_and_log_configs() try: - logging.debug("llama: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug(f"llama: Extracting text from segments file") - text = extract_text_from_segments(segments) # Define this function to extract text properly + # API key validation + if api_key is None: + logging.info("llama.cpp: API key not provided as parameter") + logging.info("llama.cpp: Attempting to use API key from config file") + api_key = loaded_config_data['api_keys']['llama'] + + if api_key is None or api_key.strip() == "": + logging.info("llama.cpp: API key not found or is empty") + + logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}") + + # Load transcript + logging.debug("llama.cpp: Loading JSON data") + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("Llama.cpp: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("Llama.cpp: Using provided string data for summarization") + data = input_data + + logging.debug(f"Llama.cpp: Loaded data: {data}") + logging.debug(f"Llama.cpp: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("Llama.cpp: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Llama.cpp: Invalid input data format") headers = { 'accept': 'application/json', 'content-type': 'application/json', } - if len(token) > 5: - headers['Authorization'] = f'Bearer {token}' + if len(api_key) > 5: + headers['Authorization'] = f'Bearer {api_key}' llama_prompt = f"{text} \n\n\n\n{custom_prompt}" logging.debug("llama: Prompt being sent is {llama_prompt}") @@ -1952,30 +1710,58 @@ def summarize_with_llama(api_url, file_path, token, custom_prompt): print("Summarization successful.") return summary else: - logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}") - return f"llama: API request failed: {response.text}" + logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}") + return f"Llama: API request failed: {response.text}" except Exception as e: - logging.error("llama: Error in processing: %s", str(e)) - return f"llama: Error occurred while processing summary with llama: {str(e)}" + logging.error("Llama: Error in processing: %s", str(e)) + return f"Llama: Error occurred while processing summary with llama: {str(e)}" # https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate -def summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt): +def summarize_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_IP="http://127.0.0.1:5001/api/v1/generate"): + loaded_config_data = load_and_log_configs() try: - logging.debug("kobold: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug(f"kobold: Extracting text from segments file") - text = extract_text_from_segments(segments) + # API key validation + if api_key is None: + logging.info("Kobold.cpp: API key not provided as parameter") + logging.info("Kobold.cpp: Attempting to use API key from config file") + api_key = loaded_config_data['api_keys']['kobold'] + + if api_key is None or api_key.strip() == "": + logging.info("Kobold.cpp: API key not found or is empty") + + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("Kobold.cpp: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("Kobold.cpp: Using provided string data for summarization") + data = input_data + + logging.debug(f"Kobold.cpp: Loaded data: {data}") + logging.debug(f"Kobold.cpp: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("Kobold.cpp: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Kobold.cpp: Invalid input data format") headers = { 'accept': 'application/json', 'content-type': 'application/json', } - kobold_prompt = f"{text} \n\n\n\n{custom_prompt}" + kobold_prompt = f"{text} \n\n\n\n{custom_prompt_input}" logging.debug("kobold: Prompt being sent is {kobold_prompt}") # FIXME @@ -1983,12 +1769,12 @@ def summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt): data = { "max_context_length": 8096, "max_length": 4096, - "prompt": kobold_prompt, + "prompt": f"{text}\n\n\n\n{custom_prompt_input}" } logging.debug("kobold: Submitting request to API endpoint") print("kobold: Submitting request to API endpoint") - response = requests.post(api_url, headers=headers, json=data) + response = requests.post(kobold_api_IP, headers=headers, json=data) response_data = response.json() logging.debug("kobold: API Response Data: %s", response_data) @@ -2011,15 +1797,42 @@ def summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt): # https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API -def summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt): +def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions"): + loaded_config_data = load_and_log_configs() try: - logging.debug("ooba: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug(f"ooba: Extracting text from segments file\n\n\n") - text = extract_text_from_segments(segments) - logging.debug(f"ooba: Finished extracting text from segments file") + # API key validation + if api_key is None: + logging.info("ooba: API key not provided as parameter") + logging.info("ooba: Attempting to use API key from config file") + api_key = loaded_config_data['api_keys']['ooba'] + + if api_key is None or api_key.strip() == "": + logging.info("ooba: API key not found or is empty") + + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("Oobabooga: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("Oobabooga: Using provided string data for summarization") + data = input_data + + logging.debug(f"Oobabooga: Loaded data: {data}") + logging.debug(f"Oobabooga: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("Oobabooga: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Invalid input data format") headers = { 'accept': 'application/json', @@ -2029,7 +1842,7 @@ def summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt): # prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It # is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are # my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable - ooba_prompt = "{text}\n\n\n\n{custom_prompt}" + ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}" logging.debug("ooba: Prompt being sent is {ooba_prompt}") data = { @@ -2058,39 +1871,55 @@ def summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt): return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" -# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs. -def summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg): - vllm_client = OpenAI( - base_url=vllm_api_url, - api_key=vllm_api_key_function_arg - ) +# FIXME - Install is more trouble than care to deal with right now. +def summarize_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"): + loaded_config_data = load_and_log_configs() + model = loaded_config_data['models']['tabby'] + # API key validation + if api_key is None: + logging.info("tabby: API key not provided as parameter") + logging.info("tabby: Attempting to use API key from config file") + api_key = loaded_config_data['api_keys']['tabby'] + + if api_key is None or api_key.strip() == "": + logging.info("tabby: API key not found or is empty") + + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("tabby: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("tabby: Using provided string data for summarization") + data = input_data - custom_prompt = vllm_custom_prompt_function_arg + logging.debug(f"tabby: Loaded data: {data}") + logging.debug(f"tabby: Type of data: {type(data)}") - completion = client.chat.completions.create( - model=llm_model, - messages=[ - {"role": "system", "content": "You are a professional summarizer."}, - {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"} - ] - ) - vllm_summary = completion.choices[0].message.content - return vllm_summary + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("tabby: Summary already exists in the loaded data") + return data['summary'] + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Invalid input data format") -# FIXME - Install is more trouble than care to deal with right now. -def summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt): - model = tabby_model headers = { - 'Authorization': f'Bearer {tabby_api_key}', + 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } - data = { + data2 = { 'text': text, 'model': 'tabby' # Specify the model if needed } + tabby_api_ip = loaded_config_data['local_apis']['tabby']['ip'] try: - response = requests.post('https://api.tabbyapi.com/summarize', headers=headers, json=data) + response = requests.post(tabby_api_ip, headers=headers, json=data2) response.raise_for_status() summary = response.json().get('summary', '') return summary @@ -2099,337 +1928,1333 @@ def summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, cust return "Error summarizing with TabbyAPI." +# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs. +def summarize_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions"): + loaded_config_data = load_and_log_configs() + llm_model = loaded_config_data['models']['vllm'] + # API key validation + if api_key is None: + logging.info("vLLM: API key not provided as parameter") + logging.info("vLLM: Attempting to use API key from config file") + api_key = loaded_config_data['api_keys']['llama'] + + if api_key is None or api_key.strip() == "": + logging.info("vLLM: API key not found or is empty") + vllm_client = OpenAI( + base_url=vllm_api_url, + api_key=custom_prompt_input + ) + + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("vLLM: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("vLLM: Using provided string data for summarization") + data = input_data + + logging.debug(f"vLLM: Loaded data: {data}") + logging.debug(f"vLLM: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("vLLM: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Invalid input data format") + + + custom_prompt = custom_prompt_input + + completion = client.chat.completions.create( + model=llm_model, + messages=[ + {"role": "system", "content": "You are a professional summarizer."}, + {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"} + ] + ) + vllm_summary = completion.choices[0].message.content + return vllm_summary + + def save_summary_to_file(summary, file_path): logging.debug("Now saving summary to file...") - summary_file_path = file_path.replace('.segments.json', '_summary.txt') + base_name = os.path.splitext(os.path.basename(file_path))[0] + summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt') + os.makedirs(os.path.dirname(summary_file_path), exist_ok=True) logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") with open(summary_file_path, 'w') as file: file.write(summary) logging.info(f"Summary saved to file: {summary_file_path}") - -summarizers: Dict[str, Callable[[str, str], str]] = { - 'tabbyapi': summarize_with_tabbyapi, - 'openai': summarize_with_openai, - 'anthropic': summarize_with_claude, - 'cohere': summarize_with_cohere, - 'groq': summarize_with_groq, - 'llama': summarize_with_llama, - 'kobold': summarize_with_kobold, - 'oobabooga': summarize_with_oobabooga - # Add more APIs here as needed -} - - # # ####################################################################################################################### -####################################################################################################################### -# Summarization with Detail -# - -def summarize_with_detail_openai(text, detail, verbose=False): - summary_with_detail_variable = rolling_summarize(text, detail=detail, verbose=True) - print(len(openai_tokenize(summary_with_detail_variable))) - return summary_with_detail_variable +# Old_Chunking_Lib.py +######################################### +# Old Chunking Library +# This library is used to handle chunking of text for summarization. +# +#### -def summarize_with_detail_recursive_openai(text, detail, verbose=False): - summary_with_recursive_summarization = rolling_summarize(text, detail=detail, summarize_recursively=True) - print(summary_with_recursive_summarization) +#################### +# Function List # +# 1. chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str] +# 2. summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, words_per_second: int) -> str +# 3. get_chat_completion(messages, model='gpt-4-turbo') +# 4. chunk_on_delimiter(input_string: str, max_tokens: int, delimiter: str) -> List[str] +# 5. combine_chunks_with_no_minimum(chunks: List[str], max_tokens: int, chunk_delimiter="\n\n", header: Optional[str] = None, add_ellipsis_for_overflow=False) -> Tuple[List[str], List[int]] +# 6. rolling_summarize(text: str, detail: float = 0, model: str = 'gpt-4-turbo', additional_instructions: Optional[str] = None, minimum_chunk_size: Optional[int] = 500, chunk_delimiter: str = ".", summarize_recursively=False, verbose=False) +# 7. chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str] +# 8. summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, words_per_second: int) -> str # -####################################################################################################################### +#################### +# Import necessary libraries +import os +from typing import Optional -####################################################################################################################### -# Gradio UI -# - -# Only to be used when configured with Gradio for HF Space -def summarize_with_huggingface(huggingface_api_key, json_file_path, custom_prompt): - logging.debug(f"huggingface: Summarization process starting...") - client = InferenceClient() +# Import 3rd party +import openai +from openai import OpenAI - #model = "microsoft/Phi-3-mini-128k-instruct" - model = "CohereForAI/c4ai-command-r-plus" - API_URL = f"https://api-inference.huggingface.co/models/{model}" - headers = {"Authorization": f"Bearer {huggingface_api_key}"} - client = InferenceClient(model=f"{model}", token=f"{huggingface_api_key}") - response = client.post(json={"inputs": "The goal of life is [MASK]."}, model="bert-base-uncased") - with open(json_file_path, 'r') as file: - segments = json.load(file) - text = ''.join([segment['text'] for segment in segments]) - hf_prompt = text + "\n\n\n\n" + custom_prompt +####################################################################################################################### +# Function Definitions +# - if huggingface_api_key == "": - api_key = os.getenv(HF_TOKEN) - logging.debug("HUGGINGFACE API KEY CHECK: " + huggingface_api_key) - try: - logging.debug("huggingface: Loading json data for summarization") - with open(json_file_path, 'r') as file: - segments = json.load(file) +# ######### Words-per-second Chunking ######### +# def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: +# words = transcript.split() +# words_per_chunk = chunk_duration * words_per_second +# chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] +# return chunks +# +# +# def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, +# words_per_second: int) -> str: +# # if api_name not in summarizers: # See 'summarizers' dict in the main script +# # return f"Unsupported API: {api_name}" +# +# summarizer = summarizers[api_name] +# text = extract_text_from_segments(transcript) +# chunks = chunk_transcript(text, chunk_duration, words_per_second) +# +# summaries = [] +# for chunk in chunks: +# if api_name == 'openai': +# # Ensure the correct model and prompt are passed +# summaries.append(summarizer(api_key, chunk, custom_prompt)) +# else: +# summaries.append(summarizer(api_key, chunk)) +# +# return "\n\n".join(summaries) - logging.debug("huggingface: Extracting text from the segments") - text = ' '.join([segment['text'] for segment in segments]) - #api_key = os.getenv('HF_TOKEN').replace('"', '') - logging.debug("HUGGINGFACE API KEY CHECK #2: " + huggingface_api_key) +################## #################### - logging.debug("huggingface: Submitting request...") - response = client.text_generation(prompt=hf_prompt, max_new_tokens=4096) - if response is not None: - return response - #if response == FIXME: - #logging.debug("huggingface: Summarization successful") - #print("Summarization successful.") - #return response - #elif Bad Stuff: - # logging.debug(f"huggingface: Model is currently loading...{response.status_code}: {response.text}") - # global waiting_summary - # pretty_json = json.dumps(json.loads(response.text), indent=4) # Prettify JSON - # waiting_summary = f" {pretty_json} " # Use prettified JSON - # return waiting_summary - else: - logging.error(f"huggingface: Summarization failed with status code {response}") - return f"Failed to process summary, huggingface library error: {response}" - except Exception as e: - logging.error("huggingface: Error in processing: %s", str(e)) - print(f"Error occurred while processing summary with huggingface: {str(e)}") - return None - # FIXME - # This is here for gradio authentication - # Its just not setup. - # def same_auth(username, password): - # return username == password +######### Token-size Chunking ######### FIXME - OpenAI only currently +# This is dirty and shameful and terrible. It should be replaced with a proper implementation. +# anyways lets get to it.... +openai_api_key = "Fake_key" # FIXME +client = OpenAI(api_key=openai_api_key) -def format_transcription(transcription_result): - if transcription_result: - json_data = transcription_result['transcription'] - return json.dumps(json_data, indent=2) - else: - return "" +def get_chat_completion(messages, model='gpt-4-turbo'): + response = client.chat.completions.create( + model=model, + messages=messages, + temperature=0, + ) + return response.choices[0].message.content -def format_file_path(file_path, fallback_path=None): - if file_path and os.path.exists(file_path): - logging.debug(f"File exists: {file_path}") - return file_path - elif fallback_path and os.path.exists(fallback_path): - logging.debug(f"File does not exist: {file_path}. Returning fallback path: {fallback_path}") - return fallback_path - else: - logging.debug(f"File does not exist: {file_path}. No fallback path available.") - return None +# This function chunks a text into smaller pieces based on a maximum token count and a delimiter +def chunk_on_delimiter(input_string: str, + max_tokens: int, + delimiter: str) -> List[str]: + chunks = input_string.split(delimiter) + combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum( + chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True) + if dropped_chunk_count > 0: + print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.") + combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks] + return combined_chunks -def search_media(query, fields, keyword, page): - try: - results = search_and_display(query, fields, keyword, page) - return results - except Exception as e: - logger.error(f"Error searching media: {e}") - return str(e) +# This function combines text chunks into larger blocks without exceeding a specified token count. +# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow. +def combine_chunks_with_no_minimum( + chunks: List[str], + max_tokens: int, + chunk_delimiter="\n\n", + header: Optional[str] = None, + add_ellipsis_for_overflow=False, +) -> Tuple[List[str], List[int]]: + dropped_chunk_count = 0 + output = [] # list to hold the final combined chunks + output_indices = [] # list to hold the indices of the final combined chunks + candidate = ( + [] if header is None else [header] + ) # list to hold the current combined chunk candidate + candidate_indices = [] + for chunk_i, chunk in enumerate(chunks): + chunk_with_header = [chunk] if header is None else [header, chunk] + # FIXME MAKE NOT OPENAI SPECIFIC + if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens: + print(f"warning: chunk overflow") + if ( + add_ellipsis_for_overflow + # FIXME MAKE NOT OPENAI SPECIFIC + and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens + ): + candidate.append("...") + dropped_chunk_count += 1 + continue # this case would break downstream assumptions + # estimate token count with the current chunk added + # FIXME MAKE NOT OPENAI SPECIFIC + extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk]))) + # If the token count exceeds max_tokens, add the current candidate to output and start a new candidate + if extended_candidate_token_count > max_tokens: + output.append(chunk_delimiter.join(candidate)) + output_indices.append(candidate_indices) + candidate = chunk_with_header # re-initialize candidate + candidate_indices = [chunk_i] + # otherwise keep extending the candidate + else: + candidate.append(chunk) + candidate_indices.append(chunk_i) + # add the remaining candidate to output if it's not empty + if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0): + output.append(chunk_delimiter.join(candidate)) + output_indices.append(candidate_indices) + return output, output_indices, dropped_chunk_count + +def rolling_summarize(text: str, + detail: float = 0, + model: str = 'gpt-4-turbo', + additional_instructions: Optional[str] = None, + minimum_chunk_size: Optional[int] = 500, + chunk_delimiter: str = ".", + summarize_recursively=False, + verbose=False): + """ + Summarizes a given text by splitting it into chunks, each of which is summarized individually. + The level of detail in the summary can be adjusted, and the process can optionally be made recursive. + + Parameters: + - text (str): The text to be summarized. + - detail (float, optional): A value between 0 and 1 + indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more + detailed summary. Defaults to 0. + - additional_instructions (Optional[str], optional): Additional instructions to provide to the + model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text + chunks. Defaults to 500. + - chunk_delimiter (str, optional): The delimiter used to split the text into chunks. Defaults to ".". + - summarize_recursively (bool, optional): If True, summaries are generated recursively, using previous summaries for context. + - verbose (bool, optional): If True, prints detailed information about the chunking process. + Returns: + - str: The final compiled summary of the text. -# FIXME - Change to use 'check_api()' function - also, create 'check_api()' function -def ask_question(transcription, question, api_name, api_key): - if not question.strip(): - return "Please enter a question." + The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count + based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If + `summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the + summarization process. The function returns a compiled summary of all chunks. + """ - prompt = f"""Transcription:\n{transcription} + # check detail is set correctly + assert 0 <= detail <= 1 - Given the above transcription, please answer the following:\n\n{question}""" + # interpolate the number of chunks based to get specified level of detail + max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter)) + min_chunks = 1 + num_chunks = int(min_chunks + detail * (max_chunks - min_chunks)) - # FIXME - Refactor main API checks so they're their own function - api_check() - # Call api_check() function here + # adjust chunk_size based on interpolated number of chunks + # FIXME MAKE NOT OPENAI SPECIFIC + document_length = len(openai_tokenize(text)) + chunk_size = max(minimum_chunk_size, document_length // num_chunks) + text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter) + if verbose: + print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.") + # FIXME MAKE NOT OPENAI SPECIFIC + print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}") - if api_name.lower() == "openai": - openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None) - headers = { - 'Authorization': f'Bearer {openai_api_key}', - 'Content-Type': 'application/json' - } - if openai_model: - pass - else: - openai_model = 'gpt-4-turbo' - data = { - "model": openai_model, - "messages": [ - { - "role": "system", - "content": "You are a helpful assistant that answers questions based on the given " - "transcription and summary." - }, - { - "role": "user", - "content": prompt - } - ], - "max_tokens": 150000, - "temperature": 0.1 - } - response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) + # set system message + system_message_content = "Rewrite this text in summarized form." + if additional_instructions is not None: + system_message_content += f"\n\n{additional_instructions}" - if response.status_code == 200: - answer = response.json()['choices'][0]['message']['content'].strip() - return answer + accumulated_summaries = [] + for chunk in tqdm(text_chunks): + if summarize_recursively and accumulated_summaries: + # Creating a structured prompt for recursive summarization + accumulated_summaries_string = '\n\n'.join(accumulated_summaries) + user_message_content = f"Previous summaries:\n\n{accumulated_summaries_string}\n\nText to summarize next:\n\n{chunk}" else: - return "Failed to process the question." - else: - return "Question answering is currently only supported with the OpenAI API." + # Directly passing the chunk for summarization without recursive context + user_message_content = chunk + + # Constructing messages based on whether recursive summarization is applied + messages = [ + {"role": "system", "content": system_message_content}, + {"role": "user", "content": user_message_content} + ] + + # Assuming this function gets the completion and works as expected + response = get_chat_completion(messages, model=model) + accumulated_summaries.append(response) + # Compile final summary from partial summaries + global final_summary + final_summary = '\n\n'.join(accumulated_summaries) + + return final_summary + + +####################################### + +#!/usr/bin/env python3 +# Std Lib Imports +import argparse +import asyncio +import atexit +import configparser +from datetime import datetime +import hashlib +import json +import logging +import os +from pathlib import Path +import platform +import re +import shutil +import signal +import sqlite3 +import subprocess +import sys +import time +import unicodedata +from multiprocessing import process +from typing import Callable, Dict, List, Optional, Tuple +from urllib.parse import urlparse, parse_qs, urlencode, urlunparse +import webbrowser +import zipfile +# Local Module Imports (Libraries specific to this project) +sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'App_Function_Libraries'))) +from App_Function_Libraries import * +from App_Function_Libraries.Web_UI_Lib import * +from App_Function_Libraries.Article_Extractor_Lib import * +from App_Function_Libraries.Article_Summarization_Lib import * +from App_Function_Libraries.Audio_Transcription_Lib import * +from App_Function_Libraries.Audio_Transcription_Lib import convert_to_wav +from App_Function_Libraries.Chunk_Lib import * +from App_Function_Libraries.Diarization_Lib import * +from App_Function_Libraries.Local_File_Processing_Lib import * +from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import * +from App_Function_Libraries.Local_Summarization_Lib import * +from App_Function_Libraries.Summarization_General_Lib import * +from App_Function_Libraries.System_Checks_Lib import * +from App_Function_Libraries.Tokenization_Methods_Lib import * +from App_Function_Libraries.Video_DL_Ingestion_Lib import * +from App_Function_Libraries.Video_DL_Ingestion_Lib import normalize_title +# from App_Function_Libraries.Web_UI_Lib import * + +# 3rd-Party Module Imports +from bs4 import BeautifulSoup import gradio as gr +import nltk +from playwright.async_api import async_playwright +import requests +from requests.exceptions import RequestException +import trafilatura +import yt_dlp +# OpenAI Tokenizer support +from openai import OpenAI +from tqdm import tqdm +import tiktoken -def launch_ui(demo_mode=False): - whisper_models = ["small.en", "medium.en", "large"] +# Other Tokenizers +from transformers import GPT2Tokenizer - with gr.Blocks() as iface: - # Tab 1: Audio Transcription + Summarization - with gr.Tab("Audio Transcription + Summarization"): +####################### +# Logging Setup +# - with gr.Row(): - # Light/Dark mode toggle switch - theme_toggle = gr.Radio(choices=["Light", "Dark"], value="Light", - label="Light/Dark Mode Toggle (Toggle to change UI color scheme)") +log_level = "DEBUG" +logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s') +os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" - # UI Mode toggle switch - ui_mode_toggle = gr.Radio(choices=["Simple", "Advanced"], value="Simple", - label="UI Mode (Toggle to show all options)") +############# +# Global variables setup - # URL input is always visible - url_input = gr.Textbox(label="URL (Mandatory)", placeholder="Enter the video URL here") +custom_prompt_input = ("Above is the transcript of a video. Please read through the transcript carefully. Identify the " +"main topics that are discussed over the course of the transcript. Then, summarize the key points about each main " +"topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, " +"but should be much shorter than the full transcript. Please output your bullet point summary inside " +"tags.") - # Inputs to be shown or hidden - num_speakers_input = gr.Number(value=2, label="Number of Speakers(Optional - Currently has no effect)", - visible=False) - whisper_model_input = gr.Dropdown(choices=whisper_models, value="small.en", - label="Whisper Model(This is the ML model used for transcription.)", - visible=False) - custom_prompt_input = gr.Textbox( - label="Custom Prompt (Customize your summarization, or ask a question about the video and have it " - "answered)", - placeholder="Above is the transcript of a video. Please read " - "through the transcript carefully. Identify the main topics that are discussed over the " - "course of the transcript. Then, summarize the key points about each main topic in a " - "concise bullet point. The bullet points should cover the key information conveyed about " - "each topic in the video, but should be much shorter than the full transcript. Please " - "output your bullet point summary inside tags.", - lines=3, visible=True) - offset_input = gr.Number(value=0, label="Offset (Seconds into the video to start transcribing at)", - visible=False) - api_name_input = gr.Dropdown( - choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "Llama.cpp", "Kobold", "Ooba", "HuggingFace"], - value=None, - label="(Optional) The LLM endpoint to have summarize your request. If you're running a local model, select 'Local-LLM'", - visible=True) - api_key_input = gr.Textbox(label="API Key (Mandatory unless you're running a local model/server/no API selected)", - placeholder="Enter your API key here; Ignore if using Local API or Built-in API('Local-LLM')", - visible=True) - vad_filter_input = gr.Checkbox(label="VAD Filter (WIP)", value=False, - visible=False) - rolling_summarization_input = gr.Checkbox(label="Enable Rolling Summarization", value=False, - visible=False) - download_video_input = gr.components.Checkbox(label="Download Video(Select to allow for file download of " - "selected video)", value=False, visible=False) - download_audio_input = gr.components.Checkbox(label="Download Audio(Select to allow for file download of " - "selected Video's Audio)", value=False, visible=False) - detail_level_input = gr.Slider(minimum=0.01, maximum=1.0, value=0.01, step=0.01, interactive=True, - label="Summary Detail Level (Slide me) (Only OpenAI currently supported)", - visible=False) - keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated Example: " - "tag_one,tag_two,tag_three)", - value="default,no_keyword_set", - visible=True) - question_box_input = gr.Textbox(label="Question", - placeholder="Enter a question to ask about the transcription", - visible=False) - chunk_summarization_input = gr.Checkbox(label="Time-based Chunk Summarization", - value=False, - visible=False) - chunk_duration_input = gr.Number(label="Chunk Duration (seconds)", value=DEFAULT_CHUNK_DURATION, - visible=False) - words_per_second_input = gr.Number(label="Words per Second", value=WORDS_PER_SECOND, - visible=False) - # time_based_summarization_input = gr.Checkbox(label="Enable Time-based Summarization", value=False, - # visible=False) time_chunk_duration_input = gr.Number(label="Time Chunk Duration (seconds)", value=60, - # visible=False) llm_model_input = gr.Dropdown(label="LLM Model", choices=["gpt-4o", "gpt-4-turbo", - # "claude-3-sonnet-20240229", "command-r-plus", "CohereForAI/c4ai-command-r-plus", "llama3-70b-8192"], - # value="gpt-4o", visible=False) +# +# +####################### - inputs = [ - num_speakers_input, whisper_model_input, custom_prompt_input, offset_input, api_name_input, - api_key_input, vad_filter_input, download_video_input, download_audio_input, - rolling_summarization_input, detail_level_input, question_box_input, keywords_input, - chunk_summarization_input, chunk_duration_input, words_per_second_input - ] - # inputs_1 = [ - # url_input_1, - # num_speakers_input, whisper_model_input, custom_prompt_input_1, offset_input, api_name_input_1, - # api_key_input_1, vad_filter_input, download_video_input, download_audio_input, - # rolling_summarization_input, detail_level_input, question_box_input, keywords_input_1, - # chunk_summarization_input, chunk_duration_input, words_per_second_input, - # time_based_summarization_input, time_chunk_duration_input, llm_model_input - # ] +####################### +# Function Sections +# - outputs = [ - gr.Textbox(label="Transcription (Resulting Transcription from your input URL)"), - gr.Textbox(label="Summary or Status Message (Current status of Summary or Summary itself)"), - gr.File(label="Download Transcription as JSON (Download the Transcription as a file)"), - gr.File(label="Download Summary as Text (Download the Summary as a file)"), - gr.File(label="Download Video (Download the Video as a file)", visible=False), - gr.File(label="Download Audio (Download the Audio as a file)", visible=False), - ] - def toggle_light(mode): - if mode == "Dark": - return """ - """ else: - return """ - - """ + return """ + + """ + + # Set the event listener for the Light/Dark mode toggle switch + theme_toggle.change(fn=toggle_light, inputs=theme_toggle, outputs=gr.HTML()) + + ui_frontpage_mode_toggle.change(fn=toggle_frontpage_ui, inputs=ui_frontpage_mode_toggle, outputs=inputs) + + # Combine URL input and inputs lists + all_inputs = [url_input] + inputs + + # lets try embedding the theme here - FIXME? + # Adding a check in process_url to identify if passed multiple URLs or just one + gr.Interface( + fn=process_url, + inputs=all_inputs, + outputs=outputs, + title="Video Transcription and Summarization", + description="Submit a video URL for transcription and summarization. Ensure you input all necessary " + "information including API keys.", + theme='freddyaboulton/dracula_revamped', + allow_flagging="never" + ) + + + # Tab 2: Transcribe & Summarize Audio file + with gr.Tab("Audio File Processing"): + audio_url_input = gr.Textbox( + label="Audio File URL", + placeholder="Enter the URL of the audio file" + ) + audio_file_input = gr.File(label="Upload Audio File", file_types=["audio/*"]) + process_audio_button = gr.Button("Process Audio File") + audio_progress_output = gr.Textbox(label="Progress") + audio_transcriptions_output = gr.Textbox(label="Transcriptions") + + process_audio_button.click( + fn=process_audio_file, + inputs=[audio_url_input, audio_file_input], + outputs=[audio_progress_output, audio_transcriptions_output] + ) + + # Tab 3: Scrape & Summarize Articles/Websites + with gr.Tab("Scrape & Summarize Articles/Websites"): + url_input = gr.Textbox(label="Article URL", placeholder="Enter the article URL here") + custom_article_title_input = gr.Textbox(label="Custom Article Title (Optional)", + placeholder="Enter a custom title for the article") + custom_prompt_input = gr.Textbox( + label="Custom Prompt (Optional)", + placeholder="Provide a custom prompt for summarization", + lines=3 + ) + api_name_input = gr.Dropdown( + choices=[None, "huggingface", "deepseek", "openrouter", "openai", "anthropic", "cohere", "groq", "llama", "kobold", + "ooba"], + value=None, + label="API Name (Mandatory for Summarization)" + ) + api_key_input = gr.Textbox(label="API Key (Mandatory if API Name is specified)", + placeholder="Enter your API key here; Ignore if using Local API or Built-in API") + keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)", + value="default,no_keyword_set", visible=True) + + scrape_button = gr.Button("Scrape and Summarize") + result_output = gr.Textbox(label="Result") + + scrape_button.click(scrape_and_summarize, inputs=[url_input, custom_prompt_input, api_name_input, + api_key_input, keywords_input, + custom_article_title_input], outputs=result_output) + + gr.Markdown("### Or Paste Unstructured Text Below (Will use settings from above)") + text_input = gr.Textbox(label="Unstructured Text", placeholder="Paste unstructured text here", lines=10) + text_ingest_button = gr.Button("Ingest Unstructured Text") + text_ingest_result = gr.Textbox(label="Result") + + text_ingest_button.click(ingest_unstructured_text, + inputs=[text_input, custom_prompt_input, api_name_input, api_key_input, + keywords_input, custom_article_title_input], outputs=text_ingest_result) + + # Tab 4: Ingest & Summarize Documents + with gr.Tab("Ingest & Summarize Documents"): + gr.Markdown("Plan to put ingestion form for documents here") + gr.Markdown("Will ingest documents and store into SQLite DB") + gr.Markdown("RAG here we come....:/") + + # Function to update the visibility of the UI elements for Llamafile Settings + # def toggle_advanced_llamafile_mode(is_advanced): + # if is_advanced: + # return [gr.update(visible=True)] * 14 + # else: + # return [gr.update(visible=False)] * 11 + [gr.update(visible=True)] * 3 + # FIXME + def toggle_advanced_mode(advanced_mode): + # Show all elements if advanced mode is on + if advanced_mode: + return {elem: gr.update(visible=True) for elem in all_elements} + else: + # Show only specific elements if advanced mode is off + return {elem: gr.update(visible=elem in simple_mode_elements) for elem in all_elements} + + # Top-Level Gradio Tab #2 - 'Search / Detailed View' + with gr.Blocks() as search_interface: + with gr.Tab("Search Ingested Materials / Detailed Entry View / Prompts"): + search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...") + search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", + label="Search By") + + search_button = gr.Button("Search") + items_output = gr.Dropdown(label="Select Item", choices=[]) + item_mapping = gr.State({}) + + search_button.click(fn=update_dropdown, + inputs=[search_query_input, search_type_input], + outputs=[items_output, item_mapping] + ) + + prompt_summary_output = gr.HTML(label="Prompt & Summary", visible=True) + # FIXME - temp change; see if markdown works nicer... + content_output = gr.Markdown(label="Content", visible=True) + items_output.change(fn=update_detailed_view, + inputs=[items_output, item_mapping], + outputs=[prompt_summary_output, content_output] + ) + # sub-tab #2 for Search / Detailed view + with gr.Tab("View Prompts"): + with gr.Column(): + prompt_dropdown = gr.Dropdown( + label="Select Prompt (Thanks to the 'Fabric' project for this initial set: https://github.com/danielmiessler/fabric", + choices=[]) + prompt_details_output = gr.HTML() + + prompt_dropdown.change( + fn=display_prompt_details, + inputs=prompt_dropdown, + outputs=prompt_details_output + ) + + prompt_list_button = gr.Button("List Prompts") + prompt_list_button.click( + fn=update_prompt_dropdown, + outputs=prompt_dropdown + ) + + # FIXME + # Sub-tab #3 for Search / Detailed view + with gr.Tab("Search Prompts"): + with gr.Column(): + search_query_input = gr.Textbox(label="Search Query (It's broken)", + placeholder="Enter your search query...") + search_results_output = gr.Markdown() + + search_button = gr.Button("Search Prompts") + search_button.click( + fn=display_search_results, + inputs=[search_query_input], + outputs=[search_results_output] + ) + + search_query_input.change( + fn=display_search_results, + inputs=[search_query_input], + outputs=[search_results_output] + ) + + # Sub-tab #4 for Search / Detailed view + with gr.Tab("Add Prompts"): + gr.Markdown("### Add Prompt") + title_input = gr.Textbox(label="Title", placeholder="Enter the prompt title") + description_input = gr.Textbox(label="Description", placeholder="Enter the prompt description", lines=3) + system_prompt_input = gr.Textbox(label="System Prompt", placeholder="Enter the system prompt", lines=3) + user_prompt_input = gr.Textbox(label="User Prompt", placeholder="Enter the user prompt", lines=3) + add_prompt_button = gr.Button("Add Prompt") + add_prompt_output = gr.HTML() + + add_prompt_button.click( + fn=add_prompt, + inputs=[title_input, description_input, system_prompt_input, user_prompt_input], + outputs=add_prompt_output + ) + + # Top-Level Gradio Tab #3 + with gr.Blocks() as llamafile_interface: + with gr.Tab("Llamafile Settings"): + gr.Markdown("Settings for Llamafile") + + # Toggle switch for Advanced/Simple mode + am_noob = gr.Checkbox( + label="Check this to enable sane defaults and then download(if not already downloaded) a model, click 'Start Llamafile' and then go to --> 'Llamafile Chat Interface')\n\n", + value=False, visible=True) + advanced_mode_toggle = gr.Checkbox( + label="Advanced Mode - Enable to show all settings\n\n", + value=False) + + # Simple mode elements + model_checked = gr.Checkbox(label="Enable Setting Local LLM Model Path", value=False, visible=True) + model_value = gr.Textbox(label="Path to Local Model File", value="", visible=True) + ngl_checked = gr.Checkbox(label="Enable Setting GPU Layers", value=False, visible=True) + ngl_value = gr.Number(label="Number of GPU Layers", value=None, precision=0, visible=True) + + # Advanced mode elements + verbose_checked = gr.Checkbox(label="Enable Verbose Output", value=False, visible=False) + threads_checked = gr.Checkbox(label="Set CPU Threads", value=False, visible=False) + threads_value = gr.Number(label="Number of CPU Threads", value=None, precision=0, visible=False) + http_threads_checked = gr.Checkbox(label="Set HTTP Server Threads", value=False, visible=False) + http_threads_value = gr.Number(label="Number of HTTP Server Threads", value=None, precision=0, + visible=False) + hf_repo_checked = gr.Checkbox(label="Use Huggingface Repo Model", value=False, visible=False) + hf_repo_value = gr.Textbox(label="Huggingface Repo Name", value="", visible=False) + hf_file_checked = gr.Checkbox(label="Set Huggingface Model File", value=False, visible=False) + hf_file_value = gr.Textbox(label="Huggingface Model File", value="", visible=False) + ctx_size_checked = gr.Checkbox(label="Set Prompt Context Size", value=False, visible=False) + ctx_size_value = gr.Number(label="Prompt Context Size", value=8124, precision=0, visible=False) + host_checked = gr.Checkbox(label="Set IP to Listen On", value=False, visible=False) + host_value = gr.Textbox(label="Host IP Address", value="", visible=False) + port_checked = gr.Checkbox(label="Set Server Port", value=False, visible=False) + port_value = gr.Number(label="Port Number", value=None, precision=0, visible=False) + + # Start and Stop buttons + start_button = gr.Button("Start Llamafile") + stop_button = gr.Button("Stop Llamafile") + output_display = gr.Markdown() + + all_elements = [ + verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value, + model_checked, model_value, hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value, + ctx_size_checked, ctx_size_value, ngl_checked, ngl_value, host_checked, host_value, port_checked, + port_value + ] + + simple_mode_elements = [model_checked, model_value, ngl_checked, ngl_value] + + advanced_mode_toggle.change( + fn=toggle_advanced_mode, + inputs=[advanced_mode_toggle], + outputs=all_elements + ) + + # Function call with the new inputs + start_button.click( + fn=start_llamafile, + inputs=[am_noob, verbose_checked, threads_checked, threads_value, http_threads_checked, + http_threads_value, + model_checked, model_value, hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value, + ctx_size_checked, ctx_size_value, ngl_checked, ngl_value, host_checked, host_value, + port_checked, port_value], + outputs=output_display + ) + + # Second sub-tab for Llamafile + with gr.Tab("Llamafile Chat Interface"): + gr.Markdown("Page to interact with Llamafile Server (iframe to Llamafile server port)") + # Define the HTML content with the iframe + html_content = """ + + + + + + Llama.cpp Server Chat Interface - Loaded from http://127.0.0.1:8080 + + + + + + + """ + gr.HTML(html_content) + + # Third sub-tab for Llamafile + # https://github.com/lmg-anon/mikupad/releases + with gr.Tab("Mikupad Chat Interface"): + gr.Markdown("Not implemented. Have to wait until I get rid of Gradio") + gr.HTML(html_content) + + # Top-Level Gradio Tab #4 - Don't ask me how this is tabbed, but it is... #FIXME + export_keywords_interface = gr.Interface( + fn=export_keywords_to_csv, + inputs=[], + outputs=[gr.File(label="Download Exported Keywords"), gr.Textbox(label="Status")], + title="Export Keywords", + description="Export all keywords in the database to a CSV file." + ) + + # Gradio interface for importing data + def import_data(file): + # Placeholder for actual import functionality + return "Data imported successfully" + + # Top-Level Gradio Tab #5 - Export/Import - Same deal as above, not sure why this is auto-tabbed + import_interface = gr.Interface( + fn=import_data, + inputs=gr.File(label="Upload file for import"), + outputs="text", + title="Import Data", + description="Import data into the database from a CSV file." + ) + + # Top-Level Gradio Tab #6 - Export/Import - Same deal as above, not sure why this is auto-tabbed + import_export_tab = gr.TabbedInterface( + [gr.TabbedInterface( + [gr.Interface( + fn=export_to_csv, + inputs=[ + gr.Textbox(label="Search Query", placeholder="Enter your search query here..."), + gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"]), + gr.Textbox(label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )", + placeholder="Enter keywords here..."), + gr.Number(label="Page", value=1, precision=0), + gr.Number(label="Results per File", value=1000, precision=0) + ], + outputs="text", + title="Export Search Results to CSV", + description="Export the search results to a CSV file." + ), + export_keywords_interface], + ["Export Search Results", "Export Keywords"] + ), + import_interface], + ["Export", "Import"] + ) + + # Second sub-tab for Keywords tab + keyword_add_interface = gr.Interface( + fn=add_keyword, + inputs=gr.Textbox(label="Add Keywords (comma-separated)", placeholder="Enter keywords here..."), + outputs="text", + title="Add Keywords", + description="Add one, or multiple keywords to the database.", + allow_flagging="never" + ) + + # Third sub-tab for Keywords tab + keyword_delete_interface = gr.Interface( + fn=delete_keyword, + inputs=gr.Textbox(label="Delete Keyword", placeholder="Enter keyword to delete here..."), + outputs="text", + title="Delete Keyword", + description="Delete a keyword from the database.", + allow_flagging="never" + ) + + # First sub-tab for Keywords tab + browse_keywords_interface = gr.Interface( + fn=keywords_browser_interface, + inputs=[], + outputs="markdown", + title="Browse Keywords", + description="View all keywords currently stored in the database." + ) + + # Combine the keyword interfaces into a tabbed interface + # So this is how it works... #FIXME + keyword_tab = gr.TabbedInterface( + [browse_keywords_interface, keyword_add_interface, keyword_delete_interface], + ["Browse Keywords", "Add Keywords", "Delete Keywords"] + ) + + def ensure_dir_exists(path): + if not os.path.exists(path): + os.makedirs(path) + + def gradio_download_youtube_video(url): + """Download video using yt-dlp with specified options.""" + # Determine ffmpeg path based on the operating system. + ffmpeg_path = './Bin/ffmpeg.exe' if os.name == 'nt' else 'ffmpeg' + + # Extract information about the video + with yt_dlp.YoutubeDL({'quiet': True}) as ydl: + info_dict = ydl.extract_info(url, download=False) + sanitized_title = sanitize_filename(info_dict['title']) + original_ext = info_dict['ext'] + + # Setup the final directory and filename + download_dir = Path(f"results/{sanitized_title}") + download_dir.mkdir(parents=True, exist_ok=True) + output_file_path = download_dir / f"{sanitized_title}.{original_ext}" + + # Initialize yt-dlp with generic options and the output template + ydl_opts = { + 'format': 'bestvideo+bestaudio/best', + 'ffmpeg_location': ffmpeg_path, + 'outtmpl': str(output_file_path), + 'noplaylist': True, 'quiet': True + } + + # Execute yt-dlp to download the video + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + ydl.download([url]) + + # Final check to ensure file exists + if not output_file_path.exists(): + raise FileNotFoundError(f"Expected file was not found: {output_file_path}") + + return str(output_file_path) + + # FIXME - example to use for rest of gradio theming, just stuff in HTML/Markdown + # <-- set description variable with HTML --> + desc = "

Youtube Video Downloader

This Input takes a Youtube URL as input and creates " \ + "a webm file for you to download.
If you want a full-featured one: " \ + "https://github.com/StefanLobbenmeier/youtube-dl-gui or https://github.com/yt-dlg/yt-dlg

" + + # Sixth Top Tab - Download Video/Audio Files + download_videos_interface = gr.Interface( + fn=gradio_download_youtube_video, + inputs=gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video URL here"), + outputs=gr.File(label="Download Video"), + title="YouTube Video Downloader", + description=desc, + allow_flagging="never" + ) + + # Combine interfaces into a tabbed interface + tabbed_interface = gr.TabbedInterface( + [iface, search_interface, llamafile_interface, keyword_tab, import_export_tab, download_videos_interface], + ["Transcription / Summarization / Ingestion", "Search / Detailed View", + "Local LLM with Llamafile", "Keywords", "Export/Import", "Download Video/Audio Files"]) + + # Launch the interface + server_port_variable = 7860 + global server_mode, share_public + + if share_public == True: + tabbed_interface.launch(share=True, ) + elif server_mode == True and share_public is False: + tabbed_interface.launch(share=False, server_name="0.0.0.0", server_port=server_port_variable) + else: + tabbed_interface.launch(share=False, ) + #tabbed_interface.launch(share=True, ) + + +def clean_youtube_url(url): + parsed_url = urlparse(url) + query_params = parse_qs(parsed_url.query) + if 'list' in query_params: + query_params.pop('list') + cleaned_query = urlencode(query_params, doseq=True) + cleaned_url = urlunparse(parsed_url._replace(query=cleaned_query)) + return cleaned_url + +def extract_video_info(url): + info_dict = get_youtube(url) + title = info_dict.get('title', 'Untitled') + return info_dict, title + + +def download_audio_file(url, save_path): + response = requests.get(url, stream=True) + file_size = int(response.headers.get('content-length', 0)) + if file_size > 500 * 1024 * 1024: # 500 MB limit + raise ValueError("File size exceeds the 500MB limit.") + with open(save_path, 'wb') as f: + for chunk in response.iter_content(chunk_size=8192): + f.write(chunk) + return save_path + +def process_audio_file(audio_url, audio_file): + progress = [] + transcriptions = [] + + def update_progress(stage, message): + progress.append(f"{stage}: {message}") + return "\n".join(progress), "\n".join(transcriptions) + + try: + if audio_url: + # Process audio file from URL + save_path = Path("downloaded_audio_file.wav") + download_audio_file(audio_url, save_path) + elif audio_file: + # Process uploaded audio file + audio_file_size = os.path.getsize(audio_file.name) + if audio_file_size > 500 * 1024 * 1024: # 500 MB limit + return update_progress("Error", "File size exceeds the 500MB limit.") + save_path = Path(audio_file.name) + else: + return update_progress("Error", "No audio file provided.") + + # Perform transcription and summarization + transcription, summary, json_file_path, summary_file_path, _, _ = process_url( + url=None, + num_speakers=2, + whisper_model="small.en", + custom_prompt_input=None, + offset=0, + api_name=None, + api_key=None, + vad_filter=False, + download_video_flag=False, + download_audio=False, + rolling_summarization=False, + detail_level=0.01, + question_box=None, + keywords="default,no_keyword_set", + chunk_text_by_words=False, + max_words=0, + chunk_text_by_sentences=False, + max_sentences=0, + chunk_text_by_paragraphs=False, + max_paragraphs=0, + chunk_text_by_tokens=False, + max_tokens=0, + local_file_path=str(save_path) + ) + transcriptions.append(transcription) + progress.append("Processing complete.") + except Exception as e: + progress.append(f"Error: {str(e)}") + + return "\n".join(progress), "\n".join(transcriptions) + + +def process_url( + url, + num_speakers, + whisper_model, + custom_prompt_input, + offset, + api_name, + api_key, + vad_filter, + download_video_flag, + download_audio, + rolling_summarization, + detail_level, + # It's for the asking a question about a returned prompt - needs to be removed #FIXME + question_box, + keywords, + chunk_text_by_words, + max_words, + chunk_text_by_sentences, + max_sentences, + chunk_text_by_paragraphs, + max_paragraphs, + chunk_text_by_tokens, + max_tokens, + local_file_path=None +): + # Handle the chunk summarization options + set_chunk_txt_by_words = chunk_text_by_words + set_max_txt_chunk_words = max_words + set_chunk_txt_by_sentences = chunk_text_by_sentences + set_max_txt_chunk_sentences = max_sentences + set_chunk_txt_by_paragraphs = chunk_text_by_paragraphs + set_max_txt_chunk_paragraphs = max_paragraphs + set_chunk_txt_by_tokens = chunk_text_by_tokens + set_max_txt_chunk_tokens = max_tokens + + progress = [] + success_message = "All videos processed successfully. Transcriptions and summaries have been ingested into the database." + + + # Validate input + if not url and not local_file_path: + return "Process_URL: No URL provided.", "No URL provided.", None, None, None, None, None, None + + # FIXME - Chatgpt again? + if isinstance(url, str): + urls = url.strip().split('\n') + if len(urls) > 1: + return process_video_urls(urls, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter, + download_video_flag, download_audio, rolling_summarization, detail_level, question_box, + keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences, + chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens) + else: + urls = [url] + + if url and not is_valid_url(url): + return "Process_URL: Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None + + if url: + # Clean the URL to remove playlist parameters if any + url = clean_youtube_url(url) + logging.info(f"Process_URL: Processing URL: {url}") + + if api_name: + print("Process_URL: API Name received:", api_name) # Debugging line + + video_file_path = None + global info_dict + + # FIXME - need to handle local audio file processing + # If Local audio file is provided + if local_file_path: + try: + pass + # # insert code to process local audio file + # # Need to be able to add a title/author/etc for ingestion into the database + # # Also want to be able to optionally _just_ ingest it, and not ingest. + # # FIXME + # #download_path = create_download_directory(title) + # #audio_path = download_video(url, download_path, info_dict, download_video_flag) + # + # audio_file_path = local_file_path + # global segments + # audio_file_path, segments = perform_transcription(audio_file_path, offset, whisper_model, vad_filter) + # + # if audio_file_path is None or segments is None: + # logging.error("Process_URL: Transcription failed or segments not available.") + # return "Process_URL: Transcription failed.", "Transcription failed.", None, None, None, None + # + # logging.debug(f"Process_URL: Transcription audio_file: {audio_file_path}") + # logging.debug(f"Process_URL: Transcription segments: {segments}") + # + # transcription_text = {'audio_file': audio_file_path, 'transcription': segments} + # logging.debug(f"Process_URL: Transcription text: {transcription_text}") + # + # if rolling_summarization: + # text = extract_text_from_segments(segments) + # summary_text = rolling_summarize_function( + # transcription_text, + # detail=detail_level, + # api_name=api_name, + # api_key=api_key, + # custom_prompt=custom_prompt, + # chunk_by_words=chunk_text_by_words, + # max_words=max_words, + # chunk_by_sentences=chunk_text_by_sentences, + # max_sentences=max_sentences, + # chunk_by_paragraphs=chunk_text_by_paragraphs, + # max_paragraphs=max_paragraphs, + # chunk_by_tokens=chunk_text_by_tokens, + # max_tokens=max_tokens + # ) + # if api_name: + # summary_text = perform_summarization(api_name, segments_json_path, custom_prompt, api_key, config) + # if summary_text is None: + # logging.error("Summary text is None. Check summarization function.") + # summary_file_path = None # Set summary_file_path to None if summary is not generated + # else: + # summary_text = 'Summary not available' + # summary_file_path = None # Set summary_file_path to None if summary is not generated + # + # json_file_path, summary_file_path = save_transcription_and_summary(transcription_text, summary_text, download_path) + # + # add_media_to_database(url, info_dict, segments, summary_text, keywords, custom_prompt, whisper_model) + # + # return transcription_text, summary_text, json_file_path, summary_file_path, None, None + + except Exception as e: + logging.error(f": {e}") + return str(e), 'process_url: Error processing the request.', None, None, None, None + + + # If URL/Local video file is provided + try: + info_dict, title = extract_video_info(url) + download_path = create_download_directory(title) + video_path = download_video(url, download_path, info_dict, download_video_flag) + global segments + audio_file_path, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) + + if audio_file_path is None or segments is None: + logging.error("Process_URL: Transcription failed or segments not available.") + return "Process_URL: Transcription failed.", "Transcription failed.", None, None, None, None + + logging.debug(f"Process_URL: Transcription audio_file: {audio_file_path}") + logging.debug(f"Process_URL: Transcription segments: {segments}") + + transcription_text = {'audio_file': audio_file_path, 'transcription': segments} + logging.debug(f"Process_URL: Transcription text: {transcription_text}") + + if rolling_summarization: + text = extract_text_from_segments(segments) + summary_text = rolling_summarize_function( + transcription_text, + detail=detail_level, + api_name=api_name, + api_key=api_key, + custom_prompt_input=custom_prompt_input, + chunk_by_words=chunk_text_by_words, + max_words=max_words, + chunk_by_sentences=chunk_text_by_sentences, + max_sentences=max_sentences, + chunk_by_paragraphs=chunk_text_by_paragraphs, + max_paragraphs=max_paragraphs, + chunk_by_tokens=chunk_text_by_tokens, + max_tokens=max_tokens + ) + if api_name: + summary_text = perform_summarization(api_name, segments_json_path, custom_prompt_input, api_key) + if summary_text is None: + logging.error("Summary text is None. Check summarization function.") + summary_file_path = None # Set summary_file_path to None if summary is not generated + else: + summary_text = 'Summary not available' + summary_file_path = None # Set summary_file_path to None if summary is not generated + + json_file_path, summary_file_path = save_transcription_and_summary(transcription_text, summary_text, download_path) + + add_media_to_database(url, info_dict, segments, summary_text, keywords, custom_prompt_input, whisper_model) + + return transcription_text, summary_text, json_file_path, summary_file_path, None, None + + except Exception as e: + logging.error(f": {e}") + return str(e), 'process_url: Error processing the request.', None, None, None, None + +# Handle multiple videos as input +# Handle multiple videos as input +def process_video_urls(url_list, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter, + download_video_flag, download_audio, rolling_summarization, detail_level, question_box, + keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences, + chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens): + global current_progress + progress = [] # This must always be a list + status = [] # This must always be a list + + def update_progress(index, url, message): + progress.append(f"Processing {index + 1}/{len(url_list)}: {url}") # Append to list + status.append(message) # Append to list + return "\n".join(progress), "\n".join(status) # Return strings for display + + + for index, url in enumerate(url_list): + try: + transcription, summary, json_file_path, summary_file_path, _, _ = process_url( + url=url, + num_speakers=num_speakers, + whisper_model=whisper_model, + custom_prompt_input=custom_prompt_input, + offset=offset, + api_name=api_name, + api_key=api_key, + vad_filter=vad_filter, + download_video_flag=download_video_flag, + download_audio=download_audio, + rolling_summarization=rolling_summarization, + detail_level=detail_level, + question_box=question_box, + keywords=keywords, + chunk_text_by_words=chunk_text_by_words, + max_words=max_words, + chunk_text_by_sentences=max_sentences, + max_sentences=max_sentences, + chunk_text_by_paragraphs=chunk_text_by_paragraphs, + max_paragraphs=max_paragraphs, + chunk_text_by_tokens=chunk_text_by_tokens, + max_tokens=max_tokens + ) + # Update progress and transcription properly + current_progress, current_status = update_progress(index, url, "Video processed and ingested into the database.") + except Exception as e: + current_progress, current_status = update_progress(index, url, f"Error: {str(e)}") + + success_message = "All videos have been transcribed, summarized, and ingested into the database successfully." + return current_progress, success_message, None, None, None, None + + +# FIXME - Prompt sample box + +# Sample data +prompts_category_1 = [ + "What are the key points discussed in the video?", + "Summarize the main arguments made by the speaker.", + "Describe the conclusions of the study presented." +] + +prompts_category_2 = [ + "How does the proposed solution address the problem?", + "What are the implications of the findings?", + "Can you explain the theory behind the observed phenomenon?" +] + +all_prompts = prompts_category_1 + prompts_category_2 + + +# Search function +def search_prompts(query): + filtered_prompts = [prompt for prompt in all_prompts if query.lower() in prompt.lower()] + return "\n".join(filtered_prompts) + + +# Handle prompt selection +def handle_prompt_selection(prompt): + return f"You selected: {prompt}" + + +# +# +####################################################################################################################### + + +####################################################################################################################### +# Local LLM Setup / Running +# +# Function List +# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename) +# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5) +# 3. verify_checksum(file_path, expected_checksum) +# 4. cleanup_process() +# 5. signal_handler(sig, frame) +# 6. local_llm_function() +# 7. launch_in_new_terminal_windows(executable, args) +# 8. launch_in_new_terminal_linux(executable, args) +# 9. launch_in_new_terminal_mac(executable, args) +# +# +####################################################################################################################### + + +####################################################################################################################### +# Helper Functions for Main() & process_url() +# + +def perform_transcription(video_path, offset, whisper_model, vad_filter): + global segments_json_path + audio_file_path = convert_to_wav(video_path, offset) + segments_json_path = audio_file_path.replace('.wav', '.segments.json') + + # Check if segments JSON already exists + if os.path.exists(segments_json_path): + logging.info(f"Segments file already exists: {segments_json_path}") + try: + with open(segments_json_path, 'r') as file: + segments = json.load(file) + if not segments: # Check if the loaded JSON is empty + logging.warning(f"Segments JSON file is empty, re-generating: {segments_json_path}") + raise ValueError("Empty segments JSON file") + logging.debug(f"Loaded segments from {segments_json_path}") + except (json.JSONDecodeError, ValueError) as e: + logging.error(f"Failed to read or parse the segments JSON file: {e}") + # Remove the corrupted file + os.remove(segments_json_path) + # Re-generate the transcription + logging.info(f"Re-generating transcription for {audio_file_path}") + audio_file, segments = re_generate_transcription(audio_file_path, whisper_model, vad_filter) + if segments is None: + return None, None + else: + # Perform speech to text transcription + audio_file, segments = re_generate_transcription(audio_file_path, whisper_model, vad_filter) + + return audio_file_path, segments + + +def re_generate_transcription(audio_file_path, whisper_model, vad_filter): + try: + segments = speech_to_text(audio_file_path, whisper_model=whisper_model, vad_filter=vad_filter) + # Save segments to JSON + segments_json_path = audio_file_path.replace('.wav', '.segments.json') + with open(segments_json_path, 'w') as file: + json.dump(segments, file, indent=2) + logging.debug(f"Transcription segments saved to {segments_json_path}") + return audio_file_path, segments + except Exception as e: + logging.error(f"Error in re-generating transcription: {str(e)}") + return None, None + + +def save_transcription_and_summary(transcription_text, summary_text, download_path): + video_title = sanitize_filename(info_dict.get('title', 'Untitled')) + + json_file_path = os.path.join(download_path, f"{video_title}.segments.json") + summary_file_path = os.path.join(download_path, f"{video_title}_summary.txt") + + with open(json_file_path, 'w') as json_file: + json.dump(transcription_text['transcription'], json_file, indent=2) + + if summary_text is not None: + with open(summary_file_path, 'w') as file: + file.write(summary_text) + else: + logging.warning("Summary text is None. Skipping summary file creation.") + summary_file_path = None + + return json_file_path, summary_file_path + +def add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model): + content = ' '.join([segment['Text'] for segment in segments if 'Text' in segment]) + add_media_with_keywords( + url=url, + title=info_dict.get('title', 'Untitled'), + media_type='video', + content=content, + keywords=','.join(keywords), + prompt=custom_prompt_input or 'No prompt provided', + summary=summary or 'No summary provided', + transcription_model=whisper_model, + author=info_dict.get('uploader', 'Unknown'), + ingestion_date=datetime.now().strftime('%Y-%m-%d') + ) + + +def perform_summarization(api_name, json_file_path, custom_prompt_input, api_key): + # Load Config + loaded_config_data = load_and_log_configs() + + if custom_prompt_input is None: + # FIXME - Setup proper default prompt & extract said prompt from config file or prompts.db file. + #custom_prompt_input = config.get('Prompts', 'video_summarize_prompt', fallback="Above is the transcript of a video. Please read through the transcript carefully. Identify the main topics that are discussed over the course of the transcript. Then, summarize the key points about each main topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, but should be much shorter than the full transcript. Please output your bullet point summary inside tags. Do not repeat yourself while writing the summary.") + custom_prompt_input = "Above is the transcript of a video. Please read through the transcript carefully. Identify the main topics that are discussed over the course of the transcript. Then, summarize the key points about each main topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, but should be much shorter than the full transcript. Please output your bullet point summary inside tags. Do not repeat yourself while writing the summary." + summary = None + try: + if not json_file_path or not os.path.exists(json_file_path): + logging.error(f"JSON file does not exist: {json_file_path}") + return None + + with open(json_file_path, 'r') as file: + data = json.load(file) + + segments = data + if not isinstance(segments, list): + logging.error(f"Segments is not a list: {type(segments)}") + return None + + text = extract_text_from_segments(segments) + + if api_name.lower() == 'openai': + #def summarize_with_openai(api_key, input_data, custom_prompt_arg) + summary = summarize_with_openai(api_key, text, custom_prompt_input) + + elif api_name.lower() == "anthropic": + # def summarize_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5): + summary = summarize_with_anthropic(api_key, text, custom_prompt_input) + elif api_name.lower() == "cohere": + # def summarize_with_cohere(api_key, input_data, model, custom_prompt_arg) + summary = summarize_with_cohere(api_key, text, custom_prompt_input) + + elif api_name.lower() == "groq": + logging.debug(f"MAIN: Trying to summarize with groq") + # def summarize_with_groq(api_key, input_data, model, custom_prompt_arg): + summary = summarize_with_groq(api_key, text, custom_prompt_input) + + elif api_name.lower() == "openrouter": + logging.debug(f"MAIN: Trying to summarize with OpenRouter") + # def summarize_with_openrouter(api_key, input_data, custom_prompt_arg): + summary = summarize_with_openrouter(api_key, text, custom_prompt_input) + + elif api_name.lower() == "deepseek": + logging.debug(f"MAIN: Trying to summarize with DeepSeek") + # def summarize_with_deepseek(api_key, input_data, custom_prompt_arg): + summary = summarize_with_deepseek(api_key, text, custom_prompt_input) + + elif api_name.lower() == "llama.cpp": + logging.debug(f"MAIN: Trying to summarize with Llama.cpp") + # def summarize_with_llama(api_url, file_path, token, custom_prompt) + summary = summarize_with_llama(text, custom_prompt_input) + + elif api_name.lower() == "kobold": + logging.debug(f"MAIN: Trying to summarize with Kobold.cpp") + # def summarize_with_kobold(input_data, kobold_api_token, custom_prompt_input, api_url): + summary = summarize_with_kobold(text, api_key, custom_prompt_input) + + elif api_name.lower() == "ooba": + # def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url): + summary = summarize_with_oobabooga(text, api_key, custom_prompt_input) + + elif api_name.lower() == "tabbyapi": + # def summarize_with_tabbyapi(input_data, tabby_model, custom_prompt_input, api_key=None, api_IP): + summary = summarize_with_tabbyapi(text, custom_prompt_input) + + elif api_name.lower() == "vllm": + logging.debug(f"MAIN: Trying to summarize with VLLM") + # def summarize_with_vllm(api_key, input_data, custom_prompt_input): + summary = summarize_with_vllm(text, custom_prompt_input) + + elif api_name.lower() == "local-llm": + logging.debug(f"MAIN: Trying to summarize with Local LLM") + summary = summarize_with_local_llm(text, custom_prompt_input) + + elif api_name.lower() == "huggingface": + logging.debug(f"MAIN: Trying to summarize with huggingface") + # def summarize_with_huggingface(api_key, input_data, custom_prompt_arg): + summarize_with_huggingface(api_key, text, custom_prompt_input) + # Add additional API handlers here... + + else: + logging.warning(f"Unsupported API: {api_name}") + + if summary is None: + logging.debug("Summarization did not return valid text.") + + if summary: + logging.info(f"Summary generated using {api_name} API") + # Save the summary file in the same directory as the JSON file + summary_file_path = json_file_path.replace('.json', '_summary.txt') + with open(summary_file_path, 'w') as file: + file.write(summary) + else: + logging.warning(f"Failed to generate summary using {api_name} API") + return summary + + except requests.exceptions.ConnectionError: + logging.error("Connection error while summarizing") + except Exception as e: + logging.error(f"Error summarizing with {api_name}: {str(e)}") + + return summary + +# +# +####################################################################################################################### + + +###################################################################################################################### +# Main() +# + +def main(input_path, api_name=None, api_key=None, + num_speakers=2, + whisper_model="small.en", + offset=0, + vad_filter=False, + download_video_flag=False, + custom_prompt=None, + overwrite=False, + rolling_summarization=False, + detail=0.01, + keywords=None, + llm_model=None, + time_based=False, + set_chunk_txt_by_words=False, + set_max_txt_chunk_words=0, + set_chunk_txt_by_sentences=False, + set_max_txt_chunk_sentences=0, + set_chunk_txt_by_paragraphs=False, + set_max_txt_chunk_paragraphs=0, + set_chunk_txt_by_tokens=False, + set_max_txt_chunk_tokens=0, + ): + global detail_level_number, summary, audio_file, transcription_text, info_dict + + detail_level = detail + + print(f"Keywords: {keywords}") + + if not input_path: + return [] + + start_time = time.monotonic() + paths = [input_path] if not os.path.isfile(input_path) else read_paths_from_file(input_path) + results = [] + + for path in paths: + try: + if path.startswith('http'): + info_dict, title = extract_video_info(path) + download_path = create_download_directory(title) + video_path = download_video(path, download_path, info_dict, download_video_flag) + + if video_path: + audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) + transcription_text = {'audio_file': audio_file, 'transcription': segments} + # FIXME - V1 + #transcription_text = {'video_path': path, 'audio_file': audio_file, 'transcription': segments} + + if rolling_summarization == True: + text = extract_text_from_segments(segments) + detail = detail_level + additional_instructions = custom_prompt_input + chunk_text_by_words = set_chunk_txt_by_words + max_words = set_max_txt_chunk_words + chunk_text_by_sentences = set_chunk_txt_by_sentences + max_sentences = set_max_txt_chunk_sentences + chunk_text_by_paragraphs = set_chunk_txt_by_paragraphs + max_paragraphs = set_max_txt_chunk_paragraphs + chunk_text_by_tokens = set_chunk_txt_by_tokens + max_tokens = set_max_txt_chunk_tokens + # FIXME + summarize_recursively = rolling_summarization + verbose = False + model = None + summary = rolling_summarize_function(text, detail, api_name, api_key, model, custom_prompt_input, + chunk_text_by_words, + max_words, chunk_text_by_sentences, + max_sentences, chunk_text_by_paragraphs, + max_paragraphs, chunk_text_by_tokens, + max_tokens, summarize_recursively, verbose + ) + + elif api_name: + summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) + else: + summary = None + + if summary: + # Save the summary file in the download_path directory + summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") + with open(summary_file_path, 'w') as file: + file.write(summary) + + add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) + else: + logging.error(f"Failed to download video: {path}") + else: + download_path, info_dict, urls_or_media_file = process_local_file(path) + if isinstance(urls_or_media_file, list): + # Text file containing URLs + for url in urls_or_media_file: + info_dict, title = extract_video_info(url) + download_path = create_download_directory(title) + video_path = download_video(url, download_path, info_dict, download_video_flag) + + if video_path: + audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) + # FIXME - V1 + #transcription_text = {'video_path': url, 'audio_file': audio_file, 'transcription': segments} + transcription_text = {'audio_file': audio_file, 'transcription': segments} + if rolling_summarization: + text = extract_text_from_segments(segments) + summary = summarize_with_detail_openai(text, detail=detail) + elif api_name: + summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) + else: + summary = None + + if summary: + # Save the summary file in the download_path directory + summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") + with open(summary_file_path, 'w') as file: + file.write(summary) + + add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) + else: + logging.error(f"Failed to download video: {url}") + else: + # Video or audio file + media_path = urls_or_media_file + + if media_path.lower().endswith(('.mp4', '.avi', '.mov')): + # Video file + audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter) + elif media_path.lower().endswith(('.wav', '.mp3', '.m4a')): + # Audio file + segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter) + else: + logging.error(f"Unsupported media file format: {media_path}") + continue + + transcription_text = {'media_path': path, 'audio_file': media_path, 'transcription': segments} + + if rolling_summarization: + text = extract_text_from_segments(segments) + summary = summarize_with_detail_openai(text, detail=detail) + elif api_name: + summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) + else: + summary = None + + if summary: + # Save the summary file in the download_path directory + summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") + with open(summary_file_path, 'w') as file: + file.write(summary) + + add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) + + except Exception as e: + logging.error(f"Error processing {path}: {str(e)}") + continue + + return transcription_text + + +def signal_handler(sig, frame): + logging.info('Signal handler called with signal: %s', sig) + cleanup_process() + sys.exit(0) + + +############################## MAIN ############################## +# +# + +if __name__ == "__main__": + # Register signal handlers + signal.signal(signal.SIGINT, signal_handler) + signal.signal(signal.SIGTERM, signal_handler) + + # Logging setup + logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') + + # Load Config + loaded_config_data = load_and_log_configs() + + if loaded_config_data: + logging.info("Main: Configuration loaded successfully") + # You can access the configuration data like this: + # print(f"OpenAI API Key: {config_data['api_keys']['openai']}") + # print(f"Anthropic Model: {config_data['models']['anthropic']}") + # print(f"Kobold API IP: {config_data['local_apis']['kobold']['ip']}") + # print(f"Output Path: {config_data['output_path']}") + # print(f"Processing Choice: {config_data['processing_choice']}") + else: + print("Failed to load configuration") + + # Print ascii_art + print_hello() + + transcription_text = None + + parser = argparse.ArgumentParser( + description='Transcribe and summarize videos.', + epilog=''' +Sample commands: + 1. Simple Sample command structure: + summarize.py -api openai -k tag_one tag_two tag_three + + 2. Rolling Summary Sample command structure: + summarize.py -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three + + 3. FULL Sample command structure: + summarize.py -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three + + 4. Sample command structure for UI: + summarize.py -gui -log DEBUG + ''', + formatter_class=argparse.RawTextHelpFormatter + ) + parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?') + parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio') + parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)') + parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)') + parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)') + parser.add_argument('-wm', '--whisper_model', type=str, default='small', + help='Whisper model (default: small)| Options: tiny.en, tiny, base.en, base, small.en, small, medium.en, ' + 'medium, large-v1, large-v2, large-v3, large, distil-large-v2, distil-medium.en, ' + 'distil-small.en, distil-large-v3 ') + parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') + parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') + parser.add_argument('-log', '--log_level', type=str, default='INFO', + choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') + parser.add_argument('-gui', '--user_interface', action='store_true', help="Launch the Gradio user interface") + parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') + parser.add_argument('-prompt', '--custom_prompt', type=str, + help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just ' + 'modify the script itself...)') + parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files') + parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization') + parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, ' + 'defines the chunk size.\n Default is 0.01(lots ' + 'of chunks) -> 1.00 (few chunks)\n Currently ' + 'only OpenAI works. ', + default=0.01, ) + parser.add_argument('-model', '--llm_model', type=str, default='', + help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)') + parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'], + help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)') + parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)') + parser.add_argument('--local_llm', action='store_true', + help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)") + parser.add_argument('--server_mode', action='store_true', + help='Run in server mode (This exposes the GUI/Server to the network)') + parser.add_argument('--share_public', type=int, default=7860, + help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)") + parser.add_argument('--port', type=int, default=7860, help='Port to run the server on') + # parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage') + # parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file') + + args = parser.parse_args() + + # Set Chunking values/variables + set_chunk_txt_by_words = False + set_max_txt_chunk_words = 0 + set_chunk_txt_by_sentences = False + set_max_txt_chunk_sentences = 0 + set_chunk_txt_by_paragraphs = False + set_max_txt_chunk_paragraphs = 0 + set_chunk_txt_by_tokens = False + set_max_txt_chunk_tokens = 0 + + global server_mode + + if args.share_public: + share_public = args.share_public + else: + share_public = None + if args.server_mode: + + server_mode = args.server_mode + else: + server_mode = None + if args.server_mode is True: + server_mode = True + if args.port: + server_port = args.port + else: + server_port = None + + ########## Logging setup + logger = logging.getLogger() + logger.setLevel(getattr(logging, args.log_level)) + + # Create console handler + console_handler = logging.StreamHandler() + console_handler.setLevel(getattr(logging, args.log_level)) + console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') + console_handler.setFormatter(console_formatter) + + if args.log_file: + # Create file handler + file_handler = logging.FileHandler(args.log_file) + file_handler.setLevel(getattr(logging, args.log_level)) + file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') + file_handler.setFormatter(file_formatter) + logger.addHandler(file_handler) + logger.info(f"Log file created at: {args.log_file}") + + ########## Custom Prompt setup + custom_prompt_input = args.custom_prompt + + if not args.custom_prompt: + logging.debug("No custom prompt defined, will use default") + args.custom_prompt_input = ( + "\n\nabove is the transcript of a video. " + "Please read through the transcript carefully. Identify the main topics that are " + "discussed over the course of the transcript. Then, summarize the key points about each " + "main topic in a concise bullet point. The bullet points should cover the key " + "information conveyed about each topic in the video, but should be much shorter than " + "the full transcript. Please output your bullet point summary inside " + "tags." + ) + print("No custom prompt defined, will use default") + + custom_prompt_input = args.custom_prompt + else: + logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt_input} \n\nas the prompt") + print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}") + + # Check if the user wants to use the local LLM from the script + local_llm = args.local_llm + logging.info(f'Local LLM flag: {local_llm}') + + + + if args.user_interface: + if local_llm: + local_llm_function() + time.sleep(2) + webbrowser.open_new_tab('http://127.0.0.1:7860') + launch_ui(demo_mode=False) + elif not args.input_path: + parser.print_help() + sys.exit(1) + + else: + logging.info('Starting the transcription and summarization process.') + logging.info(f'Input path: {args.input_path}') + logging.info(f'API Name: {args.api_name}') + logging.info(f'Number of speakers: {args.num_speakers}') + logging.info(f'Whisper model: {args.whisper_model}') + logging.info(f'Offset: {args.offset}') + logging.info(f'VAD filter: {args.vad_filter}') + logging.info(f'Log Level: {args.log_level}') + logging.info(f'Demo Mode: {args.demo_mode}') + logging.info(f'Custom Prompt: {args.custom_prompt}') + logging.info(f'Overwrite: {args.overwrite}') + logging.info(f'Rolling Summarization: {args.rolling_summarization}') + logging.info(f'User Interface: {args.user_interface}') + logging.info(f'Video Download: {args.video}') + # logging.info(f'Save File location: {args.output_path}') + # logging.info(f'Log File location: {args.log_file}') + + # Don't care we're running on HF + launch_ui(demo_mode=False) + + global api_name + api_name = args.api_name + + summary = None # Initialize to ensure it's always defined + if args.detail_level == None: + args.detail_level = 0.01 + + # FIXME + # if args.api_name and args.rolling_summarization and any( + # key.startswith(args.api_name) and value is not None for key, value in api_keys.items()): + # logging.info(f'MAIN: API used: {args.api_name}') + # logging.info('MAIN: Rolling Summarization will be performed.') + + elif args.api_name: + logging.info(f'MAIN: API used: {args.api_name}') + logging.info('MAIN: Summarization (not rolling) will be performed.') + + else: + logging.info('No API specified. Summarization will not be performed.') + + logging.debug("Platform check being performed...") + platform_check() + logging.debug("CUDA check being performed...") + cuda_check() + processing_choice = "cpu" + logging.debug("ffmpeg check being performed...") + check_ffmpeg() + # download_ffmpeg() + + llm_model = args.llm_model or None + # FIXME - dirty hack + args.time_based = False + + try: + results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, + num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, + vad_filter=args.vad_filter, download_video_flag=args.video, custom_prompt=args.custom_prompt_input, + overwrite=args.overwrite, rolling_summarization=args.rolling_summarization, + detail=args.detail_level, keywords=args.keywords, llm_model=args.llm_model, + time_based=args.time_based, set_chunk_txt_by_words=set_chunk_txt_by_words, + set_max_txt_chunk_words=set_max_txt_chunk_words, + set_chunk_txt_by_sentences=set_chunk_txt_by_sentences, + set_max_txt_chunk_sentences=set_max_txt_chunk_sentences, + set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs, + set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs, + set_chunk_txt_by_tokens=set_chunk_txt_by_tokens, + set_max_txt_chunk_tokens=set_max_txt_chunk_tokens) + + logging.info('Transcription process completed.') + atexit.register(cleanup_process) + except Exception as e: + logging.error('An error occurred during the transcription process.') + logging.error(str(e)) + sys.exit(1) + + finally: + cleanup_process() + +######### Words-per-second Chunking ######### +# FIXME - WHole section needs to be re-written +def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: + words = transcript.split() + words_per_chunk = chunk_duration * words_per_second + chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] + return chunks + + +def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, + words_per_second: int) -> str: + + + if not transcript: + logging.error("Empty or None transcript provided to summarize_chunks") + return "Error: Empty or None transcript provided" + + text = extract_text_from_segments(transcript) + chunks = chunk_transcript(text, chunk_duration, words_per_second) + + custom_prompt = args.custom_prompt + + summaries = [] + for chunk in chunks: + if api_name == 'openai': + # Ensure the correct model and prompt are passed + summaries.append(summarize_with_openai(api_key, chunk, custom_prompt)) + elif api_name == 'anthropic': + summaries.append(summarize_with_anthropic(api_key, chunk,custom_prompt)) + elif api_name == 'cohere': + summaries.append(summarize_with_cohere(api_key, chunk, custom_prompt)) + elif api_name == 'groq': + summaries.append(summarize_with_groq(api_key, chunk, custom_prompt)) + elif api_name == 'llama': + summaries.append(summarize_with_llama(chunk, api_key, custom_prompt)) + elif api_name == 'kobold': + summaries.append(summarize_with_kobold(chunk, api_key, custom_prompt)) + elif api_name == 'ooba': + summaries.append(summarize_with_oobabooga(chunk, api_key, custom_prompt)) + elif api_name == 'tabbyapi': + summaries.append(summarize_with_vllm(chunk, llm_model, custom_prompt)) + elif api_name == 'local-llm': + summaries.append(summarize_with_local_llm(chunk, custom_prompt)) + else: + return f"Unsupported API: {api_name}" + + return "\n\n".join(summaries) + +# FIXME - WHole section needs to be re-written +def summarize_with_detail_openai(text, detail, verbose=False): + summary_with_detail_variable = rolling_summarize(text, detail=detail, verbose=True) + print(len(openai_tokenize(summary_with_detail_variable))) + return summary_with_detail_variable + + +def summarize_with_detail_recursive_openai(text, detail, verbose=False): + summary_with_recursive_summarization = rolling_summarize(text, detail=detail, summarize_recursively=True) + print(summary_with_recursive_summarization) + +# +# +################################################################################# + + + +import csv +import logging +import os +import re +import sqlite3 +import time +from contextlib import contextmanager +from datetime import datetime +from typing import List, Tuple + +import gradio as gr +import pandas as pd + +# Import Local + + +# Set up logging +#logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') +#logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') +logger = logging.getLogger(__name__) + + +# Custom exceptions +class DatabaseError(Exception): + pass + + +class InputError(Exception): + pass + + +# Database connection function with connection pooling +class Database: + def __init__(self, db_name=None): + self.db_name = db_name or os.getenv('DB_NAME', 'media_summary.db') + self.pool = [] + self.pool_size = 10 + + @contextmanager + def get_connection(self): + retry_count = 5 + retry_delay = 1 + conn = None + while retry_count > 0: + try: + conn = self.pool.pop() if self.pool else sqlite3.connect(self.db_name, check_same_thread=False) + yield conn + self.pool.append(conn) + return + except sqlite3.OperationalError as e: + if 'database is locked' in str(e): + logging.warning(f"Database is locked, retrying in {retry_delay} seconds...") + retry_count -= 1 + time.sleep(retry_delay) + else: + raise DatabaseError(f"Database error: {e}") + except Exception as e: + raise DatabaseError(f"Unexpected error: {e}") + finally: + # Ensure the connection is returned to the pool even on failure + if conn: + self.pool.append(conn) + raise DatabaseError("Database is locked and retries have been exhausted") + + def execute_query(self, query: str, params: Tuple = ()) -> None: + with self.get_connection() as conn: + try: + cursor = conn.cursor() + cursor.execute(query, params) + conn.commit() + except sqlite3.Error as e: + raise DatabaseError(f"Database error: {e}, Query: {query}") + +db = Database() + + +# Function to create tables with the new media schema +def create_tables() -> None: + table_queries = [ + ''' + CREATE TABLE IF NOT EXISTS Media ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + url TEXT, + title TEXT NOT NULL, + type TEXT NOT NULL, + content TEXT, + author TEXT, + ingestion_date TEXT, + prompt TEXT, + summary TEXT, + transcription_model TEXT + ) + ''', + ''' + CREATE TABLE IF NOT EXISTS Keywords ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + keyword TEXT NOT NULL UNIQUE + ) + ''', + ''' + CREATE TABLE IF NOT EXISTS MediaKeywords ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + media_id INTEGER NOT NULL, + keyword_id INTEGER NOT NULL, + FOREIGN KEY (media_id) REFERENCES Media(id), + FOREIGN KEY (keyword_id) REFERENCES Keywords(id) + ) + ''', + ''' + CREATE TABLE IF NOT EXISTS MediaVersion ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + media_id INTEGER NOT NULL, + version INTEGER NOT NULL, + prompt TEXT, + summary TEXT, + created_at TEXT NOT NULL, + FOREIGN KEY (media_id) REFERENCES Media(id) + ) + ''', + ''' + CREATE TABLE IF NOT EXISTS MediaModifications ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + media_id INTEGER NOT NULL, + prompt TEXT, + summary TEXT, + modification_date TEXT, + FOREIGN KEY (media_id) REFERENCES Media(id) + ) + ''', + ''' + CREATE VIRTUAL TABLE IF NOT EXISTS media_fts USING fts5(title, content); + ''', + ''' + CREATE VIRTUAL TABLE IF NOT EXISTS keyword_fts USING fts5(keyword); + ''', + ''' + CREATE INDEX IF NOT EXISTS idx_media_title ON Media(title); + ''', + ''' + CREATE INDEX IF NOT EXISTS idx_media_type ON Media(type); + ''', + ''' + CREATE INDEX IF NOT EXISTS idx_media_author ON Media(author); + ''', + ''' + CREATE INDEX IF NOT EXISTS idx_media_ingestion_date ON Media(ingestion_date); + ''', + ''' + CREATE INDEX IF NOT EXISTS idx_keywords_keyword ON Keywords(keyword); + ''', + ''' + CREATE INDEX IF NOT EXISTS idx_mediakeywords_media_id ON MediaKeywords(media_id); + ''', + ''' + CREATE INDEX IF NOT EXISTS idx_mediakeywords_keyword_id ON MediaKeywords(keyword_id); + ''', + ''' + CREATE INDEX IF NOT EXISTS idx_media_version_media_id ON MediaVersion(media_id); + ''' + ] + for query in table_queries: + db.execute_query(query) - # Set the event listener for the Light/Dark mode toggle switch - theme_toggle.change(fn=toggle_light, inputs=theme_toggle, outputs=gr.HTML()) +create_tables() - # Function to toggle visibility of advanced inputs - def toggle_ui(mode): - visible = (mode == "Advanced") - return [ - gr.update(visible=True) if i in [0, 3, 5, 6, 13] else gr.update(visible=visible) - for i in range(len(inputs)) - ] - # Set the event listener for the UI Mode toggle switch - ui_mode_toggle.change(fn=toggle_ui, inputs=ui_mode_toggle, outputs=inputs) +####################################################################################################################### +# Keyword-related Functions +# - # Combine URL input and inputs lists - all_inputs = [url_input] + inputs +# Function to add a keyword +def add_keyword(keyword: str) -> int: + keyword = keyword.strip().lower() + with db.get_connection() as conn: + cursor = conn.cursor() + try: + cursor.execute('INSERT OR IGNORE INTO Keywords (keyword) VALUES (?)', (keyword,)) + cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,)) + keyword_id = cursor.fetchone()[0] + cursor.execute('INSERT OR IGNORE INTO keyword_fts (rowid, keyword) VALUES (?, ?)', (keyword_id, keyword)) + logging.info(f"Keyword '{keyword}' added to keyword_fts with ID: {keyword_id}") + conn.commit() + return keyword_id + except sqlite3.IntegrityError as e: + logging.error(f"Integrity error adding keyword: {e}") + raise DatabaseError(f"Integrity error adding keyword: {e}") + except sqlite3.Error as e: + logging.error(f"Error adding keyword: {e}") + raise DatabaseError(f"Error adding keyword: {e}") + + +# Function to delete a keyword +def delete_keyword(keyword: str) -> str: + keyword = keyword.strip().lower() + with db.get_connection() as conn: + cursor = conn.cursor() + try: + cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,)) + keyword_id = cursor.fetchone() + if keyword_id: + cursor.execute('DELETE FROM Keywords WHERE keyword = ?', (keyword,)) + cursor.execute('DELETE FROM keyword_fts WHERE rowid = ?', (keyword_id[0],)) + conn.commit() + return f"Keyword '{keyword}' deleted successfully." + else: + return f"Keyword '{keyword}' not found." + except sqlite3.Error as e: + raise DatabaseError(f"Error deleting keyword: {e}") + + + +# Function to add media with keywords +def add_media_with_keywords(url, title, media_type, content, keywords, prompt, summary, transcription_model, author, ingestion_date): + # Set default values for missing fields + url = url or 'Unknown' + title = title or 'Untitled' + media_type = media_type or 'Unknown' + content = content or 'No content available' + keywords = keywords or 'default' + prompt = prompt or 'No prompt available' + summary = summary or 'No summary available' + transcription_model = transcription_model or 'Unknown' + author = author or 'Unknown' + ingestion_date = ingestion_date or datetime.now().strftime('%Y-%m-%d') + + # Ensure URL is valid + if not is_valid_url(url): + url = 'localhost' - gr.Interface( - fn=process_url, - inputs=all_inputs, - outputs=outputs, - title="Video Transcription and Summarization", - description="Submit a video URL for transcription and summarization. Ensure you input all necessary " - "information including API keys." - ) + if media_type not in ['document', 'video', 'article']: + raise InputError("Invalid media type. Allowed types: document, video, article.") - # Tab 2: Scrape & Summarize Articles/Websites - with gr.Tab("Scrape & Summarize Articles/Websites"): - url_input = gr.Textbox(label="Article URL", placeholder="Enter the article URL here") - custom_article_title_input = gr.Textbox(label="Custom Article Title (Optional)", - placeholder="Enter a custom title for the article") - custom_prompt_input = gr.Textbox( - label="Custom Prompt (Optional)", - placeholder="Provide a custom prompt for summarization", - lines=3 - ) - api_name_input = gr.Dropdown( - choices=[None, "huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], - value=None, - label="API Name (Mandatory for Summarization)" - ) - api_key_input = gr.Textbox(label="API Key (Mandatory if API Name is specified)", - placeholder="Enter your API key here; Ignore if using Local API or Built-in API") - keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)", - value="default,no_keyword_set", visible=True) + if ingestion_date and not is_valid_date(ingestion_date): + raise InputError("Invalid ingestion date format. Use YYYY-MM-DD.") - scrape_button = gr.Button("Scrape and Summarize") - result_output = gr.Textbox(label="Result") + if not ingestion_date: + ingestion_date = datetime.now().strftime('%Y-%m-%d') - scrape_button.click(scrape_and_summarize, inputs=[url_input, custom_prompt_input, api_name_input, - api_key_input, keywords_input, - custom_article_title_input], outputs=result_output) + # Split keywords correctly by comma + keyword_list = [keyword.strip().lower() for keyword in keywords.split(',')] + + logging.info(f"URL: {url}") + logging.info(f"Title: {title}") + logging.info(f"Media Type: {media_type}") + logging.info(f"Keywords: {keywords}") + logging.info(f"Content: {content}") + logging.info(f"Prompt: {prompt}") + logging.info(f"Summary: {summary}") + logging.info(f"Author: {author}") + logging.info(f"Ingestion Date: {ingestion_date}") + logging.info(f"Transcription Model: {transcription_model}") + + try: + with db.get_connection() as conn: + cursor = conn.cursor() + + # Initialize keyword_list + keyword_list = [keyword.strip().lower() for keyword in keywords.split(',')] + + # Check if media already exists + cursor.execute('SELECT id FROM Media WHERE url = ?', (url,)) + existing_media = cursor.fetchone() + + if existing_media: + media_id = existing_media[0] + logger.info(f"Existing media found with ID: {media_id}") + + # Insert new prompt and summary into MediaModifications + cursor.execute(''' + INSERT INTO MediaModifications (media_id, prompt, summary, modification_date) + VALUES (?, ?, ?, ?) + ''', (media_id, prompt, summary, ingestion_date)) + logger.info("New summary and prompt added to MediaModifications") + else: + logger.info("New media entry being created") + + # Insert new media item + cursor.execute(''' + INSERT INTO Media (url, title, type, content, author, ingestion_date, transcription_model) + VALUES (?, ?, ?, ?, ?, ?, ?) + ''', (url, title, media_type, content, author, ingestion_date, transcription_model)) + media_id = cursor.lastrowid + + # Insert keywords and associate with media item + for keyword in keyword_list: + keyword = keyword.strip().lower() + cursor.execute('INSERT OR IGNORE INTO Keywords (keyword) VALUES (?)', (keyword,)) + cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,)) + keyword_id = cursor.fetchone()[0] + cursor.execute('INSERT OR IGNORE INTO MediaKeywords (media_id, keyword_id) VALUES (?, ?)', (media_id, keyword_id)) + cursor.execute('INSERT INTO media_fts (rowid, title, content) VALUES (?, ?, ?)', (media_id, title, content)) + + # Also insert the initial prompt and summary into MediaModifications + cursor.execute(''' + INSERT INTO MediaModifications (media_id, prompt, summary, modification_date) + VALUES (?, ?, ?, ?) + ''', (media_id, prompt, summary, ingestion_date)) + + conn.commit() + + # Insert initial version of the prompt and summary + add_media_version(media_id, prompt, summary) + + return f"Media '{title}' added successfully with keywords: {', '.join(keyword_list)}" + except sqlite3.IntegrityError as e: + logger.error(f"Integrity Error: {e}") + raise DatabaseError(f"Integrity error adding media with keywords: {e}") + except sqlite3.Error as e: + logger.error(f"SQL Error: {e}") + raise DatabaseError(f"Error adding media with keywords: {e}") + except Exception as e: + logger.error(f"Unexpected Error: {e}") + raise DatabaseError(f"Unexpected error: {e}") + + +def fetch_all_keywords() -> List[str]: + try: + with db.get_connection() as conn: + cursor = conn.cursor() + cursor.execute('SELECT keyword FROM Keywords') + keywords = [row[0] for row in cursor.fetchall()] + return keywords + except sqlite3.Error as e: + raise DatabaseError(f"Error fetching keywords: {e}") + +def keywords_browser_interface(): + keywords = fetch_all_keywords() + return gr.Markdown("\n".join(f"- {keyword}" for keyword in keywords)) + +def display_keywords(): + try: + keywords = fetch_all_keywords() + return "\n".join(keywords) if keywords else "No keywords found." + except DatabaseError as e: + return str(e) + + +def export_keywords_to_csv(): + try: + keywords = fetch_all_keywords() + if not keywords: + return None, "No keywords found in the database." + + filename = "keywords.csv" + with open(filename, 'w', newline='', encoding='utf-8') as file: + writer = csv.writer(file) + writer.writerow(["Keyword"]) + for keyword in keywords: + writer.writerow([keyword]) + + return filename, f"Keywords exported to {filename}" + except Exception as e: + logger.error(f"Error exporting keywords to CSV: {e}") + return None, f"Error exporting keywords: {e}" + + +# Function to fetch items based on search query and type +def browse_items(search_query, search_type): + try: + with db.get_connection() as conn: + cursor = conn.cursor() + if search_type == 'Title': + cursor.execute("SELECT id, title, url FROM Media WHERE title LIKE ?", (f'%{search_query}%',)) + elif search_type == 'URL': + cursor.execute("SELECT id, title, url FROM Media WHERE url LIKE ?", (f'%{search_query}%',)) + results = cursor.fetchall() + return results + except sqlite3.Error as e: + raise Exception(f"Error fetching items by {search_type}: {e}") + + +# Function to fetch item details +def fetch_item_details(media_id: int): + try: + with db.get_connection() as conn: + cursor = conn.cursor() + cursor.execute("SELECT prompt, summary FROM MediaModifications WHERE media_id = ?", (media_id,)) + prompt_summary_results = cursor.fetchall() + cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,)) + content_result = cursor.fetchone() + content = content_result[0] if content_result else "" + return prompt_summary_results, content + except sqlite3.Error as e: + raise Exception(f"Error fetching item details: {e}") + +# +# +####################################################################################################################### + + + + +# Function to add a version of a prompt and summary +def add_media_version(media_id: int, prompt: str, summary: str) -> None: + try: + with db.get_connection() as conn: + cursor = conn.cursor() + + # Get the current version number + cursor.execute('SELECT MAX(version) FROM MediaVersion WHERE media_id = ?', (media_id,)) + current_version = cursor.fetchone()[0] or 0 + + # Insert the new version + cursor.execute(''' + INSERT INTO MediaVersion (media_id, version, prompt, summary, created_at) + VALUES (?, ?, ?, ?, ?) + ''', (media_id, current_version + 1, prompt, summary, datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) + conn.commit() + except sqlite3.Error as e: + raise DatabaseError(f"Error adding media version: {e}") + + +# Function to search the database with advanced options, including keyword search and full-text search +def search_db(search_query: str, search_fields: List[str], keywords: str, page: int = 1, results_per_page: int = 10): + if page < 1: + raise ValueError("Page number must be 1 or greater.") + + # Prepare keywords by splitting and trimming + keywords = [keyword.strip().lower() for keyword in keywords.split(',') if keyword.strip()] + + with db.get_connection() as conn: + cursor = conn.cursor() + offset = (page - 1) * results_per_page + + # Prepare the search conditions for general fields + search_conditions = [] + params = [] + + for field in search_fields: + if search_query: # Ensure there's a search query before adding this condition + search_conditions.append(f"Media.{field} LIKE ?") + params.append(f'%{search_query}%') + + # Prepare the conditions for keywords filtering + keyword_conditions = [] + for keyword in keywords: + keyword_conditions.append( + f"EXISTS (SELECT 1 FROM MediaKeywords mk JOIN Keywords k ON mk.keyword_id = k.id WHERE mk.media_id = Media.id AND k.keyword LIKE ?)") + params.append(f'%{keyword}%') + + # Combine all conditions + where_clause = " AND ".join( + search_conditions + keyword_conditions) if search_conditions or keyword_conditions else "1=1" + + # Complete the query + query = f''' + SELECT DISTINCT Media.url, Media.title, Media.type, Media.content, Media.author, Media.ingestion_date, Media.prompt, Media.summary + FROM Media + WHERE {where_clause} + LIMIT ? OFFSET ? + ''' + params.extend([results_per_page, offset]) + + cursor.execute(query, params) + results = cursor.fetchall() + + return results + + +# Gradio function to handle user input and display results with pagination, with better feedback +def search_and_display(search_query, search_fields, keywords, page): + results = search_db(search_query, search_fields, keywords, page) + + if isinstance(results, pd.DataFrame): + # Convert DataFrame to a list of tuples or lists + processed_results = results.values.tolist() # This converts DataFrame rows to lists + elif isinstance(results, list): + # Ensure that each element in the list is itself a list or tuple (not a dictionary) + processed_results = [list(item.values()) if isinstance(item, dict) else item for item in results] + else: + raise TypeError("Unsupported data type for results") + + return processed_results + + +def display_details(index, results): + if index is None or results is None: + return "Please select a result to view details." + + try: + # Ensure the index is an integer and access the row properly + index = int(index) + if isinstance(results, pd.DataFrame): + if index >= len(results): + return "Index out of range. Please select a valid index." + selected_row = results.iloc[index] + else: + # If results is not a DataFrame, but a list (assuming list of dicts) + selected_row = results[index] + except ValueError: + return "Index must be an integer." + except IndexError: + return "Index out of range. Please select a valid index." + + # Build HTML output safely + details_html = f""" +

{selected_row.get('Title', 'No Title')}

+

URL: {selected_row.get('URL', 'No URL')}

+

Type: {selected_row.get('Type', 'No Type')}

+

Author: {selected_row.get('Author', 'No Author')}

+

Ingestion Date: {selected_row.get('Ingestion Date', 'No Date')}

+

Prompt: {selected_row.get('Prompt', 'No Prompt')}

+

Summary: {selected_row.get('Summary', 'No Summary')}

+

Content: {selected_row.get('Content', 'No Content')}

+ """ + return details_html + + +def get_details(index, dataframe): + if index is None or dataframe is None or index >= len(dataframe): + return "Please select a result to view details." + row = dataframe.iloc[index] + details = f""" +

{row['Title']}

+

URL: {row['URL']}

+

Type: {row['Type']}

+

Author: {row['Author']}

+

Ingestion Date: {row['Ingestion Date']}

+

Prompt: {row['Prompt']}

+

Summary: {row['Summary']}

+

Content:

+
{row['Content']}
+ """ + return details + + +def format_results(results): + if not results: + return pd.DataFrame(columns=['URL', 'Title', 'Type', 'Content', 'Author', 'Ingestion Date', 'Prompt', 'Summary']) + + df = pd.DataFrame(results, columns=['URL', 'Title', 'Type', 'Content', 'Author', 'Ingestion Date', 'Prompt', 'Summary']) + logging.debug(f"Formatted DataFrame: {df}") + + return df + +# Function to export search results to CSV with pagination +def export_to_csv(search_query: str, search_fields: List[str], keyword: str, page: int = 1, results_per_file: int = 1000): + try: + results = search_db(search_query, search_fields, keyword, page, results_per_file) + df = format_results(results) + filename = f'search_results_page_{page}.csv' + df.to_csv(filename, index=False) + return f"Results exported to {filename}" + except (DatabaseError, InputError) as e: + return str(e) + + +# Helper function to validate URL format +def is_valid_url(url: str) -> bool: + regex = re.compile( + r'^(?:http|ftp)s?://' # http:// or https:// + r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... + r'localhost|' # localhost... + r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # ...or ipv4 + r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # ...or ipv6 + r'(?::\d+)?' # optional port + r'(?:/?|[/?]\S+)$', re.IGNORECASE) + return re.match(regex, url) is not None + + +# Helper function to validate date format +def is_valid_date(date_string: str) -> bool: + try: + datetime.strptime(date_string, '%Y-%m-%d') + return True + except ValueError: + return False + +# +# +####################################################################################################################### + + + + +####################################################################################################################### +# Functions to manage prompts DB +# + +def create_prompts_db(): + conn = sqlite3.connect('prompts.db') + cursor = conn.cursor() + cursor.execute(''' + CREATE TABLE IF NOT EXISTS Prompts ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + name TEXT NOT NULL UNIQUE, + details TEXT, + system TEXT, + user TEXT + ) + ''') + conn.commit() + conn.close() + +create_prompts_db() + + +def add_prompt(name, details, system, user=None): + try: + conn = sqlite3.connect('prompts.db') + cursor = conn.cursor() + cursor.execute(''' + INSERT INTO Prompts (name, details, system, user) + VALUES (?, ?, ?, ?) + ''', (name, details, system, user)) + conn.commit() + conn.close() + return "Prompt added successfully." + except sqlite3.IntegrityError: + return "Prompt with this name already exists." + except sqlite3.Error as e: + return f"Database error: {e}" + +def fetch_prompt_details(name): + conn = sqlite3.connect('prompts.db') + cursor = conn.cursor() + cursor.execute(''' + SELECT details, system, user + FROM Prompts + WHERE name = ? + ''', (name,)) + result = cursor.fetchone() + conn.close() + return result + +def list_prompts(): + conn = sqlite3.connect('prompts.db') + cursor = conn.cursor() + cursor.execute(''' + SELECT name + FROM Prompts + ''') + results = cursor.fetchall() + conn.close() + return [row[0] for row in results] + +def insert_prompt_to_db(title, description, system_prompt, user_prompt): + result = add_prompt(title, description, system_prompt, user_prompt) + return result + + + + +# +# +####################################################################################################################### + + + +# Summarization_General_Lib.py +######################################### +# General Summarization Library +# This library is used to perform summarization. +# +#### +import configparser +#################### +# Function List +# +# 1. extract_text_from_segments(segments: List[Dict]) -> str +# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg) +# 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) +# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg) +# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg) +# +# +#################### + + +# Import necessary libraries +import os +import logging +import time +import requests +from typing import List, Dict +import json +import configparser +from requests import RequestException + +####################################################################################################################### +# Function Definitions +# + +# def extract_text_from_segments(segments): +# text = ' '.join([segment['Text'] for segment in segments if 'Text' in segment]) +# return text +def extract_text_from_segments(segments): + logging.debug(f"Segments received: {segments}") + logging.debug(f"Type of segments: {type(segments)}") + + text = "" + + if isinstance(segments, list): + for segment in segments: + logging.debug(f"Current segment: {segment}") + logging.debug(f"Type of segment: {type(segment)}") + if 'Text' in segment: + text += segment['Text'] + " " + else: + logging.warning(f"Skipping segment due to missing 'Text' key: {segment}") + else: + logging.warning(f"Unexpected type of 'segments': {type(segments)}") + + return text.strip() + # FIXME - Dead code? + # if isinstance(segments, dict): + # if 'segments' in segments: + # segment_list = segments['segments'] + # if isinstance(segment_list, list): + # for segment in segment_list: + # logging.debug(f"Current segment: {segment}") + # logging.debug(f"Type of segment: {type(segment)}") + # if 'Text' in segment: + # text += segment['Text'] + " " + # else: + # logging.warning(f"Skipping segment due to missing 'Text' key: {segment}") + # else: + # logging.warning(f"Unexpected type of 'segments' value: {type(segment_list)}") + # else: + # logging.warning("'segments' key not found in the dictionary") + # else: + # logging.warning(f"Unexpected type of 'segments': {type(segments)}") + # + # return text.strip() + + +def summarize_with_openai(api_key, input_data, custom_prompt_arg): + loaded_config_data = summarize.load_and_log_configs() + try: + # API key validation + if api_key is None or api_key.strip() == "": + logging.info("OpenAI: API key not provided as parameter") + logging.info("OpenAI: Attempting to use API key from config file") + api_key = loaded_config_data['api_keys']['openai'] + + if api_key is None or api_key.strip() == "": + logging.error("OpenAI: API key not found or is empty") + return "OpenAI: API Key Not Provided/Found in Config file or is empty" + + logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}") + + # Input data handling + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("OpenAI: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("OpenAI: Using provided string data for summarization") + data = input_data + + logging.debug(f"OpenAI: Loaded data: {data}") + logging.debug(f"OpenAI: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("OpenAI: Summary already exists in the loaded data") + return data['summary'] + + # Text extraction + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("OpenAI: Invalid input data format") + + openai_model = loaded_config_data['models']['openai'] or "gpt-4o" + + headers = { + 'Authorization': f'Bearer {api_key}', + 'Content-Type': 'application/json' + } + + logging.debug( + f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}") + logging.debug("openai: Preparing data + prompt for submittal") + openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + data = { + "model": openai_model, + "messages": [ + {"role": "system", "content": "You are a professional summarizer."}, + {"role": "user", "content": openai_prompt} + ], + "max_tokens": 4096, + "temperature": 0.1 + } + + logging.debug("openai: Posting request") + response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) + + if response.status_code == 200: + response_data = response.json() + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("openai: Summarization successful") + return summary + else: + logging.warning("openai: Summary not found in the response data") + return "openai: Summary not available" + else: + logging.error(f"openai: Summarization failed with status code {response.status_code}") + logging.error(f"openai: Error response: {response.text}") + return f"openai: Failed to process summary. Status code: {response.status_code}" + except Exception as e: + logging.error(f"openai: Error in processing: {str(e)}", exc_info=True) + return f"openai: Error occurred while processing summary: {str(e)}" + + +def summarize_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5): + try: + loaded_config_data = summarize.load_and_log_configs() + global anthropic_api_key + # API key validation + if api_key is None: + logging.info("Anthropic: API key not provided as parameter") + logging.info("Anthropic: Attempting to use API key from config file") + anthropic_api_key = loaded_config_data['api_keys']['anthropic'] + + if api_key is None or api_key.strip() == "": + logging.error("Anthropic: API key not found or is empty") + return "Anthropic: API Key Not Provided/Found in Config file or is empty" + + logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}") + + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("AnthropicAI: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("AnthropicAI: Using provided string data for summarization") + data = input_data + + logging.debug(f"AnthropicAI: Loaded data: {data}") + logging.debug(f"AnthropicAI: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("Anthropic: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Anthropic: Invalid input data format") + + anthropic_model = loaded_config_data['models']['anthropic'] + + headers = { + 'x-api-key': anthropic_api_key, + 'anthropic-version': '2023-06-01', + 'Content-Type': 'application/json' + } + + anthropic_prompt = custom_prompt_arg + logging.debug(f"Anthropic: Prompt is {anthropic_prompt}") + user_message = { + "role": "user", + "content": f"{text} \n\n\n\n{anthropic_prompt}" + } + + data = { + "model": model, + "max_tokens": 4096, # max _possible_ tokens to return + "messages": [user_message], + "stop_sequences": ["\n\nHuman:"], + "temperature": 0.1, + "top_k": 0, + "top_p": 1.0, + "metadata": { + "user_id": "example_user_id", + }, + "stream": False, + "system": "You are a professional summarizer." + } + + for attempt in range(max_retries): + try: + logging.debug("anthropic: Posting request to API") + response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) + + # Check if the status code indicates success + if response.status_code == 200: + logging.debug("anthropic: Post submittal successful") + response_data = response.json() + try: + summary = response_data['content'][0]['text'].strip() + logging.debug("anthropic: Summarization successful") + print("Summary processed successfully.") + return summary + except (IndexError, KeyError) as e: + logging.debug("anthropic: Unexpected data in response") + print("Unexpected response format from Anthropic API:", response.text) + return None + elif response.status_code == 500: # Handle internal server error specifically + logging.debug("anthropic: Internal server error") + print("Internal server error from API. Retrying may be necessary.") + time.sleep(retry_delay) + else: + logging.debug( + f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") + print(f"Failed to process summary, status code {response.status_code}: {response.text}") + return None + + except RequestException as e: + logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") + if attempt < max_retries - 1: + time.sleep(retry_delay) + else: + return f"anthropic: Network error: {str(e)}" + except FileNotFoundError as e: + logging.error(f"anthropic: File not found: {input_data}") + return f"anthropic: File not found: {input_data}" + except json.JSONDecodeError as e: + logging.error(f"anthropic: Invalid JSON format in file: {input_data}") + return f"anthropic: Invalid JSON format in file: {input_data}" + except Exception as e: + logging.error(f"anthropic: Error in processing: {str(e)}") + return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}" - gr.Markdown("### Or Paste Unstructured Text Below (Will use settings from above)") - text_input = gr.Textbox(label="Unstructured Text", placeholder="Paste unstructured text here", lines=10) - text_ingest_button = gr.Button("Ingest Unstructured Text") - text_ingest_result = gr.Textbox(label="Result") - text_ingest_button.click(ingest_unstructured_text, - inputs=[text_input, custom_prompt_input, api_name_input, api_key_input, - keywords_input, custom_article_title_input], outputs=text_ingest_result) +# Summarize with Cohere +def summarize_with_cohere(api_key, input_data, model, custom_prompt_arg): + loaded_config_data = summarize.load_and_log_configs() + try: + # API key validation + if api_key is None: + logging.info("cohere: API key not provided as parameter") + logging.info("cohere: Attempting to use API key from config file") + cohere_api_key = loaded_config_data['api_keys']['cohere'] + + if api_key is None or api_key.strip() == "": + logging.error("cohere: API key not found or is empty") + return "cohere: API Key Not Provided/Found in Config file or is empty" + + logging.debug(f"cohere: Using API Key: {api_key[:5]}...{api_key[-5:]}") + + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("Cohere: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("Cohere: Using provided string data for summarization") + data = input_data + + logging.debug(f"Cohere: Loaded data: {data}") + logging.debug(f"Cohere: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("Cohere: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Invalid input data format") - with gr.Tab("Ingest & Summarize Documents"): - gr.Markdown("Plan to put ingestion form for documents here") - gr.Markdown("Will ingest documents and store into SQLite DB") - gr.Markdown("RAG here we come....:/") + cohere_model = loaded_config_data['models']['cohere'] - with gr.Tab("Sample Prompts/Questions"): - gr.Markdown("Plan to put Sample prompts/questions here") - gr.Markdown("Fabric prompts/live UI?") - # Searchable list - with gr.Row(): - search_box = gr.Textbox(label="Search prompts", placeholder="Type to filter prompts") - search_result = gr.Textbox(label="Matching prompts", interactive=False) - search_box.change(search_prompts, inputs=search_box, outputs=search_result) + headers = { + 'accept': 'application/json', + 'content-type': 'application/json', + 'Authorization': f'Bearer {cohere_api_key}' + } - # Interactive list - with gr.Row(): - prompt_selector = gr.Radio(choices=all_prompts, label="Select a prompt") - selected_output = gr.Textbox(label="Selected prompt") - prompt_selector.change(handle_prompt_selection, inputs=prompt_selector, outputs=selected_output) - - # Categorized display - with gr.Accordion("Category 1"): - gr.Markdown("\n".join(prompts_category_1)) - with gr.Accordion("Category 2"): - gr.Markdown("\n".join(prompts_category_2)) - - # Gradio interface setup with tabs - search_tab = gr.Interface( - fn=search_and_display, - inputs=[ - gr.Textbox(label="Search Query", placeholder="Enter your search query here..."), - gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content", "URL", "Type", "Author"], - value=["Title"]), - gr.Textbox(label="Keyword", placeholder="Enter keywords here..."), - gr.Number(label="Page", value=1, precision=0), - gr.Checkbox(visible=False) # Dummy input to match the expected number of arguments - ], - outputs=[ - gr.Dataframe(label="Search Results"), - gr.Textbox(label="Message", visible=False) - ], - title="Search Media Summaries", - description="Search for media (documents, videos, articles) and their summaries in the database. Use keywords for better filtering.", - allow_flagging="never" - ) + cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + logging.debug("cohere: Prompt being sent is {cohere_prompt}") - export_tab = gr.Interface( - fn=export_to_csv, - inputs=[ - gr.Textbox(label="Search Query", placeholder="Enter your search query here..."), - gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"]), - gr.Textbox(label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )", - placeholder="Enter keywords here..."), - gr.Number(label="Page", value=1, precision=0), - gr.Number(label="Results per File", value=1000, precision=0) - ], - outputs="text", - title="Export Search Results to CSV", - description="Export the search results to a CSV file." - ) + data = { + "chat_history": [ + {"role": "USER", "message": cohere_prompt} + ], + "message": "Please provide a summary.", + "model": model, + "connectors": [{"id": "web-search"}] + } - keyword_add_interface = gr.Interface( - fn=add_keyword, - inputs=gr.Textbox(label="Add Keywords (comma-separated)", placeholder="Enter keywords here..."), - outputs="text", - title="Add Keywords", - description="Add one, or multiple keywords to the database.", - allow_flagging="never" - ) + logging.debug("cohere: Submitting request to API endpoint") + print("cohere: Submitting request to API endpoint") + response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) + response_data = response.json() + logging.debug("API Response Data: %s", response_data) - keyword_delete_interface = gr.Interface( - fn=delete_keyword, - inputs=gr.Textbox(label="Delete Keyword", placeholder="Enter keyword to delete here..."), - outputs="text", - title="Delete Keyword", - description="Delete a keyword from the database.", - allow_flagging="never" - ) + if response.status_code == 200: + if 'text' in response_data: + summary = response_data['text'].strip() + logging.debug("cohere: Summarization successful") + print("Summary processed successfully.") + return summary + else: + logging.error("Expected data not found in API response.") + return "Expected data not found in API response." + else: + logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}") + print(f"Failed to process summary, status code {response.status_code}: {response.text}") + return f"cohere: API request failed: {response.text}" - keyword_tab = gr.TabbedInterface( - [keyword_add_interface, keyword_delete_interface], - ["Add Keywords", "Delete Keywords"] - ) + except Exception as e: + logging.error("cohere: Error in processing: %s", str(e)) + return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" - # Combine interfaces into a tabbed interface - tabbed_interface = gr.TabbedInterface([iface, search_tab, export_tab, keyword_tab], - ["Transcription + Summarization", "Search", "Export", "Keywords"]) - # Launch the interface - server_port_variable = 7860 - if server_mode: - tabbed_interface.launch(share=True, server_port=server_port_variable, server_name="http://0.0.0.0") - elif share_public: - tabbed_interface.launch(share=True,) - else: - tabbed_interface.launch(share=False,) +# https://console.groq.com/docs/quickstart +def summarize_with_groq(api_key, input_data, custom_prompt_arg): + loaded_config_data = summarize.load_and_log_configs() + try: + # API key validation + if api_key is None: + logging.info("groq: API key not provided as parameter") + logging.info("groq: Attempting to use API key from config file") + groq_api_key = loaded_config_data['api_keys']['groq'] + + if api_key is None or api_key.strip() == "": + logging.error("groq: API key not found or is empty") + return "groq: API Key Not Provided/Found in Config file or is empty" + + logging.debug(f"groq: Using API Key: {api_key[:5]}...{api_key[-5:]}") + + # Transcript data handling & Validation + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("Groq: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("Groq: Using provided string data for summarization") + data = input_data + + logging.debug(f"Groq: Loaded data: {data}") + logging.debug(f"Groq: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("Groq: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("Groq: Invalid input data format") + # Set the model to be used + groq_model = loaded_config_data['models']['groq'] -# -# -####################################################################################################################### + headers = { + 'Authorization': f'Bearer {api_key}', + 'Content-Type': 'application/json' + } + groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + logging.debug("groq: Prompt being sent is {groq_prompt}") -####################################################################################################################### -# Prompt Sample Box -# + data = { + "messages": [ + { + "role": "user", + "content": groq_prompt + } + ], + "model": groq_model + } -# Sample data -prompts_category_1 = [ - "What are the key points discussed in the video?", - "Summarize the main arguments made by the speaker.", - "Describe the conclusions of the study presented." -] + logging.debug("groq: Submitting request to API endpoint") + print("groq: Submitting request to API endpoint") + response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) -prompts_category_2 = [ - "How does the proposed solution address the problem?", - "What are the implications of the findings?", - "Can you explain the theory behind the observed phenomenon?" -] + response_data = response.json() + logging.debug("API Response Data: %s", response_data) -all_prompts = prompts_category_1 + prompts_category_2 + if response.status_code == 200: + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("groq: Summarization successful") + print("Summarization successful.") + return summary + else: + logging.error("Expected data not found in API response.") + return "Expected data not found in API response." + else: + logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") + return f"groq: API request failed: {response.text}" + except Exception as e: + logging.error("groq: Error in processing: %s", str(e)) + return f"groq: Error occurred while processing summary with groq: {str(e)}" -# Search function -def search_prompts(query): - filtered_prompts = [prompt for prompt in all_prompts if query.lower() in prompt.lower()] - return "\n".join(filtered_prompts) +def summarize_with_openrouter(api_key, input_data, custom_prompt_arg): + loaded_config_data = summarize.load_and_log_configs() + import requests + import json + global openrouter_model, openrouter_api_key + # API key validation + if api_key is None: + logging.info("openrouter: API key not provided as parameter") + logging.info("openrouter: Attempting to use API key from config file") + openrouter_api_key = loaded_config_data['api_keys']['openrouter'] -# Handle prompt selection -def handle_prompt_selection(prompt): - return f"You selected: {prompt}" + if api_key is None or api_key.strip() == "": + logging.error("openrouter: API key not found or is empty") + return "openrouter: API Key Not Provided/Found in Config file or is empty" + logging.debug(f"openai: Using API Key: {api_key[:5]}...{api_key[-5:]}") -# -# -####################################################################################################################### + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("openrouter: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("openrouter: Using provided string data for summarization") + data = input_data + logging.debug(f"openrouter: Loaded data: {data}") + logging.debug(f"openrouter: Type of data: {type(data)}") -####################################################################################################################### -# Local LLM Setup / Running -# + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("openrouter: Summary already exists in the loaded data") + return data['summary'] -# Download latest llamafile from Github - # Example usage - #repo = "Mozilla-Ocho/llamafile" - #asset_name_prefix = "llamafile-" - #output_filename = "llamafile" - #download_latest_llamafile(repo, asset_name_prefix, output_filename) -def download_latest_llamafile(repo, asset_name_prefix, output_filename): - # Globals - global local_llm_model, llamafile - # Check if the file already exists - print("Checking for and downloading Llamafile it it doesn't already exist...") - if os.path.exists(output_filename): - time.sleep(1) - print("Llamafile already exists. Skipping download.") - logging.debug(f"{output_filename} already exists. Skipping download.") - time.sleep(1) - llamafile = output_filename - llamafile_exists = True + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data else: - llamafile_exists = False + raise ValueError("Invalid input data format") - if llamafile_exists == True: - pass + config = configparser.ConfigParser() + file_path = 'config.txt' + + # Check if the file exists in the specified path + if os.path.exists(file_path): + config.read(file_path) + elif os.path.exists('config.txt'): # Check in the current directory + config.read('../config.txt') else: - # Get the latest release information - latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" - response = requests.get(latest_release_url) - if response.status_code != 200: - raise Exception(f"Failed to fetch latest release info: {response.status_code}") + print("config.txt not found in the specified path or current directory.") - latest_release_data = response.json() - tag_name = latest_release_data['tag_name'] + openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}" - # Get the release details using the tag name - release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" - response = requests.get(release_details_url) - if response.status_code != 200: - raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") + try: + logging.debug("openrouter: Submitting request to API endpoint") + print("openrouter: Submitting request to API endpoint") + response = requests.post( + url="https://openrouter.ai/api/v1/chat/completions", + headers={ + "Authorization": f"Bearer {openrouter_api_key}", + }, + data=json.dumps({ + "model": f"{openrouter_model}", + "messages": [ + {"role": "user", "content": openrouter_prompt} + ] + }) + ) - release_data = response.json() - assets = release_data.get('assets', []) + response_data = response.json() + logging.debug("API Response Data: %s", response_data) - # Find the asset with the specified prefix - asset_url = None - for asset in assets: - if re.match(f"{asset_name_prefix}.*", asset['name']): - asset_url = asset['browser_download_url'] - break + if response.status_code == 200: + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("openrouter: Summarization successful") + print("openrouter: Summarization successful.") + return summary + else: + logging.error("openrouter: Expected data not found in API response.") + return "openrouter: Expected data not found in API response." + else: + logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}") + return f"openrouter: API request failed: {response.text}" + except Exception as e: + logging.error("openrouter: Error in processing: %s", str(e)) + return f"openrouter: Error occurred while processing summary with openrouter: {str(e)}" - if not asset_url: - raise Exception(f"No asset found with prefix {asset_name_prefix}") +def summarize_with_huggingface(api_key, input_data, custom_prompt_arg): + loaded_config_data = summarize.load_and_log_configs() + global huggingface_api_key + logging.debug(f"huggingface: Summarization process starting...") + try: + # API key validation + if api_key is None: + logging.info("HuggingFace: API key not provided as parameter") + logging.info("HuggingFace: Attempting to use API key from config file") + huggingface_api_key = loaded_config_data['api_keys']['openai'] + + if api_key is None or api_key.strip() == "": + logging.error("HuggingFace: API key not found or is empty") + return "HuggingFace: API Key Not Provided/Found in Config file or is empty" + + logging.debug(f"HuggingFace: Using API Key: {api_key[:5]}...{api_key[-5:]}") + + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("HuggingFace: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("HuggingFace: Using provided string data for summarization") + data = input_data + + logging.debug(f"HuggingFace: Loaded data: {data}") + logging.debug(f"HuggingFace: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("HuggingFace: Summary already exists in the loaded data") + return data['summary'] + + # If the loaded data is a list of segment dictionaries or a string, proceed with summarization + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("HuggingFace: Invalid input data format") - # Download the asset - response = requests.get(asset_url) - if response.status_code != 200: - raise Exception(f"Failed to download asset: {response.status_code}") + print(f"HuggingFace: lets make sure the HF api key exists...\n\t {api_key}") + headers = { + "Authorization": f"Bearer {api_key}" + } - print("Llamafile downloaded successfully.") - logging.debug("Main: Llamafile downloaded successfully.") + huggingface_model = loaded_config_data['models']['huggingface'] + API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}" - # Save the file - with open(output_filename, 'wb') as file: - file.write(response.content) + huggingface_prompt = f"{text}\n\n\n\n{custom_prompt_arg}" + logging.debug("huggingface: Prompt being sent is {huggingface_prompt}") + data = { + "inputs": text, + "parameters": {"max_length": 512, "min_length": 100} # You can adjust max_length and min_length as needed + } - logging.debug(f"Downloaded {output_filename} from {asset_url}") - print(f"Downloaded {output_filename} from {asset_url}") + print(f"huggingface: lets make sure the HF api key is the same..\n\t {huggingface_api_key}") - # Check to see if the LLM already exists, and if not, download the LLM - print("Checking for and downloading LLM from Huggingface if needed...") - logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") - mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile" - Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" - Phi_3_mini_4k_instruct_Q8_0_llamafile = "Phi-3-mini-4k-instruct.Q8_0.llamafile" - meta_Llama_3_8B_Instruct_Q8_0_llamafile = 'Meta-Llama-3-8B-Instruct.Q8_0.llamafile' + logging.debug("huggingface: Submitting request...") - available_models = [] + response = requests.post(API_URL, headers=headers, json=data) - # Check for existence of model files - if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): - available_models.append(mistral_7b_instruct_v0_2_q8_0_llamafile) - print("Mistral-7B-Instruct-v0.2.Q8_0.llamafile already exists. Skipping download.") - if os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8): - available_models.append(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8) - print("Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8_0.gguf already exists. Skipping download.") - if os.path.exists(Phi_3_mini_4k_instruct_Q8_0_llamafile): - available_models.append(Phi_3_mini_4k_instruct_Q8_0_llamafile) - print("Phi-3-mini-4k-instruct-Q8_0.llamafile already exists. Skipping download.") - if os.path.exists(meta_Llama_3_8B_Instruct_Q8_0_llamafile): - available_models.append(meta_Llama_3_8B_Instruct_Q8_0_llamafile) - print("Meta-Llama-3-8B-Instruct.Q8_0.llamafile already exists. Skipping download.") - - # If no models are available, download the models - if not available_models: - user_choice_main = input("Would you like to download an LLM model? (Y/N): ") - elif available_models: - user_choice_main = input("\nSeems you already have a model available, would you like to download another LLM model? (Y/N): ") - - - if user_choice_main.lower() == "y": - logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") - time.sleep(1) - dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ") - if dl_check.lower == "n" or "2": - exit() + if response.status_code == 200: + summary = response.json()[0]['summary_text'] + logging.debug("huggingface: Summarization successful") + print("Summarization successful.") + return summary else: - llm_choice = input("\nWhich LLM model would you like to download?\n\n1. Mistral-7B-Instruct-v0.2-GGUF \n2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) \n3. Microsoft Phi3-Mini-128k 3.8B): \n\nPress '1', '2', or '3' to specify:\n\n ") - while llm_choice != "1" and llm_choice != "2" and llm_choice != "3": - print("Invalid choice. Please try again.") - - if llm_choice == "1": - print("Downloading the Mistral-7B-Instruct-v0.2 LLM from Huggingface...") - print("Gonna be a bit...") - print("Like seriously, an 8GB file...(don't say I didn't warn you...)") - time.sleep(2) - mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" - llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 - llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" - llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile" - download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) - local_llm_model = "mistral-7b-instruct-v0.2.Q8_0.llamafile" + logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}") + return f"Failed to process summary, status code {response.status_code}: {response.text}" + except Exception as e: + logging.error("huggingface: Error in processing: %s", str(e)) + print(f"Error occurred while processing summary with huggingface: {str(e)}") + return None - elif llm_choice == "2": - print("Downloading the samantha-mistra-instruct-7b-bulleted-notes LLM from Huggingface...") - print("Gonna be a bit...") - print("Like seriously, an 8GB file...(don't say I didn't warn you...)") - time.sleep(2) - samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" - llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 - llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" - llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" - download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) - local_llm_model = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" - elif llm_choice == "3": - print("Downloading MS Phi-3-4k-3.8B LLM from Huggingface...") - print("Gonna be a bit...") - print("Like seriously, a 4GB file...(don't say I didn't warn you...)") - time.sleep(2) - Phi_3_mini_4k_instruct_Q8_0_gguf_sha256 = "1b51fc72fda221dd7b4d3e84603db37fbb1ce53c17f2e7583b7026d181b8d20f" - llm_download_model_hash = Phi_3_mini_4k_instruct_Q8_0_gguf_sha256 - llamafile_llm_output_filename = "Phi-3-mini-4k-instruct.Q8_0.llamafile" - llamafile_llm_url = "https://huggingface.co/Mozilla/Phi-3-mini-4k-instruct-llamafile/resolve/main/Phi-3-mini-4k-instruct.Q8_0.llamafile?download=true" - download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) - local_llm_model = "Phi-3-mini-4k-instruct-Q8_0.llamafile" - - elif llm_choice == "4": - print("Downloading the Llama-3-8B LLM from Huggingface...") - print("Gonna be a bit...") - print("Like seriously, a 8GB file...(don't say I didn't warn you...)") - time.sleep(2) - meta_Llama_3_8B_Instruct_Q8_0_lamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" - llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_lamafile_sha256 - llamafile_llm_output_filename = "Meta-Llama-3-8B-Instruct.Q8_0.llamafile" - llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true" - download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) - local_llm_model = "Meta-Llama-3-8B-Instruct.Q8_0.llamafile" +def summarize_with_deepseek(api_key, input_data, custom_prompt_arg): + loaded_config_data = summarize.load_and_log_configs() + try: + # API key validation + if api_key is None or api_key.strip() == "": + logging.info("DeepSeek: API key not provided as parameter") + logging.info("DeepSeek: Attempting to use API key from config file") + api_key = loaded_config_data['api_keys']['deepseek'] + + if api_key is None or api_key.strip() == "": + logging.error("DeepSeek: API key not found or is empty") + return "DeepSeek: API Key Not Provided/Found in Config file or is empty" + + logging.debug(f"DeepSeek: Using API Key: {api_key[:5]}...{api_key[-5:]}") + + # Input data handling + if isinstance(input_data, str) and os.path.isfile(input_data): + logging.debug("DeepSeek: Loading json data for summarization") + with open(input_data, 'r') as file: + data = json.load(file) + else: + logging.debug("DeepSeek: Using provided string data for summarization") + data = input_data + + logging.debug(f"DeepSeek: Loaded data: {data}") + logging.debug(f"DeepSeek: Type of data: {type(data)}") + + if isinstance(data, dict) and 'summary' in data: + # If the loaded data is a dictionary and already contains a summary, return it + logging.debug("DeepSeek: Summary already exists in the loaded data") + return data['summary'] + + # Text extraction + if isinstance(data, list): + segments = data + text = extract_text_from_segments(segments) + elif isinstance(data, str): + text = data + else: + raise ValueError("DeepSeek: Invalid input data format") - else: - print("Invalid choice. Please try again.") - else: - pass - if available_models: - print("\n\nAvailable models:") - for idx, model in enumerate(available_models, start=1): - print(f"{idx}. {model}") - user_choice = input("\nWhich model would you like to use? Please enter the corresponding number: ") - while not user_choice.isdigit() or int(user_choice) not in range(1, len(available_models) + 1): - print("Invalid choice. Please try again.") - user_choice = input("Which model would you like to use? Please enter the corresponding number: ") - user_answer = available_models[int(user_choice) - 1] - local_llm_model = user_answer - print(f"You have chosen to use: {user_answer}") - else: - print("No models available/Found.") - print("Please run the script again and select a model, or download one. Exiting...") - exit() + deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat" - return llamafile, user_answer + headers = { + 'Authorization': f'Bearer {api_key}', + 'Content-Type': 'application/json' + } + logging.debug( + f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}") + logging.debug("openai: Preparing data + prompt for submittal") + deepseek_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + data = { + "model": deepseek_model, + "messages": [ + {"role": "system", "content": "You are a professional summarizer."}, + {"role": "user", "content": deepseek_prompt} + ], + "stream": False, + "temperature": 0.8 + } -def download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5): - temp_path = dest_path + '.tmp' + logging.debug("DeepSeek: Posting request") + response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data) - for attempt in range(max_retries): - try: - # Check if a partial download exists and get its size - resume_header = {} - if os.path.exists(temp_path): - resume_header = {'Range': f'bytes={os.path.getsize(temp_path)}-'} + if response.status_code == 200: + response_data = response.json() + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("DeepSeek: Summarization successful") + return summary + else: + logging.warning("DeepSeek: Summary not found in the response data") + return "DeepSeek: Summary not available" + else: + logging.error(f"DeepSeek: Summarization failed with status code {response.status_code}") + logging.error(f"DeepSeek: Error response: {response.text}") + return f"DeepSeek: Failed to process summary. Status code: {response.status_code}" + except Exception as e: + logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True) + return f"DeepSeek: Error occurred while processing summary: {str(e)}" - response = requests.get(url, stream=True, headers=resume_header) - response.raise_for_status() - # Get the total file size from headers - total_size = int(response.headers.get('content-length', 0)) - initial_pos = os.path.getsize(temp_path) if os.path.exists(temp_path) else 0 +# +# +####################################################################################################################### - mode = 'ab' if 'Range' in response.headers else 'wb' - with open(temp_path, mode) as temp_file, tqdm( - total=total_size, unit='B', unit_scale=True, desc=dest_path, initial=initial_pos, ascii=True - ) as pbar: - for chunk in response.iter_content(chunk_size=8192): - if chunk: # filter out keep-alive new chunks - temp_file.write(chunk) - pbar.update(len(chunk)) - # Verify the checksum if provided - if expected_checksum: - if not verify_checksum(temp_path, expected_checksum): - os.remove(temp_path) - raise ValueError("Downloaded file's checksum does not match the expected checksum") - # Move the file to the final destination - os.rename(temp_path, dest_path) - print("Download complete and verified!") - return dest_path - except Exception as e: - print(f"Attempt {attempt + 1} failed: {e}") - if attempt < max_retries - 1: - print(f"Retrying in {delay} seconds...") - time.sleep(delay) - else: - print("Max retries reached. Download failed.") - raise +# System_Checks_Lib.py +######################################### +# System Checks Library +# This library is used to check the system for the necessary dependencies to run the script. +# It checks for the OS, the availability of the GPU, and the availability of the ffmpeg executable. +# If the GPU is available, it asks the user if they would like to use it for processing. +# If ffmpeg is not found, it asks the user if they would like to download it. +# The script will exit if the user chooses not to download ffmpeg. +#### +#################### +# Function List +# +# 1. platform_check() +# 2. cuda_check() +# 3. decide_cpugpu() +# 4. check_ffmpeg() +# 5. download_ffmpeg() +# +#################### -def verify_checksum(file_path, expected_checksum): - sha256_hash = hashlib.sha256() - with open(file_path, 'rb') as f: - for byte_block in iter(lambda: f.read(4096), b''): - sha256_hash.update(byte_block) - return sha256_hash.hexdigest() == expected_checksum -# FIXME - Doesn't work... -# Function to close out llamafile process on script exit. -def cleanup_process(): - global process - if process is not None: - process.terminate() - process = None - print("Terminated the external process") -def signal_handler(sig, frame): - logging.info('Signal handler called with signal: %s', sig) - cleanup_process() - sys.exit(0) +# Import necessary libraries +import os +import platform +import subprocess +import shutil +import zipfile +import logging -# Function to launch the llamafile in an external terminal window -# local_llm_model = Whatever the local model is -def local_llm_function(): - repo = "Mozilla-Ocho/llamafile" - asset_name_prefix = "llamafile-" - useros = os.name - if useros == "nt": - output_filename = "llamafile.exe" +####################################################################################################################### +# Function Definitions +# + +def platform_check(): + global userOS + if platform.system() == "Linux": + print("Linux OS detected \n Running Linux appropriate commands") + userOS = "Linux" + elif platform.system() == "Windows": + print("Windows OS detected \n Running Windows appropriate commands") + userOS = "Windows" else: - output_filename = "llamafile" - print( - "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while") - print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") - print("WARNING - Hope you're comfy. Or it's already downloaded.") - time.sleep(6) - logging.debug("Main: Checking and downloading Llamafile from Github if needed...") - llamafile, user_answer = download_latest_llamafile(repo, asset_name_prefix, output_filename) - logging.debug("Main: Llamafile downloaded successfully.") + print("Other OS detected \n Maybe try running things manually?") + exit() - # Launch the llamafile in an external process with the specified argument - arguments = ["-m", user_answer] + +# Check for NVIDIA GPU and CUDA availability +def cuda_check(): + global processing_choice try: - logging.info("Main: Launching the LLM (llamafile) in an external terminal window...") - if useros == "nt": - launch_in_new_terminal_windows(llamafile, arguments) - elif useros == "posix": - launch_in_new_terminal_linux(llamafile, arguments) + # Run nvidia-smi to capture its output + nvidia_smi_output = subprocess.check_output("nvidia-smi", shell=True).decode() + + # Look for CUDA version in the output + if "CUDA Version" in nvidia_smi_output: + cuda_version = next( + (line.split(":")[-1].strip() for line in nvidia_smi_output.splitlines() if "CUDA Version" in line), + "Not found") + print(f"NVIDIA GPU with CUDA Version {cuda_version} is available.") + processing_choice = "cuda" else: - launch_in_new_terminal_mac(llamafile, arguments) - # FIXME - pid doesn't exist in this context - #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") - atexit.register(cleanup_process) + print("CUDA is not installed or configured correctly.") + processing_choice = "cpu" + + except subprocess.CalledProcessError as e: + print(f"Failed to run 'nvidia-smi': {str(e)}") + processing_choice = "cpu" except Exception as e: - logging.error(f"Failed to launch the process: {e}") - print(f"Failed to launch the process: {e}") + print(f"An error occurred: {str(e)}") + processing_choice = "cpu" + # Optionally, check for the CUDA_VISIBLE_DEVICES env variable as an additional check + if "CUDA_VISIBLE_DEVICES" in os.environ: + print("CUDA_VISIBLE_DEVICES is set:", os.environ["CUDA_VISIBLE_DEVICES"]) + else: + print("CUDA_VISIBLE_DEVICES not set.") -def launch_in_new_terminal_windows(executable, args): - command = f'start cmd /k "{executable} {" ".join(args)}"' - process = subprocess.run(command, shell=True) -# FIXME -def launch_in_new_terminal_linux(executable, args): - command = f'gnome-terminal -- {executable} {" ".join(args)}' - process = subprocess.run(command, shell=True) +# Ask user if they would like to use either their GPU or their CPU for transcription +def decide_cpugpu(): + global processing_choice + processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ") + if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"): + print("You've chosen to use the GPU.") + logging.debug("GPU is being used for processing") + processing_choice = "cuda" + elif processing_input.lower() == "cpu" or processing_input == "2": + print("You've chosen to use the CPU.") + logging.debug("CPU is being used for processing") + processing_choice = "cpu" + else: + print("Invalid choice. Please select either GPU or CPU.") -# FIXME -def launch_in_new_terminal_mac(executable, args): - command = f'open -a Terminal.app {executable} {" ".join(args)}' - process = subprocess.run(command, shell=True) -# -# -####################################################################################################################### +# check for existence of ffmpeg +def check_ffmpeg(): + if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")): + logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder") + pass + else: + logging.debug("ffmpeg not installed on the local system/in local PATH") + print( + "ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of " + "choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/") + if userOS == "Windows": + download_ffmpeg() + elif userOS == "Linux": + print( + "You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg'," + "'dnf install ffmpeg' or 'pacman', etc.") + else: + logging.debug("running an unsupported OS") + print("You're running an unspported/Un-tested OS") + exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)") + if exit_script == "y" or "yes" or "1": + exit() -####################################################################################################################### -# Main() -# +# Download ffmpeg +def download_ffmpeg(): + user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ") + if user_choice.lower() in ['yes', 'y', '1']: + print("Downloading ffmpeg") + url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip" + response = requests.get(url) -def main(input_path, api_name=None, api_key=None, - num_speakers=2, - whisper_model="small.en", - offset=0, - vad_filter=False, - download_video_flag=False, - custom_prompt=None, - overwrite=False, - rolling_summarization=False, - detail=0.01, - keywords=None, - chunk_summarization=False, - chunk_duration=None, - words_per_second=None, - llm_model=None, - time_based=False): + if response.status_code == 200: + print("Saving ffmpeg zip file") + logging.debug("Saving ffmpeg zip file") + zip_path = "ffmpeg-release-essentials.zip" + with open(zip_path, 'wb') as file: + file.write(response.content) + + logging.debug("Extracting the 'ffmpeg.exe' file from the zip") + print("Extracting ffmpeg.exe from zip file to '/Bin' folder") + with zipfile.ZipFile(zip_path, 'r') as zip_ref: + # Find the ffmpeg.exe file within the zip + ffmpeg_path = None + for file_info in zip_ref.infolist(): + if file_info.filename.endswith("ffmpeg.exe"): + ffmpeg_path = file_info.filename + break + + if ffmpeg_path is None: + logging.error("ffmpeg.exe not found in the zip file.") + print("ffmpeg.exe not found in the zip file.") + return - global detail_level_number, summary, audio_file, detail_level, summary + logging.debug("checking if the './Bin' folder exists, creating if not") + bin_folder = "Bin" + if not os.path.exists(bin_folder): + logging.debug("Creating a folder for './Bin', it didn't previously exist") + os.makedirs(bin_folder) - detail_level = detail + logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder") + zip_ref.extract(ffmpeg_path, path=bin_folder) - print(f"Keywords: {keywords}") + logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder") + src_path = os.path.join(bin_folder, ffmpeg_path) + dst_path = os.path.join(bin_folder, "ffmpeg.exe") + shutil.move(src_path, dst_path) - if input_path is None and args.user_interface: - return [] - start_time = time.monotonic() - paths = [] # Initialize paths as an empty list - if os.path.isfile(input_path) and input_path.endswith('.txt'): - logging.debug("MAIN: User passed in a text file, processing text file...") - paths = read_paths_from_file(input_path) - elif os.path.exists(input_path): - logging.debug("MAIN: Local file path detected") - paths = [input_path] - elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict: - logging.debug("MAIN: YouTube playlist detected") - print( - "\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a " - "text file that you can then pass into this script though! (It may not work... playlist support seems " - "spotty)" + """\n\n\tpython Get_Playlist_URLs.py \n\n\tThen,\n\n\tpython - diarizer.py \n\n""") - return + logging.debug("Removing ffmpeg zip file") + print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)") + os.remove(zip_path) + + logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.") + print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.") + else: + logging.error("Failed to download the zip file.") + print("Failed to download the zip file.") else: - paths = [input_path] - results = [] + logging.debug("User chose to not download ffmpeg") + print("ffmpeg will not be downloaded.") + +# +# +####################################################################################################################### +import tiktoken +def openai_tokenize(text: str) -> List[str]: + encoding = tiktoken.encoding_for_model('gpt-4-turbo') + return encoding.encode(text) - for path in paths: - try: - if path.startswith('http'): - logging.debug("MAIN: URL Detected") - info_dict = get_youtube(path) - json_file_path = None - if info_dict: - logging.debug("MAIN: Creating path for video file...") - download_path = create_download_directory(info_dict['title']) - logging.debug("MAIN: Path created successfully\n MAIN: Now Downloading video from yt_dlp...") - try: - video_path = download_video(path, download_path, info_dict, download_video_flag) - except RuntimeError as e: - logging.error(f"Error downloading video: {str(e)}") - # FIXME - figure something out for handling this situation.... - continue - logging.debug("MAIN: Video downloaded successfully") - logging.debug("MAIN: Converting video file to WAV...") - audio_file = convert_to_wav(video_path, offset) - logging.debug("MAIN: Audio file converted successfully") - else: - if os.path.exists(path): - logging.debug("MAIN: Local file path detected") - download_path, info_dict, audio_file = process_local_file(path) - else: - logging.error(f"File does not exist: {path}") - continue - - if info_dict: - logging.debug("MAIN: Creating transcription file from WAV") - segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter) - transcription_result = { - 'video_path': path, - 'audio_file': audio_file, - 'transcription': segments - } - results.append(transcription_result) - logging.info(f"MAIN: Transcription complete: {audio_file}") - # Perform rolling summarization based on API Name, detail level, and if an API key exists - # Will remove the API key once rolling is added for llama.cpp - # FIXME - Add input for model name for tabby and vllm +# Video_DL_Ingestion_Lib.py +######################################### +# Video Downloader and Ingestion Library +# This library is used to handle downloading videos from YouTube and other platforms. +# It also handles the ingestion of the videos into the database. +# It uses yt-dlp to extract video information and download the videos. +#### - if rolling_summarization: - logging.info("MAIN: Rolling Summarization") - api_key = openai_api_key - global client - client = OpenAI(api_key) - # Extract the text from the segments - text = extract_text_from_segments(segments) +#################### +# Function List +# +# 1. get_video_info(url) +# 2. create_download_directory(title) +# 3. sanitize_filename(title) +# 4. normalize_title(title) +# 5. get_youtube(video_url) +# 6. get_playlist_videos(playlist_url) +# 7. download_video(video_url, download_path, info_dict, download_video_flag) +# 8. save_to_file(video_urls, filename) +# 9. save_summary_to_file(summary, file_path) +# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, chunk_summarization, chunk_duration_input, words_per_second_input) +# +# +#################### - # Set the json_file_path - json_file_path = audio_file.replace('.wav', '.segments.json') - # Perform rolling summarization - summary = summarize_with_detail_openai(text, detail=detail_level, verbose=False) +# Import necessary libraries to run solo for testing +from datetime import datetime +import json +import logging +import os +import re +import subprocess +import sys +import unicodedata +# 3rd-Party Imports +import yt_dlp - # Handle the summarized output - if summary: - transcription_result['summary'] = summary - logging.info("MAIN: Rolling Summarization successful.") - save_summary_to_file(summary, json_file_path) - else: - logging.warning("MAIN: Rolling Summarization failed.") - - # FIXME - fucking mess of a function. - # # Time-based Summarization - # elif args.time_based: - # logging.info("MAIN: Time-based Summarization") - # global time_based_value - # time_based_value = args.time_based - # # Set the json_file_path - # json_file_path = audio_file.replace('.wav', '.segments.json') - # - # # Perform time-based summarization - # summary = time_chunk_summarize(api_name, api_key, segments, args.time_based, custom_prompt, - # llm_model) - # - # # Handle the summarized output - # if summary: - # transcription_result['summary'] = summary - # logging.info("MAIN: Time-based Summarization successful.") - # save_summary_to_file(summary, json_file_path) - # else: - # logging.warning("MAIN: Time-based Summarization failed.") - - # Perform chunk summarization - FIXME - elif chunk_summarization: - logging.info("MAIN: Chunk Summarization") - - # Set the json_file_path - json_file_path = audio_file.replace('.wav', '.segments.json') - - # Perform chunk summarization - summary = summarize_chunks(api_name, api_key, segments, chunk_duration, words_per_second) - - # Handle the summarized output - if summary: - transcription_result['summary'] = summary - logging.info("MAIN: Chunk Summarization successful.") - save_summary_to_file(summary, json_file_path) - else: - logging.warning("MAIN: Chunk Summarization failed.") - # Perform summarization based on the specified API - elif api_name: - logging.debug(f"MAIN: Summarization being performed by {api_name}") - json_file_path = audio_file.replace('.wav', '.segments.json') - if api_name.lower() == 'openai': - openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', - fallback=None) - try: - logging.debug(f"MAIN: trying to summarize with openAI") - summary = summarize_with_openai(openai_api_key, json_file_path, custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - elif api_name.lower() == "anthropic": - anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key', - fallback=None) - try: - logging.debug(f"MAIN: Trying to summarize with anthropic") - summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model, - custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - elif api_name.lower() == "cohere": - cohere_api_key = os.getenv('COHERE_TOKEN').replace('"', '') if api_key is None else api_key - try: - logging.debug(f"MAIN: Trying to summarize with cohere") - summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model, custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - elif api_name.lower() == "groq": - groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None) - try: - logging.debug(f"MAIN: Trying to summarize with Groq") - summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - elif api_name.lower() == "llama": - llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None) - llama_ip = llama_api_IP - try: - logging.debug(f"MAIN: Trying to summarize with Llama.cpp") - summary = summarize_with_llama(llama_ip, json_file_path, llama_token, custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - elif api_name.lower() == "kobold": - kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None) - kobold_ip = kobold_api_IP - try: - logging.debug(f"MAIN: Trying to summarize with kobold.cpp") - summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - elif api_name.lower() == "ooba": - ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None) - ooba_ip = ooba_api_IP - try: - logging.debug(f"MAIN: Trying to summarize with oobabooga") - summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - elif api_name.lower() == "tabbyapi": - tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None) - tabbyapi_ip = tabby_api_IP - try: - logging.debug(f"MAIN: Trying to summarize with tabbyapi") - tabby_model = llm_model - summary = summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, json_file_path, tabby_model, - custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - elif api_name.lower() == "vllm": - logging.debug(f"MAIN: Trying to summarize with VLLM") - summary = summarize_with_vllm(vllm_api_url, vllm_api_key, llm_model, json_file_path, - custom_prompt) - elif api_name.lower() == "local-llm": - logging.debug(f"MAIN: Trying to summarize with the local LLM, Mistral Instruct v0.2") - local_llm_url = "http://127.0.0.1:8080" - summary = summarize_with_local_llm(json_file_path, custom_prompt) - elif api_name.lower() == "huggingface": - huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key', - fallback=None) - try: - logging.debug(f"MAIN: Trying to summarize with huggingface") - summarize_with_huggingface(huggingface_api_key, json_file_path, custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " - else: - logging.warning(f"Unsupported API: {api_name}") - summary = None - if summary: - transcription_result['summary'] = summary - logging.info(f"Summary generated using {api_name} API") - save_summary_to_file(summary, json_file_path) - elif final_summary: - logging.info(f"Rolling summary generated using {api_name} API") - logging.info(f"Final Rolling summary is {final_summary}\n\n") - save_summary_to_file(final_summary, json_file_path) - else: - logging.warning(f"Failed to generate summary using {api_name} API") - else: - logging.info("MAIN: #2 - No API specified. Summarization will not be performed") - - # Add media to the database - add_media_with_keywords( - url=path, - title=info_dict.get('title', 'Untitled'), - media_type='video', - content=' '.join([segment['text'] for segment in segments]), - keywords=','.join(keywords), - prompt=custom_prompt or 'No prompt provided', - summary=summary or 'No summary provided', - transcription_model=whisper_model, - author=info_dict.get('uploader', 'Unknown'), - ingestion_date=datetime.now().strftime('%Y-%m-%d') - ) +####################################################################################################################### +# Function Definitions +# +def get_video_info(url: str) -> dict: + ydl_opts = { + 'quiet': True, + 'no_warnings': True, + 'skip_download': True, + } + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + try: + info_dict = ydl.extract_info(url, download=False) + return info_dict except Exception as e: - logging.error(f"Error processing {path}: {str(e)}") - continue - except Exception as e: - logging.error(f"Error processing path: {path}") - logging.error(str(e)) - continue - # end_time = time.monotonic() - # print("Total program execution time: " + timedelta(seconds=end_time - start_time)) + logging.error(f"Error extracting video info: {e}") + return None - return results -def signal_handler(signal, frame): - logging.info('Signal received, exiting...') - sys.exit(0) +def create_download_directory(title): + base_dir = "Results" + # Remove characters that are illegal in Windows filenames and normalize + safe_title = normalize_title(title) + logging.debug(f"{title} successfully normalized") + session_path = os.path.join(base_dir, safe_title) + if not os.path.exists(session_path): + os.makedirs(session_path, exist_ok=True) + logging.debug(f"Created directory for downloaded video: {session_path}") + else: + logging.debug(f"Directory already exists for downloaded video: {session_path}") + return session_path -############################## MAIN ############################## -# -# -if __name__ == "__main__": - # Register signal handlers - signal.signal(signal.SIGINT, signal_handler) - signal.signal(signal.SIGTERM, signal_handler) - # Establish logging baseline - logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') - parser = argparse.ArgumentParser( - description='Transcribe and summarize videos.', - epilog=''' -Sample commands: - 1. Simple Sample command structure: - summarize.py -api openai -k tag_one tag_two tag_three +def sanitize_filename(filename): + # Remove invalid characters and replace spaces with underscores + sanitized = re.sub(r'[<>:"/\\|?*]', '', filename) + sanitized = re.sub(r'\s+', ' ', sanitized).strip() + return sanitized - 2. Rolling Summary Sample command structure: - summarize.py -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three - 3. FULL Sample command structure: - summarize.py -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three +def normalize_title(title): + # Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters + title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii') + title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', + '').replace( + '<', '').replace('>', '').replace('|', '') + return title - 4. Sample command structure for UI: - summarize.py -gui -log DEBUG - ''', - formatter_class=argparse.RawTextHelpFormatter - ) - parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?') - parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio') - parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)') - parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)') - parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)') - parser.add_argument('-wm', '--whisper_model', type=str, default='small.en', - help='Whisper model (default: small.en)') - parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') - parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') - parser.add_argument('-log', '--log_level', type=str, default='INFO', - choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') - parser.add_argument('-gui', '--user_interface', action='store_true', help="Launch the Gradio user interface") - parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') - parser.add_argument('-prompt', '--custom_prompt', type=str, - help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just ' - 'modify the script itself...)') - parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files') - parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization') - parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, ' - 'defines the chunk size.\n Default is 0.01(lots ' - 'of chunks) -> 1.00 (few chunks)\n Currently ' - 'only OpenAI works. ', - default=0.01, ) - # FIXME - This or time based... - parser.add_argument('--chunk_duration', type=int, default=DEFAULT_CHUNK_DURATION, - help='Duration of each chunk in seconds') - # FIXME - This or chunk_duration.... -> Maybe both??? - parser.add_argument('-time', '--time_based', type=int, - help='Enable time-based summarization and specify the chunk duration in seconds (minimum 60 seconds, increments of 30 seconds)') - parser.add_argument('-model', '--llm_model', type=str, default='', - help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)') - parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'], - help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)') - parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)') - parser.add_argument('--local_llm', action='store_true', help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)") - parser.add_argument('--server_mode', action='store_true', help='Run in server mode (This exposes the GUI/Server to the network)') - parser.add_argument('--share_public', type=int, default=7860, help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)") - parser.add_argument('--port', type=int, default=7860, help='Port to run the server on') - # parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file') - args = parser.parse_args() - share_public = args.share_public - server_mode = args.server_mode - server_port = args.port +def get_youtube(video_url): + ydl_opts = { + 'format': 'bestaudio[ext=m4a]', + 'noplaylist': False, + 'quiet': True, + 'extract_flat': True + } + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + logging.debug("About to extract youtube info") + info_dict = ydl.extract_info(video_url, download=False) + logging.debug("Youtube info successfully extracted") + return info_dict - ########## Logging setup - logger = logging.getLogger() - logger.setLevel(getattr(logging, args.log_level)) - # Create console handler - console_handler = logging.StreamHandler() - console_handler.setLevel(getattr(logging, args.log_level)) - console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') - console_handler.setFormatter(console_formatter) - logger.addHandler(console_handler) +def get_playlist_videos(playlist_url): + ydl_opts = { + 'extract_flat': True, + 'skip_download': True, + 'quiet': True + } - if args.log_file: - # Create file handler - file_handler = logging.FileHandler(args.log_file) - file_handler.setLevel(getattr(logging, args.log_level)) - file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') - file_handler.setFormatter(file_formatter) - logger.addHandler(file_handler) - logger.info(f"Log file created at: {args.log_file}") + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + info = ydl.extract_info(playlist_url, download=False) - ########## Custom Prompt setup - custom_prompt = args.custom_prompt + if 'entries' in info: + video_urls = [entry['url'] for entry in info['entries']] + playlist_title = info['title'] + return video_urls, playlist_title + else: + print("No videos found in the playlist.") + return [], None - if custom_prompt is None or custom_prompt == "": - logging.debug("No custom prompt defined, will use default") - args.custom_prompt = ("\n\nabove is the transcript of a video " - "Please read through the transcript carefully. Identify the main topics that are " - "discussed over the course of the transcript. Then, summarize the key points about each " - "main topic in a concise bullet point. The bullet points should cover the key " - "information conveyed about each topic in the video, but should be much shorter than " - "the full transcript. Please output your bullet point summary inside " - "tags.") - custom_prompt = args.custom_prompt - print("No custom prompt defined, will use default") - else: - logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt") - print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}") - # Check if the user wants to use the local LLM from the script - local_llm = args.local_llm - logging.info(f'Local LLM flag: {local_llm}') +def download_video(video_url, download_path, info_dict, download_video_flag): + global video_file_path, ffmpeg_path + global audio_file_path - args.user_interface = True - if args.user_interface: -# if local_llm: -# local_llm_function() -# time.sleep(3) -# webbrowser.open_new_tab('http://127.0.0.1:7860') - launch_ui(demo_mode=False) - else: - if not args.input_path: - parser.print_help() - sys.exit(1) + # Normalize Video Title name + logging.debug("About to normalize downloaded video title") + if 'title' not in info_dict or 'ext' not in info_dict: + logging.error("info_dict is missing 'title' or 'ext'") + return None - logging.info('Starting the transcription and summarization process.') - logging.info(f'Input path: {args.input_path}') - logging.info(f'API Name: {args.api_name}') - logging.info(f'Number of speakers: {args.num_speakers}') - logging.info(f'Whisper model: {args.whisper_model}') - logging.info(f'Offset: {args.offset}') - logging.info(f'VAD filter: {args.vad_filter}') - logging.info(f'Log Level: {args.log_level}') - logging.info(f'Demo Mode: {args.demo_mode}') - logging.info(f'Custom Prompt: {args.custom_prompt}') - logging.info(f'Overwrite: {args.overwrite}') - logging.info(f'Rolling Summarization: {args.rolling_summarization}') - logging.info(f'User Interface: {args.user_interface}') - logging.info(f'Video Download: {args.video}') - # logging.info(f'Save File location: {args.output_path}') - # logging.info(f'Log File location: {args.log_file}') + normalized_video_title = normalize_title(info_dict['title']) + video_file_path = os.path.join(download_path, f"{normalized_video_title}.{info_dict['ext']}") - # Get all API keys from the config - api_keys = {key: value for key, value in config.items('API') if key.endswith('_api_key')} + # Check for existence of video file + if os.path.exists(video_file_path): + logging.info(f"Video file already exists: {video_file_path}") + return video_file_path - api_name = args.api_name + # Setup path handling for ffmpeg on different OSs + if sys.platform.startswith('win'): + ffmpeg_path = os.path.join(os.getcwd(), 'Bin', 'ffmpeg.exe') + elif sys.platform.startswith('linux'): + ffmpeg_path = 'ffmpeg' + elif sys.platform.startswith('darwin'): + ffmpeg_path = 'ffmpeg' - # Rolling Summarization will only be performed if an API is specified and the API key is available - # and the rolling summarization flag is set - # - summary = None # Initialize to ensure it's always defined - if args.detail_level == None: - args.detail_level = 0.01 - if args.api_name and args.rolling_summarization and any( - key.startswith(args.api_name) and value is not None for key, value in api_keys.items()): - logging.info(f'MAIN: API used: {args.api_name}') - logging.info('MAIN: Rolling Summarization will be performed.') + if download_video_flag: + video_file_path = os.path.join(download_path, f"{normalized_video_title}.mp4") + ydl_opts_video = { + 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]', + 'outtmpl': video_file_path, + 'ffmpeg_location': ffmpeg_path + } - elif args.api_name: - logging.info(f'MAIN: API used: {args.api_name}') - logging.info('MAIN: Summarization (not rolling) will be performed.') + try: + with yt_dlp.YoutubeDL(ydl_opts_video) as ydl: + logging.debug("yt_dlp: About to download video with youtube-dl") + ydl.download([video_url]) + logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") + if os.path.exists(video_file_path): + return video_file_path + else: + logging.error("yt_dlp: Video file not found after download") + return None + except Exception as e: + logging.error(f"yt_dlp: Error downloading video: {e}") + return None + elif not download_video_flag: + video_file_path = os.path.join(download_path, f"{normalized_video_title}.mp4") + # Set options for video and audio + ydl_opts = { + 'format': 'bestaudio[ext=m4a]', + 'quiet': True, + 'outtmpl': video_file_path + } - else: - logging.info('No API specified. Summarization will not be performed.') + try: + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + logging.debug("yt_dlp: About to download video with youtube-dl") + ydl.download([video_url]) + logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") + if os.path.exists(video_file_path): + return video_file_path + else: + logging.error("yt_dlp: Video file not found after download") + return None + except Exception as e: + logging.error(f"yt_dlp: Error downloading video: {e}") + return None - logging.debug("Platform check being performed...") - platform_check() - logging.debug("CUDA check being performed...") - cuda_check() - logging.debug("ffmpeg check being performed...") - check_ffmpeg() + else: + logging.debug("download_video: Download video flag is set to False and video file path is not found") + return None - llm_model = args.llm_model or None - try: - results = main(args.input_path, api_name=args.api_name, - api_key=args.api_key, - num_speakers=args.num_speakers, - whisper_model=args.whisper_model, - offset=args.offset, - vad_filter=args.vad_filter, - download_video_flag=args.video, - custom_prompt=args.custom_prompt, - overwrite=args.overwrite, - rolling_summarization=args.rolling_summarization, - detail=args.detail_level, - keywords=args.keywords, - chunk_summarization=False, - chunk_duration=None, - words_per_second=None, - llm_model=args.llm_model, - time_based=args.time_based) - logging.info('Transcription process completed.') - atexit.register(cleanup_process) - except Exception as e: - logging.error('An error occurred during the transcription process.') - logging.error(str(e)) - sys.exit(1) +def save_to_file(video_urls, filename): + with open(filename, 'w') as file: + file.write('\n'.join(video_urls)) + print(f"Video URLs saved to {filename}") - finally: - cleanup_process() +# +# +#######################################################################################################################