Spaces:
Running
Running
oceansweep
commited on
Upload 3 files
Browse files
App_Function_Libraries/RAG/Embeddings_Create.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Embeddings_Create.py
|
2 |
+
# Description: Functions for Creating and managing Embeddings in ChromaDB with LLama.cpp/OpenAI/Transformers
|
3 |
+
#
|
4 |
+
# Imports:
|
5 |
+
import logging
|
6 |
+
from typing import List, Dict, Any
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
#
|
10 |
+
# 3rd-Party Imports:
|
11 |
+
import requests
|
12 |
+
from transformers import AutoTokenizer, AutoModel
|
13 |
+
import torch
|
14 |
+
#
|
15 |
+
# Local Imports:
|
16 |
+
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
|
17 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize
|
18 |
+
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
19 |
+
from App_Function_Libraries.Chunk_Lib import chunk_options, improved_chunking_process, determine_chunk_position
|
20 |
+
#
|
21 |
+
#
|
22 |
+
#######################################################################################################################
|
23 |
+
#
|
24 |
+
# Functions:
|
25 |
+
|
26 |
+
# FIXME - Add all globals to summarize.py
|
27 |
+
loaded_config = load_comprehensive_config()
|
28 |
+
embedding_provider = loaded_config['Embeddings']['embedding_provider']
|
29 |
+
embedding_model = loaded_config['Embeddings']['embedding_model']
|
30 |
+
embedding_api_url = loaded_config['Embeddings']['embedding_api_url']
|
31 |
+
embedding_api_key = loaded_config['Embeddings']['embedding_api_key']
|
32 |
+
|
33 |
+
# Embedding Chunking Settings
|
34 |
+
chunk_size = loaded_config['Embeddings']['chunk_size']
|
35 |
+
overlap = loaded_config['Embeddings']['overlap']
|
36 |
+
|
37 |
+
|
38 |
+
# FIXME - Add logging
|
39 |
+
|
40 |
+
# FIXME - refactor/setup to use config file & perform chunking
|
41 |
+
def create_embedding(text: str, provider: str, model: str, api_url: str = None, api_key: str = None) -> List[float]:
|
42 |
+
try:
|
43 |
+
if provider == 'openai':
|
44 |
+
embedding = get_openai_embeddings(text, model)
|
45 |
+
elif provider == 'local':
|
46 |
+
embedding = create_local_embedding(text, model, api_url, api_key)
|
47 |
+
elif provider == 'huggingface':
|
48 |
+
embedding = create_huggingface_embedding(text, model)
|
49 |
+
elif provider == 'llamacpp':
|
50 |
+
embedding = create_llamacpp_embedding(text, api_url)
|
51 |
+
else:
|
52 |
+
raise ValueError(f"Unsupported embedding provider: {provider}")
|
53 |
+
|
54 |
+
if isinstance(embedding, np.ndarray):
|
55 |
+
embedding = embedding.tolist()
|
56 |
+
elif isinstance(embedding, torch.Tensor):
|
57 |
+
embedding = embedding.detach().cpu().numpy().tolist()
|
58 |
+
|
59 |
+
return embedding
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
logging.error(f"Error creating embedding: {str(e)}")
|
63 |
+
raise
|
64 |
+
|
65 |
+
|
66 |
+
def create_huggingface_embedding(text: str, model: str) -> List[float]:
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
68 |
+
model = AutoModel.from_pretrained(model)
|
69 |
+
|
70 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = model(**inputs)
|
73 |
+
|
74 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
75 |
+
return embeddings[0].tolist()
|
76 |
+
|
77 |
+
|
78 |
+
# FIXME
|
79 |
+
def create_stella_embeddings(text: str) -> List[float]:
|
80 |
+
if embedding_provider == 'local':
|
81 |
+
# Load the model and tokenizer
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained("dunzhang/stella_en_400M_v5")
|
83 |
+
model = AutoModel.from_pretrained("dunzhang/stella_en_400M_v5")
|
84 |
+
|
85 |
+
# Tokenize and encode the text
|
86 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
87 |
+
|
88 |
+
# Generate embeddings
|
89 |
+
with torch.no_grad():
|
90 |
+
outputs = model(**inputs)
|
91 |
+
|
92 |
+
# Use the mean of the last hidden state as the sentence embedding
|
93 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
94 |
+
|
95 |
+
return embeddings[0].tolist() # Convert to list for consistency
|
96 |
+
elif embedding_provider == 'openai':
|
97 |
+
return get_openai_embeddings(text, embedding_model)
|
98 |
+
else:
|
99 |
+
raise ValueError(f"Unsupported embedding provider: {embedding_provider}")
|
100 |
+
|
101 |
+
|
102 |
+
def create_llamacpp_embedding(text: str, api_url: str) -> List[float]:
|
103 |
+
response = requests.post(
|
104 |
+
api_url,
|
105 |
+
json={"input": text}
|
106 |
+
)
|
107 |
+
response.raise_for_status()
|
108 |
+
return response.json()['embedding']
|
109 |
+
|
110 |
+
|
111 |
+
def create_local_embedding(text: str, model: str, api_url: str, api_key: str) -> List[float]:
|
112 |
+
response = requests.post(
|
113 |
+
api_url,
|
114 |
+
json={"text": text, "model": model},
|
115 |
+
headers={"Authorization": f"Bearer {api_key}"}
|
116 |
+
)
|
117 |
+
response.raise_for_status()
|
118 |
+
return response.json().get('embedding', None)
|
119 |
+
|
120 |
+
|
121 |
+
def chunk_for_embedding(text: str, file_name: str, api_name, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
|
122 |
+
options = chunk_options.copy()
|
123 |
+
if custom_chunk_options:
|
124 |
+
options.update(custom_chunk_options)
|
125 |
+
|
126 |
+
|
127 |
+
# FIXME
|
128 |
+
if api_name is not None:
|
129 |
+
# Generate summary of the full document
|
130 |
+
full_summary = summarize(text, None, api_name, None, None, None)
|
131 |
+
else:
|
132 |
+
full_summary = "Full document summary not available."
|
133 |
+
|
134 |
+
chunks = improved_chunking_process(text, options)
|
135 |
+
total_chunks = len(chunks)
|
136 |
+
|
137 |
+
chunked_text_with_headers = []
|
138 |
+
for i, chunk in enumerate(chunks, 1):
|
139 |
+
chunk_text = chunk['text']
|
140 |
+
chunk_position = determine_chunk_position(chunk['metadata']['relative_position'])
|
141 |
+
|
142 |
+
chunk_header = f"""
|
143 |
+
Original Document: {file_name}
|
144 |
+
Full Document Summary: {full_summary}
|
145 |
+
Chunk: {i} of {total_chunks}
|
146 |
+
Position: {chunk_position}
|
147 |
+
|
148 |
+
--- Chunk Content ---
|
149 |
+
"""
|
150 |
+
|
151 |
+
full_chunk_text = chunk_header + chunk_text
|
152 |
+
chunk['text'] = full_chunk_text
|
153 |
+
chunk['metadata']['file_name'] = file_name
|
154 |
+
chunked_text_with_headers.append(chunk)
|
155 |
+
|
156 |
+
return chunked_text_with_headers
|
157 |
+
|
158 |
+
|
159 |
+
def create_openai_embedding(text: str, model: str) -> List[float]:
|
160 |
+
embedding = get_openai_embeddings(text, model)
|
161 |
+
return embedding
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
#
|
166 |
+
# End of File.
|
167 |
+
#######################################################################################################################
|
App_Function_Libraries/RAG/RAG_Libary_2.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# RAG_Library_2.py
|
2 |
+
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
|
3 |
+
#
|
4 |
+
# Import necessary modules and functions
|
5 |
+
import configparser
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
from typing import Dict, Any, List, Optional
|
9 |
+
# Local Imports
|
10 |
+
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
|
11 |
+
from App_Function_Libraries.Article_Extractor_Lib import scrape_article
|
12 |
+
from App_Function_Libraries.DB.DB_Manager import add_media_to_database, search_db, get_unprocessed_media, \
|
13 |
+
fetch_keywords_for_media
|
14 |
+
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
15 |
+
#
|
16 |
+
# 3rd-Party Imports
|
17 |
+
import openai
|
18 |
+
#
|
19 |
+
########################################################################################################################
|
20 |
+
#
|
21 |
+
# Functions:
|
22 |
+
|
23 |
+
# Initialize OpenAI client (adjust this based on your API key management)
|
24 |
+
openai.api_key = "your-openai-api-key"
|
25 |
+
|
26 |
+
# Get the directory of the current script
|
27 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
28 |
+
# Construct the path to the config file
|
29 |
+
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
|
30 |
+
# Read the config file
|
31 |
+
config = configparser.ConfigParser()
|
32 |
+
# Read the configuration file
|
33 |
+
config.read('config.txt')
|
34 |
+
|
35 |
+
# Main RAG pipeline function
|
36 |
+
def rag_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
|
37 |
+
try:
|
38 |
+
# Extract content
|
39 |
+
try:
|
40 |
+
article_data = scrape_article(url)
|
41 |
+
content = article_data['content']
|
42 |
+
title = article_data['title']
|
43 |
+
except Exception as e:
|
44 |
+
logging.error(f"Error scraping article: {str(e)}")
|
45 |
+
return {"error": "Failed to scrape article", "details": str(e)}
|
46 |
+
|
47 |
+
# Store the article in the database and get the media_id
|
48 |
+
try:
|
49 |
+
media_id = add_media_to_database(url, title, 'article', content)
|
50 |
+
except Exception as e:
|
51 |
+
logging.error(f"Error adding article to database: {str(e)}")
|
52 |
+
return {"error": "Failed to store article in database", "details": str(e)}
|
53 |
+
|
54 |
+
# Process and store content
|
55 |
+
collection_name = f"article_{media_id}"
|
56 |
+
try:
|
57 |
+
process_and_store_content(content, collection_name, media_id, title)
|
58 |
+
except Exception as e:
|
59 |
+
logging.error(f"Error processing and storing content: {str(e)}")
|
60 |
+
return {"error": "Failed to process and store content", "details": str(e)}
|
61 |
+
|
62 |
+
# Perform searches
|
63 |
+
try:
|
64 |
+
vector_results = vector_search(collection_name, query, k=5)
|
65 |
+
fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
|
66 |
+
except Exception as e:
|
67 |
+
logging.error(f"Error performing searches: {str(e)}")
|
68 |
+
return {"error": "Failed to perform searches", "details": str(e)}
|
69 |
+
|
70 |
+
# Combine results with error handling for missing 'content' key
|
71 |
+
all_results = []
|
72 |
+
for result in vector_results + fts_results:
|
73 |
+
if isinstance(result, dict) and 'content' in result:
|
74 |
+
all_results.append(result['content'])
|
75 |
+
else:
|
76 |
+
logging.warning(f"Unexpected result format: {result}")
|
77 |
+
all_results.append(str(result))
|
78 |
+
|
79 |
+
context = "\n".join(all_results)
|
80 |
+
|
81 |
+
# Generate answer using the selected API
|
82 |
+
try:
|
83 |
+
answer = generate_answer(api_choice, context, query)
|
84 |
+
except Exception as e:
|
85 |
+
logging.error(f"Error generating answer: {str(e)}")
|
86 |
+
return {"error": "Failed to generate answer", "details": str(e)}
|
87 |
+
|
88 |
+
return {
|
89 |
+
"answer": answer,
|
90 |
+
"context": context
|
91 |
+
}
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
logging.error(f"Unexpected error in rag_pipeline: {str(e)}")
|
95 |
+
return {"error": "An unexpected error occurred", "details": str(e)}
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
# RAG Search with keyword filtering
|
100 |
+
def enhanced_rag_pipeline(query: str, api_choice: str, keywords: str = None) -> Dict[str, Any]:
|
101 |
+
try:
|
102 |
+
# Load embedding provider from config, or fallback to 'openai'
|
103 |
+
embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
|
104 |
+
|
105 |
+
# Log the provider used
|
106 |
+
logging.debug(f"Using embedding provider: {embedding_provider}")
|
107 |
+
|
108 |
+
# Process keywords if provided
|
109 |
+
keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else []
|
110 |
+
logging.debug(f"enhanced_rag_pipeline - Keywords: {keyword_list}")
|
111 |
+
|
112 |
+
# Fetch relevant media IDs based on keywords if keywords are provided
|
113 |
+
relevant_media_ids = fetch_relevant_media_ids(keyword_list) if keyword_list else None
|
114 |
+
logging.debug(f"enhanced_rag_pipeline - relevant media IDs: {relevant_media_ids}")
|
115 |
+
|
116 |
+
# Perform vector search
|
117 |
+
vector_results = perform_vector_search(query, relevant_media_ids)
|
118 |
+
logging.debug(f"enhanced_rag_pipeline - Vector search results: {vector_results}")
|
119 |
+
|
120 |
+
# Perform full-text search
|
121 |
+
fts_results = perform_full_text_search(query, relevant_media_ids)
|
122 |
+
logging.debug(f"enhanced_rag_pipeline - Full-text search results: {fts_results}")
|
123 |
+
|
124 |
+
# Combine results
|
125 |
+
all_results = vector_results + fts_results
|
126 |
+
# FIXME
|
127 |
+
if not all_results:
|
128 |
+
logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
|
129 |
+
return {
|
130 |
+
"answer": "I couldn't find any relevant information based on your query and keywords.",
|
131 |
+
"context": ""
|
132 |
+
}
|
133 |
+
|
134 |
+
# FIXME - Apply Re-Ranking of results here
|
135 |
+
apply_re_ranking = False
|
136 |
+
if apply_re_ranking:
|
137 |
+
# Implement re-ranking logic here
|
138 |
+
pass
|
139 |
+
# Extract content from results
|
140 |
+
context = "\n".join([result['content'] for result in all_results[:10]]) # Limit to top 10 results
|
141 |
+
logging.debug(f"Context length: {len(context)}")
|
142 |
+
logging.debug(f"Context: {context[:200]}")
|
143 |
+
# Generate answer using the selected API
|
144 |
+
answer = generate_answer(api_choice, context, query)
|
145 |
+
|
146 |
+
return {
|
147 |
+
"answer": answer,
|
148 |
+
"context": context
|
149 |
+
}
|
150 |
+
except Exception as e:
|
151 |
+
logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
|
152 |
+
return {
|
153 |
+
"answer": "An error occurred while processing your request.",
|
154 |
+
"context": ""
|
155 |
+
}
|
156 |
+
|
157 |
+
|
158 |
+
def generate_answer(api_choice: str, context: str, query: str) -> str:
|
159 |
+
logging.debug("Entering generate_answer function")
|
160 |
+
config = load_comprehensive_config()
|
161 |
+
logging.debug(f"Config sections: {config.sections()}")
|
162 |
+
prompt = f"Context: {context}\n\nQuestion: {query}"
|
163 |
+
if api_choice == "OpenAI":
|
164 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai
|
165 |
+
return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
|
166 |
+
elif api_choice == "Anthropic":
|
167 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_anthropic
|
168 |
+
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
|
169 |
+
elif api_choice == "Cohere":
|
170 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_cohere
|
171 |
+
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
|
172 |
+
elif api_choice == "Groq":
|
173 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_groq
|
174 |
+
return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
|
175 |
+
elif api_choice == "OpenRouter":
|
176 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openrouter
|
177 |
+
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
|
178 |
+
elif api_choice == "HuggingFace":
|
179 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_huggingface
|
180 |
+
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
|
181 |
+
elif api_choice == "DeepSeek":
|
182 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_deepseek
|
183 |
+
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
|
184 |
+
elif api_choice == "Mistral":
|
185 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_mistral
|
186 |
+
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
|
187 |
+
elif api_choice == "Local-LLM":
|
188 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_local_llm
|
189 |
+
return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "")
|
190 |
+
elif api_choice == "Llama.cpp":
|
191 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama
|
192 |
+
return summarize_with_llama(config['API']['llama_api_key'], prompt, "")
|
193 |
+
elif api_choice == "Kobold":
|
194 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_kobold
|
195 |
+
return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "")
|
196 |
+
elif api_choice == "Ooba":
|
197 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_oobabooga
|
198 |
+
return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "")
|
199 |
+
elif api_choice == "TabbyAPI":
|
200 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_tabbyapi
|
201 |
+
return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "")
|
202 |
+
elif api_choice == "vLLM":
|
203 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_vllm
|
204 |
+
return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "")
|
205 |
+
elif api_choice == "ollama":
|
206 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_ollama
|
207 |
+
return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "")
|
208 |
+
else:
|
209 |
+
raise ValueError(f"Unsupported API choice: {api_choice}")
|
210 |
+
|
211 |
+
# Function to preprocess and store all existing content in the database
|
212 |
+
def preprocess_all_content():
|
213 |
+
unprocessed_media = get_unprocessed_media()
|
214 |
+
for row in unprocessed_media:
|
215 |
+
media_id = row[0]
|
216 |
+
content = row[1]
|
217 |
+
media_type = row[2]
|
218 |
+
collection_name = f"{media_type}_{media_id}"
|
219 |
+
process_and_store_content(content, collection_name, media_id, "")
|
220 |
+
|
221 |
+
|
222 |
+
def perform_vector_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
|
223 |
+
all_collections = chroma_client.list_collections()
|
224 |
+
vector_results = []
|
225 |
+
for collection in all_collections:
|
226 |
+
collection_results = vector_search(collection.name, query, k=5)
|
227 |
+
filtered_results = [
|
228 |
+
result for result in collection_results
|
229 |
+
if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids
|
230 |
+
]
|
231 |
+
vector_results.extend(filtered_results)
|
232 |
+
return vector_results
|
233 |
+
|
234 |
+
|
235 |
+
def perform_full_text_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
|
236 |
+
fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
|
237 |
+
filtered_fts_results = [
|
238 |
+
{
|
239 |
+
"content": result['content'],
|
240 |
+
"metadata": {"media_id": result['id']}
|
241 |
+
}
|
242 |
+
for result in fts_results
|
243 |
+
if relevant_media_ids is None or result['id'] in relevant_media_ids
|
244 |
+
]
|
245 |
+
return filtered_fts_results
|
246 |
+
|
247 |
+
|
248 |
+
def fetch_relevant_media_ids(keywords: List[str]) -> List[int]:
|
249 |
+
relevant_ids = set()
|
250 |
+
try:
|
251 |
+
for keyword in keywords:
|
252 |
+
media_ids = fetch_keywords_for_media(keyword)
|
253 |
+
relevant_ids.update(media_ids)
|
254 |
+
except Exception as e:
|
255 |
+
logging.error(f"Error fetching relevant media IDs: {str(e)}")
|
256 |
+
return list(relevant_ids)
|
257 |
+
|
258 |
+
|
259 |
+
def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]:
|
260 |
+
if not keywords:
|
261 |
+
return results
|
262 |
+
|
263 |
+
filtered_results = []
|
264 |
+
for result in results:
|
265 |
+
try:
|
266 |
+
metadata = result.get('metadata', {})
|
267 |
+
if metadata is None:
|
268 |
+
logging.warning(f"No metadata found for result: {result}")
|
269 |
+
continue
|
270 |
+
if not isinstance(metadata, dict):
|
271 |
+
logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.")
|
272 |
+
continue
|
273 |
+
|
274 |
+
media_id = metadata.get('media_id')
|
275 |
+
if media_id is None:
|
276 |
+
logging.warning(f"No media_id found in metadata: {metadata}")
|
277 |
+
continue
|
278 |
+
|
279 |
+
media_keywords = fetch_keywords_for_media(media_id)
|
280 |
+
if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords):
|
281 |
+
filtered_results.append(result)
|
282 |
+
except Exception as e:
|
283 |
+
logging.error(f"Error processing result: {result}. Error: {str(e)}")
|
284 |
+
|
285 |
+
return filtered_results
|
286 |
+
|
287 |
+
# FIXME: to be implememted
|
288 |
+
def extract_media_id_from_result(result: str) -> Optional[int]:
|
289 |
+
# Implement this function based on how you store the media_id in your results
|
290 |
+
# For example, if it's stored at the beginning of each result:
|
291 |
+
try:
|
292 |
+
return int(result.split('_')[0])
|
293 |
+
except (IndexError, ValueError):
|
294 |
+
logging.error(f"Failed to extract media_id from result: {result}")
|
295 |
+
return None
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
# Example usage:
|
301 |
+
# 1. Initialize the system:
|
302 |
+
# create_tables(db) # Ensure FTS tables are set up
|
303 |
+
#
|
304 |
+
# 2. Create ChromaDB
|
305 |
+
# chroma_client = ChromaDBClient()
|
306 |
+
#
|
307 |
+
# 3. Create Embeddings
|
308 |
+
# Store embeddings in ChromaDB
|
309 |
+
# preprocess_all_content() or create_embeddings()
|
310 |
+
#
|
311 |
+
# 4. Perform RAG search across all content:
|
312 |
+
# result = rag_search("What are the key points about climate change?")
|
313 |
+
# print(result['answer'])
|
314 |
+
#
|
315 |
+
# (Extra)5. Perform RAG on a specific URL:
|
316 |
+
# result = rag_pipeline("https://example.com/article", "What is the main topic of this article?")
|
317 |
+
# print(result['answer'])
|
318 |
+
#
|
319 |
+
########################################################################################################################
|
320 |
+
|
321 |
+
|
322 |
+
############################################################################################################
|
323 |
+
#
|
324 |
+
# ElasticSearch Retriever
|
325 |
+
|
326 |
+
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
|
327 |
+
#
|
328 |
+
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
|
329 |
+
|
330 |
+
#
|
331 |
+
# End of RAG_Library_2.py
|
332 |
+
############################################################################################################
|
App_Function_Libraries/RAG/RAG_QA_Chat.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Podcast_tab.py
|
2 |
+
# Description: Gradio UI for ingesting podcasts into the database
|
3 |
+
#
|
4 |
+
# Imports
|
5 |
+
#
|
6 |
+
#
|
7 |
+
# External Imports
|
8 |
+
import json
|
9 |
+
import logging
|
10 |
+
import tempfile
|
11 |
+
from typing import List, Tuple, IO, Union
|
12 |
+
#
|
13 |
+
# Local Imports
|
14 |
+
from App_Function_Libraries.DB.DB_Manager import db, search_db, DatabaseError, get_media_content
|
15 |
+
from App_Function_Libraries.RAG.RAG_Libary_2 import generate_answer
|
16 |
+
#
|
17 |
+
########################################################################################################################
|
18 |
+
#
|
19 |
+
# Functions:
|
20 |
+
|
21 |
+
def rag_qa_chat(message: str, history: List[Tuple[str, str]], context: Union[str, IO[str]], api_choice: str) -> Tuple[List[Tuple[str, str]], str]:
|
22 |
+
try:
|
23 |
+
# Prepare the context based on the selected source
|
24 |
+
if hasattr(context, 'read'):
|
25 |
+
# Handle uploaded file
|
26 |
+
context_text = context.read()
|
27 |
+
if isinstance(context_text, bytes):
|
28 |
+
context_text = context_text.decode('utf-8')
|
29 |
+
elif isinstance(context, str) and context.startswith("media_id:"):
|
30 |
+
# Handle existing file or search result
|
31 |
+
media_id = int(context.split(":")[1])
|
32 |
+
context_text = get_media_content(media_id) # Implement this function to fetch content from the database
|
33 |
+
else:
|
34 |
+
context_text = str(context)
|
35 |
+
|
36 |
+
# Prepare the full context including chat history
|
37 |
+
full_context = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history])
|
38 |
+
full_context += f"\n\nContext: {context_text}\n\nHuman: {message}\nAI:"
|
39 |
+
|
40 |
+
# Generate response using the selected API
|
41 |
+
response = generate_answer(api_choice, full_context, message)
|
42 |
+
|
43 |
+
# Update history
|
44 |
+
history.append((message, response))
|
45 |
+
|
46 |
+
return history, ""
|
47 |
+
except DatabaseError as e:
|
48 |
+
logging.error(f"Database error in rag_qa_chat: {str(e)}")
|
49 |
+
return history, f"An error occurred while accessing the database: {str(e)}"
|
50 |
+
except Exception as e:
|
51 |
+
logging.error(f"Unexpected error in rag_qa_chat: {str(e)}")
|
52 |
+
return history, f"An unexpected error occurred: {str(e)}"
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
def save_chat_history(history: List[Tuple[str, str]]) -> str:
|
57 |
+
# Save chat history to a file
|
58 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
|
59 |
+
json.dump(history, temp_file)
|
60 |
+
return temp_file.name
|
61 |
+
|
62 |
+
|
63 |
+
def load_chat_history(file: IO[str]) -> List[Tuple[str, str]]:
|
64 |
+
# Load chat history from a file
|
65 |
+
return json.load(file)
|
66 |
+
|
67 |
+
|
68 |
+
def search_database(query: str) -> List[Tuple[int, str]]:
|
69 |
+
# Implement database search functionality
|
70 |
+
results = search_db(query, ["title", "content"], "", page=1, results_per_page=10)
|
71 |
+
return [(result['id'], result['title']) for result in results]
|
72 |
+
|
73 |
+
|
74 |
+
def get_existing_files() -> List[Tuple[int, str]]:
|
75 |
+
# Fetch list of existing files from the database
|
76 |
+
with db.get_connection() as conn:
|
77 |
+
cursor = conn.cursor()
|
78 |
+
cursor.execute("SELECT id, title FROM Media ORDER BY title")
|
79 |
+
return cursor.fetchall()
|
80 |
+
|
81 |
+
|
82 |
+
#
|
83 |
+
# End of RAG_QA_Chat.py
|
84 |
+
########################################################################################################################
|