Spaces:
Running
Running
oceansweep
commited on
Commit
•
be0884e
1
Parent(s):
e04fa0c
Update App_Function_Libraries/Gradio_UI/Embeddings_tab.py
Browse files
App_Function_Libraries/Gradio_UI/Embeddings_tab.py
CHANGED
@@ -1,715 +1,715 @@
|
|
1 |
-
# Embeddings_tabc.py
|
2 |
-
# Description: This file contains the code for the RAG Chat tab in the Gradio UI
|
3 |
-
#
|
4 |
-
# Imports
|
5 |
-
import json
|
6 |
-
import logging
|
7 |
-
import os
|
8 |
-
#
|
9 |
-
# External Imports
|
10 |
-
import gradio as gr
|
11 |
-
import numpy as np
|
12 |
-
from tqdm import tqdm
|
13 |
-
#
|
14 |
-
# Local Imports
|
15 |
-
from App_Function_Libraries.DB.DB_Manager import get_all_content_from_database, get_all_conversations, \
|
16 |
-
get_conversation_text, get_note_by_id
|
17 |
-
from App_Function_Libraries.DB.RAG_QA_Chat_DB import get_all_notes
|
18 |
-
from App_Function_Libraries.RAG.ChromaDB_Library import chroma_client, \
|
19 |
-
store_in_chroma, situate_context
|
20 |
-
from App_Function_Libraries.RAG.Embeddings_Create import create_embedding, create_embeddings_batch
|
21 |
-
from App_Function_Libraries.Chunk_Lib import improved_chunking_process, chunk_for_embedding
|
22 |
-
from App_Function_Libraries.Utils.Utils import load_and_log_configs
|
23 |
-
|
24 |
-
|
25 |
-
#
|
26 |
-
########################################################################################################################
|
27 |
-
#
|
28 |
-
# Functions:
|
29 |
-
|
30 |
-
def create_embeddings_tab():
|
31 |
-
# Load configuration first
|
32 |
-
config = load_and_log_configs()
|
33 |
-
if not config:
|
34 |
-
raise ValueError("Could not load configuration")
|
35 |
-
|
36 |
-
# Get database paths from config
|
37 |
-
db_config = config['db_config']
|
38 |
-
media_db_path =
|
39 |
-
|
40 |
-
|
41 |
-
chroma_db_path =
|
42 |
-
|
43 |
-
with gr.TabItem("Create Embeddings", visible=True):
|
44 |
-
gr.Markdown("# Create Embeddings for All Content")
|
45 |
-
|
46 |
-
with gr.Row():
|
47 |
-
with gr.Column():
|
48 |
-
# Database selection at the top
|
49 |
-
database_selection = gr.Radio(
|
50 |
-
choices=["Media DB", "RAG Chat", "Character Chat"],
|
51 |
-
label="Select Content Source",
|
52 |
-
value="Media DB",
|
53 |
-
info="Choose which database to create embeddings from"
|
54 |
-
)
|
55 |
-
|
56 |
-
# Add database path display
|
57 |
-
current_db_path = gr.Textbox(
|
58 |
-
label="Current Database Path",
|
59 |
-
value=media_db_path,
|
60 |
-
interactive=False
|
61 |
-
)
|
62 |
-
|
63 |
-
embedding_provider = gr.Radio(
|
64 |
-
choices=["huggingface", "local", "openai"],
|
65 |
-
label="Select Embedding Provider",
|
66 |
-
value=config['embedding_config']['embedding_provider'] or "huggingface"
|
67 |
-
)
|
68 |
-
gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
|
69 |
-
gr.Markdown("OpenAI provider requires a valid API key.")
|
70 |
-
|
71 |
-
huggingface_model = gr.Dropdown(
|
72 |
-
choices=[
|
73 |
-
"jinaai/jina-embeddings-v3",
|
74 |
-
"Alibaba-NLP/gte-large-en-v1.5",
|
75 |
-
"dunzhang/setll_en_400M_v5",
|
76 |
-
"custom"
|
77 |
-
],
|
78 |
-
label="Hugging Face Model",
|
79 |
-
value="jinaai/jina-embeddings-v3",
|
80 |
-
visible=True
|
81 |
-
)
|
82 |
-
|
83 |
-
openai_model = gr.Dropdown(
|
84 |
-
choices=[
|
85 |
-
"text-embedding-3-small",
|
86 |
-
"text-embedding-3-large"
|
87 |
-
],
|
88 |
-
label="OpenAI Embedding Model",
|
89 |
-
value="text-embedding-3-small",
|
90 |
-
visible=False
|
91 |
-
)
|
92 |
-
|
93 |
-
custom_embedding_model = gr.Textbox(
|
94 |
-
label="Custom Embedding Model",
|
95 |
-
placeholder="Enter your custom embedding model name here",
|
96 |
-
visible=False
|
97 |
-
)
|
98 |
-
|
99 |
-
embedding_api_url = gr.Textbox(
|
100 |
-
label="API URL (for local provider)",
|
101 |
-
value=config['embedding_config']['embedding_api_url'],
|
102 |
-
visible=False
|
103 |
-
)
|
104 |
-
|
105 |
-
# Add chunking options with config defaults
|
106 |
-
chunking_method = gr.Dropdown(
|
107 |
-
choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
|
108 |
-
label="Chunking Method",
|
109 |
-
value="words"
|
110 |
-
)
|
111 |
-
max_chunk_size = gr.Slider(
|
112 |
-
minimum=1, maximum=8000, step=1,
|
113 |
-
value=config['embedding_config']['chunk_size'],
|
114 |
-
label="Max Chunk Size"
|
115 |
-
)
|
116 |
-
chunk_overlap = gr.Slider(
|
117 |
-
minimum=0, maximum=4000, step=1,
|
118 |
-
value=config['embedding_config']['overlap'],
|
119 |
-
label="Chunk Overlap"
|
120 |
-
)
|
121 |
-
adaptive_chunking = gr.Checkbox(
|
122 |
-
label="Use Adaptive Chunking",
|
123 |
-
value=False
|
124 |
-
)
|
125 |
-
|
126 |
-
create_button = gr.Button("Create Embeddings")
|
127 |
-
|
128 |
-
with gr.Column():
|
129 |
-
status_output = gr.Textbox(label="Status", lines=10)
|
130 |
-
progress = gr.Progress()
|
131 |
-
|
132 |
-
def update_provider_options(provider):
|
133 |
-
if provider == "huggingface":
|
134 |
-
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
135 |
-
elif provider == "local":
|
136 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
137 |
-
else: # OpenAI
|
138 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
139 |
-
|
140 |
-
def update_huggingface_options(model):
|
141 |
-
if model == "custom":
|
142 |
-
return gr.update(visible=True)
|
143 |
-
else:
|
144 |
-
return gr.update(visible=False)
|
145 |
-
|
146 |
-
def update_database_path(database_type):
|
147 |
-
if database_type == "Media DB":
|
148 |
-
return media_db_path
|
149 |
-
elif database_type == "RAG Chat":
|
150 |
-
return rag_qa_db_path
|
151 |
-
else: # Character Chat
|
152 |
-
return character_chat_db_path
|
153 |
-
|
154 |
-
def create_all_embeddings(provider, hf_model, openai_model, custom_model, api_url, method,
|
155 |
-
max_size, overlap, adaptive, database_type, progress=gr.Progress()):
|
156 |
-
try:
|
157 |
-
# Initialize content based on database selection
|
158 |
-
if database_type == "Media DB":
|
159 |
-
all_content = get_all_content_from_database()
|
160 |
-
content_type = "media"
|
161 |
-
elif database_type == "RAG Chat":
|
162 |
-
all_content = []
|
163 |
-
page = 1
|
164 |
-
while True:
|
165 |
-
conversations, total_pages, _ = get_all_conversations(page=page)
|
166 |
-
if not conversations:
|
167 |
-
break
|
168 |
-
all_content.extend([{
|
169 |
-
'id': conv['conversation_id'],
|
170 |
-
'content': get_conversation_text(conv['conversation_id']),
|
171 |
-
'title': conv['title'],
|
172 |
-
'type': 'conversation'
|
173 |
-
} for conv in conversations])
|
174 |
-
progress(page / total_pages, desc=f"Loading conversations... Page {page}/{total_pages}")
|
175 |
-
page += 1
|
176 |
-
else: # Character Chat
|
177 |
-
all_content = []
|
178 |
-
page = 1
|
179 |
-
while True:
|
180 |
-
notes, total_pages, _ = get_all_notes(page=page)
|
181 |
-
if not notes:
|
182 |
-
break
|
183 |
-
all_content.extend([{
|
184 |
-
'id': note['id'],
|
185 |
-
'content': f"{note['title']}\n\n{note['content']}",
|
186 |
-
'conversation_id': note['conversation_id'],
|
187 |
-
'type': 'note'
|
188 |
-
} for note in notes])
|
189 |
-
progress(page / total_pages, desc=f"Loading notes... Page {page}/{total_pages}")
|
190 |
-
page += 1
|
191 |
-
|
192 |
-
if not all_content:
|
193 |
-
return "No content found in the selected database."
|
194 |
-
|
195 |
-
chunk_options = {
|
196 |
-
'method': method,
|
197 |
-
'max_size': max_size,
|
198 |
-
'overlap': overlap,
|
199 |
-
'adaptive': adaptive
|
200 |
-
}
|
201 |
-
|
202 |
-
collection_name = f"{database_type.lower().replace(' ', '_')}_embeddings"
|
203 |
-
collection = chroma_client.get_or_create_collection(name=collection_name)
|
204 |
-
|
205 |
-
# Determine the model to use
|
206 |
-
if provider == "huggingface":
|
207 |
-
model = custom_model if hf_model == "custom" else hf_model
|
208 |
-
elif provider == "openai":
|
209 |
-
model = openai_model
|
210 |
-
else:
|
211 |
-
model = api_url
|
212 |
-
|
213 |
-
total_items = len(all_content)
|
214 |
-
for idx, item in enumerate(all_content):
|
215 |
-
progress((idx + 1) / total_items, desc=f"Processing item {idx + 1} of {total_items}")
|
216 |
-
|
217 |
-
content_id = item['id']
|
218 |
-
text = item['content']
|
219 |
-
|
220 |
-
chunks = improved_chunking_process(text, chunk_options)
|
221 |
-
for chunk_idx, chunk in enumerate(chunks):
|
222 |
-
chunk_text = chunk['text']
|
223 |
-
chunk_id = f"{database_type.lower()}_{content_id}_chunk_{chunk_idx}"
|
224 |
-
|
225 |
-
try:
|
226 |
-
embedding = create_embedding(chunk_text, provider, model, api_url)
|
227 |
-
metadata = {
|
228 |
-
'content_id': str(content_id),
|
229 |
-
'chunk_index': int(chunk_idx),
|
230 |
-
'total_chunks': int(len(chunks)),
|
231 |
-
'chunking_method': method,
|
232 |
-
'max_chunk_size': int(max_size),
|
233 |
-
'chunk_overlap': int(overlap),
|
234 |
-
'adaptive_chunking': bool(adaptive),
|
235 |
-
'embedding_model': model,
|
236 |
-
'embedding_provider': provider,
|
237 |
-
'content_type': item.get('type', 'media'),
|
238 |
-
'conversation_id': item.get('conversation_id'),
|
239 |
-
**{k: (int(v) if isinstance(v, str) and v.isdigit() else v)
|
240 |
-
for k, v in chunk['metadata'].items()}
|
241 |
-
}
|
242 |
-
store_in_chroma(collection_name, [chunk_text], [embedding], [chunk_id], [metadata])
|
243 |
-
|
244 |
-
except Exception as e:
|
245 |
-
logging.error(f"Error processing chunk {chunk_id}: {str(e)}")
|
246 |
-
continue
|
247 |
-
|
248 |
-
return f"Embeddings created and stored successfully for all {database_type} content."
|
249 |
-
except Exception as e:
|
250 |
-
logging.error(f"Error during embedding creation: {str(e)}")
|
251 |
-
return f"Error: {str(e)}"
|
252 |
-
|
253 |
-
# Event handlers
|
254 |
-
embedding_provider.change(
|
255 |
-
fn=update_provider_options,
|
256 |
-
inputs=[embedding_provider],
|
257 |
-
outputs=[huggingface_model, openai_model, custom_embedding_model, embedding_api_url]
|
258 |
-
)
|
259 |
-
|
260 |
-
huggingface_model.change(
|
261 |
-
fn=update_huggingface_options,
|
262 |
-
inputs=[huggingface_model],
|
263 |
-
outputs=[custom_embedding_model]
|
264 |
-
)
|
265 |
-
|
266 |
-
database_selection.change(
|
267 |
-
fn=update_database_path,
|
268 |
-
inputs=[database_selection],
|
269 |
-
outputs=[current_db_path]
|
270 |
-
)
|
271 |
-
|
272 |
-
create_button.click(
|
273 |
-
fn=create_all_embeddings,
|
274 |
-
inputs=[
|
275 |
-
embedding_provider, huggingface_model, openai_model, custom_embedding_model,
|
276 |
-
embedding_api_url, chunking_method, max_chunk_size, chunk_overlap,
|
277 |
-
adaptive_chunking, database_selection
|
278 |
-
],
|
279 |
-
outputs=status_output
|
280 |
-
)
|
281 |
-
|
282 |
-
|
283 |
-
def create_view_embeddings_tab():
|
284 |
-
# Load configuration first
|
285 |
-
config = load_and_log_configs()
|
286 |
-
if not config:
|
287 |
-
raise ValueError("Could not load configuration")
|
288 |
-
|
289 |
-
# Get database paths from config
|
290 |
-
db_config = config['db_config']
|
291 |
-
media_db_path = db_config['sqlite_path']
|
292 |
-
rag_qa_db_path = os.path.join(os.path.dirname(media_db_path), "rag_chat.db")
|
293 |
-
character_chat_db_path = os.path.join(os.path.dirname(media_db_path), "character_chat.db")
|
294 |
-
chroma_db_path = db_config['chroma_db_path']
|
295 |
-
|
296 |
-
with gr.TabItem("View/Update Embeddings", visible=True):
|
297 |
-
gr.Markdown("# View and Update Embeddings")
|
298 |
-
# Initialize item_mapping as a Gradio State
|
299 |
-
|
300 |
-
|
301 |
-
with gr.Row():
|
302 |
-
with gr.Column():
|
303 |
-
# Add database selection
|
304 |
-
database_selection = gr.Radio(
|
305 |
-
choices=["Media DB", "RAG Chat", "Character Chat"],
|
306 |
-
label="Select Content Source",
|
307 |
-
value="Media DB",
|
308 |
-
info="Choose which database to view embeddings from"
|
309 |
-
)
|
310 |
-
|
311 |
-
# Add database path display
|
312 |
-
current_db_path = gr.Textbox(
|
313 |
-
label="Current Database Path",
|
314 |
-
value=media_db_path,
|
315 |
-
interactive=False
|
316 |
-
)
|
317 |
-
|
318 |
-
item_dropdown = gr.Dropdown(label="Select Item", choices=[], interactive=True)
|
319 |
-
refresh_button = gr.Button("Refresh Item List")
|
320 |
-
embedding_status = gr.Textbox(label="Embedding Status", interactive=False)
|
321 |
-
embedding_preview = gr.Textbox(label="Embedding Preview", interactive=False, lines=5)
|
322 |
-
embedding_metadata = gr.Textbox(label="Embedding Metadata", interactive=False, lines=10)
|
323 |
-
|
324 |
-
with gr.Column():
|
325 |
-
create_new_embedding_button = gr.Button("Create New Embedding")
|
326 |
-
embedding_provider = gr.Radio(
|
327 |
-
choices=["huggingface", "local", "openai"],
|
328 |
-
label="Select Embedding Provider",
|
329 |
-
value="huggingface"
|
330 |
-
)
|
331 |
-
gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
|
332 |
-
gr.Markdown("OpenAI provider requires a valid API key.")
|
333 |
-
|
334 |
-
huggingface_model = gr.Dropdown(
|
335 |
-
choices=[
|
336 |
-
"jinaai/jina-embeddings-v3",
|
337 |
-
"Alibaba-NLP/gte-large-en-v1.5",
|
338 |
-
"dunzhang/stella_en_400M_v5",
|
339 |
-
"custom"
|
340 |
-
],
|
341 |
-
label="Hugging Face Model",
|
342 |
-
value="jinaai/jina-embeddings-v3",
|
343 |
-
visible=True
|
344 |
-
)
|
345 |
-
|
346 |
-
openai_model = gr.Dropdown(
|
347 |
-
choices=[
|
348 |
-
"text-embedding-3-small",
|
349 |
-
"text-embedding-3-large"
|
350 |
-
],
|
351 |
-
label="OpenAI Embedding Model",
|
352 |
-
value="text-embedding-3-small",
|
353 |
-
visible=False
|
354 |
-
)
|
355 |
-
|
356 |
-
custom_embedding_model = gr.Textbox(
|
357 |
-
label="Custom Embedding Model",
|
358 |
-
placeholder="Enter your custom embedding model name here",
|
359 |
-
visible=False
|
360 |
-
)
|
361 |
-
|
362 |
-
embedding_api_url = gr.Textbox(
|
363 |
-
label="API URL (for local provider)",
|
364 |
-
value=config['embedding_config']['embedding_api_url'],
|
365 |
-
visible=False
|
366 |
-
)
|
367 |
-
|
368 |
-
chunking_method = gr.Dropdown(
|
369 |
-
choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
|
370 |
-
label="Chunking Method",
|
371 |
-
value="words"
|
372 |
-
)
|
373 |
-
max_chunk_size = gr.Slider(
|
374 |
-
minimum=1, maximum=8000, step=5, value=500,
|
375 |
-
label="Max Chunk Size"
|
376 |
-
)
|
377 |
-
chunk_overlap = gr.Slider(
|
378 |
-
minimum=0, maximum=5000, step=5, value=200,
|
379 |
-
label="Chunk Overlap"
|
380 |
-
)
|
381 |
-
adaptive_chunking = gr.Checkbox(
|
382 |
-
label="Use Adaptive Chunking",
|
383 |
-
value=False
|
384 |
-
)
|
385 |
-
contextual_api_choice = gr.Dropdown(
|
386 |
-
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
|
387 |
-
label="Select API for Contextualized Embeddings",
|
388 |
-
value="OpenAI"
|
389 |
-
)
|
390 |
-
use_contextual_embeddings = gr.Checkbox(
|
391 |
-
label="Use Contextual Embeddings",
|
392 |
-
value=True
|
393 |
-
)
|
394 |
-
contextual_api_key = gr.Textbox(label="API Key", lines=1)
|
395 |
-
|
396 |
-
item_mapping = gr.State(value={})
|
397 |
-
|
398 |
-
def update_database_path(database_type):
|
399 |
-
if database_type == "Media DB":
|
400 |
-
return media_db_path
|
401 |
-
elif database_type == "RAG Chat":
|
402 |
-
return rag_qa_db_path
|
403 |
-
else: # Character Chat
|
404 |
-
return character_chat_db_path
|
405 |
-
|
406 |
-
def get_items_with_embedding_status(database_type):
|
407 |
-
try:
|
408 |
-
# Get items based on database selection
|
409 |
-
if database_type == "Media DB":
|
410 |
-
items = get_all_content_from_database()
|
411 |
-
elif database_type == "RAG Chat":
|
412 |
-
conversations, _, _ = get_all_conversations(page=1)
|
413 |
-
items = [{
|
414 |
-
'id': conv['conversation_id'],
|
415 |
-
'title': conv['title'],
|
416 |
-
'type': 'conversation'
|
417 |
-
} for conv in conversations]
|
418 |
-
else: # Character Chat
|
419 |
-
notes, _, _ = get_all_notes(page=1)
|
420 |
-
items = [{
|
421 |
-
'id': note['id'],
|
422 |
-
'title': note['title'],
|
423 |
-
'type': 'note'
|
424 |
-
} for note in notes]
|
425 |
-
|
426 |
-
collection_name = f"{database_type.lower().replace(' ', '_')}_embeddings"
|
427 |
-
collection = chroma_client.get_or_create_collection(name=collection_name)
|
428 |
-
|
429 |
-
choices = []
|
430 |
-
new_item_mapping = {}
|
431 |
-
for item in items:
|
432 |
-
try:
|
433 |
-
chunk_id = f"{database_type.lower()}_{item['id']}_chunk_0"
|
434 |
-
result = collection.get(ids=[chunk_id])
|
435 |
-
embedding_exists = result is not None and result.get('ids') and len(result['ids']) > 0
|
436 |
-
status = "Embedding exists" if embedding_exists else "No embedding"
|
437 |
-
except Exception as e:
|
438 |
-
print(f"Error checking embedding for item {item['id']}: {str(e)}")
|
439 |
-
status = "Error checking"
|
440 |
-
choice = f"{item['title']} ({status})"
|
441 |
-
choices.append(choice)
|
442 |
-
new_item_mapping[choice] = item['id']
|
443 |
-
return gr.update(choices=choices), new_item_mapping
|
444 |
-
except Exception as e:
|
445 |
-
print(f"Error in get_items_with_embedding_status: {str(e)}")
|
446 |
-
return gr.update(choices=["Error: Unable to fetch items"]), {}
|
447 |
-
|
448 |
-
def update_provider_options(provider):
|
449 |
-
if provider == "huggingface":
|
450 |
-
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
451 |
-
elif provider == "local":
|
452 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
453 |
-
else: # OpenAI
|
454 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
455 |
-
|
456 |
-
def update_huggingface_options(model):
|
457 |
-
if model == "custom":
|
458 |
-
return gr.update(visible=True)
|
459 |
-
else:
|
460 |
-
return gr.update(visible=False)
|
461 |
-
|
462 |
-
def check_embedding_status(selected_item, database_type, item_mapping):
|
463 |
-
if not selected_item:
|
464 |
-
return "Please select an item", "", ""
|
465 |
-
|
466 |
-
if item_mapping is None:
|
467 |
-
# If mapping is None, try to refresh it
|
468 |
-
try:
|
469 |
-
_, item_mapping = get_items_with_embedding_status(database_type)
|
470 |
-
except Exception as e:
|
471 |
-
return f"Error initializing item mapping: {str(e)}", "", ""
|
472 |
-
|
473 |
-
try:
|
474 |
-
item_id = item_mapping.get(selected_item)
|
475 |
-
if item_id is None:
|
476 |
-
return f"Invalid item selected: {selected_item}", "", ""
|
477 |
-
|
478 |
-
item_title = selected_item.rsplit(' (', 1)[0]
|
479 |
-
collection_name = f"{database_type.lower().replace(' ', '_')}_embeddings"
|
480 |
-
collection = chroma_client.get_or_create_collection(name=collection_name)
|
481 |
-
chunk_id = f"{database_type.lower()}_{item_id}_chunk_0"
|
482 |
-
|
483 |
-
try:
|
484 |
-
result = collection.get(ids=[chunk_id], include=["embeddings", "metadatas"])
|
485 |
-
except Exception as e:
|
486 |
-
logging.error(f"ChromaDB get error: {str(e)}")
|
487 |
-
return f"Error retrieving embedding for '{item_title}': {str(e)}", "", ""
|
488 |
-
|
489 |
-
# Check if result exists and has the expected structure
|
490 |
-
if not result or not isinstance(result, dict):
|
491 |
-
return f"No embedding found for item '{item_title}' (ID: {item_id})", "", ""
|
492 |
-
|
493 |
-
# Check if we have any results
|
494 |
-
if not result.get('ids') or len(result['ids']) == 0:
|
495 |
-
return f"No embedding found for item '{item_title}' (ID: {item_id})", "", ""
|
496 |
-
|
497 |
-
# Check if embeddings exist
|
498 |
-
if not result.get('embeddings') or not result['embeddings'][0]:
|
499 |
-
return f"Embedding data missing for item '{item_title}' (ID: {item_id})", "", ""
|
500 |
-
|
501 |
-
embedding = result['embeddings'][0]
|
502 |
-
metadata = result.get('metadatas', [{}])[0] if result.get('metadatas') else {}
|
503 |
-
embedding_preview = str(embedding[:50])
|
504 |
-
status = f"Embedding exists for item '{item_title}' (ID: {item_id})"
|
505 |
-
return status, f"First 50 elements of embedding:\n{embedding_preview}", json.dumps(metadata, indent=2)
|
506 |
-
|
507 |
-
except Exception as e:
|
508 |
-
logging.error(f"Error in check_embedding_status: {str(e)}", exc_info=True)
|
509 |
-
return f"Error processing item: {selected_item}. Details: {str(e)}", "", ""
|
510 |
-
|
511 |
-
def refresh_and_update(database_type):
|
512 |
-
choices_update, new_mapping = get_items_with_embedding_status(database_type)
|
513 |
-
return choices_update, new_mapping
|
514 |
-
|
515 |
-
def create_new_embedding_for_item(selected_item, database_type, provider, hf_model, openai_model,
|
516 |
-
custom_model, api_url, method, max_size, overlap, adaptive,
|
517 |
-
item_mapping, use_contextual, contextual_api_choice=None):
|
518 |
-
if not selected_item:
|
519 |
-
return "Please select an item", "", ""
|
520 |
-
|
521 |
-
try:
|
522 |
-
item_id = item_mapping.get(selected_item)
|
523 |
-
if item_id is None:
|
524 |
-
return f"Invalid item selected: {selected_item}", "", ""
|
525 |
-
|
526 |
-
# Get item content based on database type
|
527 |
-
if database_type == "Media DB":
|
528 |
-
items = get_all_content_from_database()
|
529 |
-
item = next((item for item in items if item['id'] == item_id), None)
|
530 |
-
elif database_type == "RAG Chat":
|
531 |
-
item = {
|
532 |
-
'id': item_id,
|
533 |
-
'content': get_conversation_text(item_id),
|
534 |
-
'title': selected_item.rsplit(' (', 1)[0],
|
535 |
-
'type': 'conversation'
|
536 |
-
}
|
537 |
-
else: # Character Chat
|
538 |
-
note = get_note_by_id(item_id)
|
539 |
-
item = {
|
540 |
-
'id': item_id,
|
541 |
-
'content': f"{note['title']}\n\n{note['content']}",
|
542 |
-
'title': note['title'],
|
543 |
-
'type': 'note'
|
544 |
-
}
|
545 |
-
|
546 |
-
if not item:
|
547 |
-
return f"Item not found: {item_id}", "", ""
|
548 |
-
|
549 |
-
chunk_options = {
|
550 |
-
'method': method,
|
551 |
-
'max_size': max_size,
|
552 |
-
'overlap': overlap,
|
553 |
-
'adaptive': adaptive
|
554 |
-
}
|
555 |
-
|
556 |
-
logging.info(f"Chunking content for item: {item['title']} (ID: {item_id})")
|
557 |
-
chunks = chunk_for_embedding(item['content'], item['title'], chunk_options)
|
558 |
-
collection_name = f"{database_type.lower().replace(' ', '_')}_embeddings"
|
559 |
-
collection = chroma_client.get_or_create_collection(name=collection_name)
|
560 |
-
|
561 |
-
# Delete existing embeddings for this item
|
562 |
-
existing_ids = [f"{database_type.lower()}_{item_id}_chunk_{i}" for i in range(len(chunks))]
|
563 |
-
collection.delete(ids=existing_ids)
|
564 |
-
logging.info(f"Deleted {len(existing_ids)} existing embeddings for item {item_id}")
|
565 |
-
|
566 |
-
texts, ids, metadatas = [], [], []
|
567 |
-
chunk_count = 0
|
568 |
-
logging.info("Generating contextual summaries and preparing chunks for embedding")
|
569 |
-
for i, chunk in enumerate(chunks):
|
570 |
-
chunk_text = chunk['text']
|
571 |
-
chunk_metadata = chunk['metadata']
|
572 |
-
if use_contextual:
|
573 |
-
logging.debug(f"Generating contextual summary for chunk {chunk_count}")
|
574 |
-
context = situate_context(contextual_api_choice, item['content'], chunk_text)
|
575 |
-
contextualized_text = f"{chunk_text}\n\nContextual Summary: {context}"
|
576 |
-
else:
|
577 |
-
contextualized_text = chunk_text
|
578 |
-
context = None
|
579 |
-
|
580 |
-
chunk_id = f"{database_type.lower()}_{item_id}_chunk_{i}"
|
581 |
-
|
582 |
-
# Determine the model to use
|
583 |
-
if provider == "huggingface":
|
584 |
-
model = custom_model if hf_model == "custom" else hf_model
|
585 |
-
elif provider == "openai":
|
586 |
-
model = openai_model
|
587 |
-
else:
|
588 |
-
model = custom_model
|
589 |
-
|
590 |
-
metadata = {
|
591 |
-
"content_id": str(item_id),
|
592 |
-
"chunk_index": i,
|
593 |
-
"total_chunks": len(chunks),
|
594 |
-
"chunking_method": method,
|
595 |
-
"max_chunk_size": max_size,
|
596 |
-
"chunk_overlap": overlap,
|
597 |
-
"adaptive_chunking": adaptive,
|
598 |
-
"embedding_model": model,
|
599 |
-
"embedding_provider": provider,
|
600 |
-
"original_text": chunk_text,
|
601 |
-
"use_contextual_embeddings": use_contextual,
|
602 |
-
"contextual_summary": context,
|
603 |
-
**chunk_metadata
|
604 |
-
}
|
605 |
-
|
606 |
-
texts.append(contextualized_text)
|
607 |
-
ids.append(chunk_id)
|
608 |
-
metadatas.append(metadata)
|
609 |
-
chunk_count += 1
|
610 |
-
|
611 |
-
# Create embeddings in batch
|
612 |
-
logging.info(f"Creating embeddings for {len(texts)} chunks")
|
613 |
-
embeddings = create_embeddings_batch(texts, provider, model, api_url)
|
614 |
-
|
615 |
-
# Store in Chroma
|
616 |
-
store_in_chroma(collection_name, texts, embeddings, ids, metadatas)
|
617 |
-
|
618 |
-
# Create a preview of the first embedding
|
619 |
-
if isinstance(embeddings, np.ndarray) and embeddings.size > 0:
|
620 |
-
embedding_preview = str(embeddings[0][:50])
|
621 |
-
elif isinstance(embeddings, list) and len(embeddings) > 0:
|
622 |
-
embedding_preview = str(embeddings[0][:50])
|
623 |
-
else:
|
624 |
-
embedding_preview = "No embeddings created"
|
625 |
-
|
626 |
-
# Return status message
|
627 |
-
status = f"New embeddings created and stored for item: {item['title']} (ID: {item_id})"
|
628 |
-
|
629 |
-
# Add contextual summaries to status message if enabled
|
630 |
-
if use_contextual:
|
631 |
-
status += " (with contextual summaries)"
|
632 |
-
|
633 |
-
# Return status message, embedding preview, and metadata
|
634 |
-
return status, f"First 50 elements of new embedding:\n{embedding_preview}", json.dumps(metadatas[0],
|
635 |
-
indent=2)
|
636 |
-
except Exception as e:
|
637 |
-
logging.error(f"Error in create_new_embedding_for_item: {str(e)}", exc_info=True)
|
638 |
-
return f"Error creating embedding: {str(e)}", "", ""
|
639 |
-
|
640 |
-
# Wire up all the event handlers
|
641 |
-
database_selection.change(
|
642 |
-
update_database_path,
|
643 |
-
inputs=[database_selection],
|
644 |
-
outputs=[current_db_path]
|
645 |
-
)
|
646 |
-
|
647 |
-
refresh_button.click(
|
648 |
-
get_items_with_embedding_status,
|
649 |
-
inputs=[database_selection],
|
650 |
-
outputs=[item_dropdown, item_mapping]
|
651 |
-
)
|
652 |
-
|
653 |
-
item_dropdown.change(
|
654 |
-
check_embedding_status,
|
655 |
-
inputs=[item_dropdown, database_selection, item_mapping],
|
656 |
-
outputs=[embedding_status, embedding_preview, embedding_metadata]
|
657 |
-
)
|
658 |
-
|
659 |
-
create_new_embedding_button.click(
|
660 |
-
create_new_embedding_for_item,
|
661 |
-
inputs=[item_dropdown, embedding_provider, huggingface_model, openai_model, custom_embedding_model, embedding_api_url,
|
662 |
-
chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, item_mapping,
|
663 |
-
use_contextual_embeddings, contextual_api_choice],
|
664 |
-
outputs=[embedding_status, embedding_preview, embedding_metadata]
|
665 |
-
)
|
666 |
-
embedding_provider.change(
|
667 |
-
update_provider_options,
|
668 |
-
inputs=[embedding_provider],
|
669 |
-
outputs=[huggingface_model, openai_model, custom_embedding_model, embedding_api_url]
|
670 |
-
)
|
671 |
-
huggingface_model.change(
|
672 |
-
update_huggingface_options,
|
673 |
-
inputs=[huggingface_model],
|
674 |
-
outputs=[custom_embedding_model]
|
675 |
-
)
|
676 |
-
|
677 |
-
return (item_dropdown, refresh_button, embedding_status, embedding_preview, embedding_metadata,
|
678 |
-
create_new_embedding_button, embedding_provider, huggingface_model, openai_model,
|
679 |
-
custom_embedding_model, embedding_api_url, chunking_method, max_chunk_size,
|
680 |
-
chunk_overlap, adaptive_chunking, use_contextual_embeddings,
|
681 |
-
contextual_api_choice, contextual_api_key)
|
682 |
-
|
683 |
-
|
684 |
-
def create_purge_embeddings_tab():
|
685 |
-
with gr.TabItem("Purge Embeddings", visible=True):
|
686 |
-
gr.Markdown("# Purge Embeddings")
|
687 |
-
|
688 |
-
with gr.Row():
|
689 |
-
with gr.Column():
|
690 |
-
purge_button = gr.Button("Purge All Embeddings")
|
691 |
-
with gr.Column():
|
692 |
-
status_output = gr.Textbox(label="Status", lines=10)
|
693 |
-
|
694 |
-
def purge_all_embeddings():
|
695 |
-
try:
|
696 |
-
# It came to me in a dream....I literally don't remember how the fuck this works, cant find documentation...
|
697 |
-
collection_name = "all_content_embeddings"
|
698 |
-
chroma_client.delete_collection(collection_name)
|
699 |
-
chroma_client.create_collection(collection_name)
|
700 |
-
logging.info(f"All embeddings have been purged successfully.")
|
701 |
-
return "All embeddings have been purged successfully."
|
702 |
-
except Exception as e:
|
703 |
-
logging.error(f"Error during embedding purge: {str(e)}")
|
704 |
-
return f"Error: {str(e)}"
|
705 |
-
|
706 |
-
purge_button.click(
|
707 |
-
fn=purge_all_embeddings,
|
708 |
-
outputs=status_output
|
709 |
-
)
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
#
|
714 |
-
# End of file
|
715 |
-
########################################################################################################################
|
|
|
1 |
+
# Embeddings_tabc.py
|
2 |
+
# Description: This file contains the code for the RAG Chat tab in the Gradio UI
|
3 |
+
#
|
4 |
+
# Imports
|
5 |
+
import json
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
#
|
9 |
+
# External Imports
|
10 |
+
import gradio as gr
|
11 |
+
import numpy as np
|
12 |
+
from tqdm import tqdm
|
13 |
+
#
|
14 |
+
# Local Imports
|
15 |
+
from App_Function_Libraries.DB.DB_Manager import get_all_content_from_database, get_all_conversations, \
|
16 |
+
get_conversation_text, get_note_by_id
|
17 |
+
from App_Function_Libraries.DB.RAG_QA_Chat_DB import get_all_notes
|
18 |
+
from App_Function_Libraries.RAG.ChromaDB_Library import chroma_client, \
|
19 |
+
store_in_chroma, situate_context
|
20 |
+
from App_Function_Libraries.RAG.Embeddings_Create import create_embedding, create_embeddings_batch
|
21 |
+
from App_Function_Libraries.Chunk_Lib import improved_chunking_process, chunk_for_embedding
|
22 |
+
from App_Function_Libraries.Utils.Utils import load_and_log_configs
|
23 |
+
|
24 |
+
|
25 |
+
#
|
26 |
+
########################################################################################################################
|
27 |
+
#
|
28 |
+
# Functions:
|
29 |
+
|
30 |
+
def create_embeddings_tab():
|
31 |
+
# Load configuration first
|
32 |
+
config = load_and_log_configs()
|
33 |
+
if not config:
|
34 |
+
raise ValueError("Could not load configuration")
|
35 |
+
|
36 |
+
# Get database paths from config
|
37 |
+
db_config = config['db_config']
|
38 |
+
media_db_path = 'Databases/media_summary.db'
|
39 |
+
character_chat_db_path = os.path.join(os.path.dirname(media_db_path), "chatDB.db")
|
40 |
+
rag_chat_db_path = os.path.join(os.path.dirname(media_db_path), "rag_qa.db")
|
41 |
+
chroma_db_path = "Databases/chroma.db"
|
42 |
+
|
43 |
+
with gr.TabItem("Create Embeddings", visible=True):
|
44 |
+
gr.Markdown("# Create Embeddings for All Content")
|
45 |
+
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column():
|
48 |
+
# Database selection at the top
|
49 |
+
database_selection = gr.Radio(
|
50 |
+
choices=["Media DB", "RAG Chat", "Character Chat"],
|
51 |
+
label="Select Content Source",
|
52 |
+
value="Media DB",
|
53 |
+
info="Choose which database to create embeddings from"
|
54 |
+
)
|
55 |
+
|
56 |
+
# Add database path display
|
57 |
+
current_db_path = gr.Textbox(
|
58 |
+
label="Current Database Path",
|
59 |
+
value=media_db_path,
|
60 |
+
interactive=False
|
61 |
+
)
|
62 |
+
|
63 |
+
embedding_provider = gr.Radio(
|
64 |
+
choices=["huggingface", "local", "openai"],
|
65 |
+
label="Select Embedding Provider",
|
66 |
+
value=config['embedding_config']['embedding_provider'] or "huggingface"
|
67 |
+
)
|
68 |
+
gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
|
69 |
+
gr.Markdown("OpenAI provider requires a valid API key.")
|
70 |
+
|
71 |
+
huggingface_model = gr.Dropdown(
|
72 |
+
choices=[
|
73 |
+
"jinaai/jina-embeddings-v3",
|
74 |
+
"Alibaba-NLP/gte-large-en-v1.5",
|
75 |
+
"dunzhang/setll_en_400M_v5",
|
76 |
+
"custom"
|
77 |
+
],
|
78 |
+
label="Hugging Face Model",
|
79 |
+
value="jinaai/jina-embeddings-v3",
|
80 |
+
visible=True
|
81 |
+
)
|
82 |
+
|
83 |
+
openai_model = gr.Dropdown(
|
84 |
+
choices=[
|
85 |
+
"text-embedding-3-small",
|
86 |
+
"text-embedding-3-large"
|
87 |
+
],
|
88 |
+
label="OpenAI Embedding Model",
|
89 |
+
value="text-embedding-3-small",
|
90 |
+
visible=False
|
91 |
+
)
|
92 |
+
|
93 |
+
custom_embedding_model = gr.Textbox(
|
94 |
+
label="Custom Embedding Model",
|
95 |
+
placeholder="Enter your custom embedding model name here",
|
96 |
+
visible=False
|
97 |
+
)
|
98 |
+
|
99 |
+
embedding_api_url = gr.Textbox(
|
100 |
+
label="API URL (for local provider)",
|
101 |
+
value=config['embedding_config']['embedding_api_url'],
|
102 |
+
visible=False
|
103 |
+
)
|
104 |
+
|
105 |
+
# Add chunking options with config defaults
|
106 |
+
chunking_method = gr.Dropdown(
|
107 |
+
choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
|
108 |
+
label="Chunking Method",
|
109 |
+
value="words"
|
110 |
+
)
|
111 |
+
max_chunk_size = gr.Slider(
|
112 |
+
minimum=1, maximum=8000, step=1,
|
113 |
+
value=config['embedding_config']['chunk_size'],
|
114 |
+
label="Max Chunk Size"
|
115 |
+
)
|
116 |
+
chunk_overlap = gr.Slider(
|
117 |
+
minimum=0, maximum=4000, step=1,
|
118 |
+
value=config['embedding_config']['overlap'],
|
119 |
+
label="Chunk Overlap"
|
120 |
+
)
|
121 |
+
adaptive_chunking = gr.Checkbox(
|
122 |
+
label="Use Adaptive Chunking",
|
123 |
+
value=False
|
124 |
+
)
|
125 |
+
|
126 |
+
create_button = gr.Button("Create Embeddings")
|
127 |
+
|
128 |
+
with gr.Column():
|
129 |
+
status_output = gr.Textbox(label="Status", lines=10)
|
130 |
+
progress = gr.Progress()
|
131 |
+
|
132 |
+
def update_provider_options(provider):
|
133 |
+
if provider == "huggingface":
|
134 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
135 |
+
elif provider == "local":
|
136 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
137 |
+
else: # OpenAI
|
138 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
139 |
+
|
140 |
+
def update_huggingface_options(model):
|
141 |
+
if model == "custom":
|
142 |
+
return gr.update(visible=True)
|
143 |
+
else:
|
144 |
+
return gr.update(visible=False)
|
145 |
+
|
146 |
+
def update_database_path(database_type):
|
147 |
+
if database_type == "Media DB":
|
148 |
+
return media_db_path
|
149 |
+
elif database_type == "RAG Chat":
|
150 |
+
return rag_qa_db_path
|
151 |
+
else: # Character Chat
|
152 |
+
return character_chat_db_path
|
153 |
+
|
154 |
+
def create_all_embeddings(provider, hf_model, openai_model, custom_model, api_url, method,
|
155 |
+
max_size, overlap, adaptive, database_type, progress=gr.Progress()):
|
156 |
+
try:
|
157 |
+
# Initialize content based on database selection
|
158 |
+
if database_type == "Media DB":
|
159 |
+
all_content = get_all_content_from_database()
|
160 |
+
content_type = "media"
|
161 |
+
elif database_type == "RAG Chat":
|
162 |
+
all_content = []
|
163 |
+
page = 1
|
164 |
+
while True:
|
165 |
+
conversations, total_pages, _ = get_all_conversations(page=page)
|
166 |
+
if not conversations:
|
167 |
+
break
|
168 |
+
all_content.extend([{
|
169 |
+
'id': conv['conversation_id'],
|
170 |
+
'content': get_conversation_text(conv['conversation_id']),
|
171 |
+
'title': conv['title'],
|
172 |
+
'type': 'conversation'
|
173 |
+
} for conv in conversations])
|
174 |
+
progress(page / total_pages, desc=f"Loading conversations... Page {page}/{total_pages}")
|
175 |
+
page += 1
|
176 |
+
else: # Character Chat
|
177 |
+
all_content = []
|
178 |
+
page = 1
|
179 |
+
while True:
|
180 |
+
notes, total_pages, _ = get_all_notes(page=page)
|
181 |
+
if not notes:
|
182 |
+
break
|
183 |
+
all_content.extend([{
|
184 |
+
'id': note['id'],
|
185 |
+
'content': f"{note['title']}\n\n{note['content']}",
|
186 |
+
'conversation_id': note['conversation_id'],
|
187 |
+
'type': 'note'
|
188 |
+
} for note in notes])
|
189 |
+
progress(page / total_pages, desc=f"Loading notes... Page {page}/{total_pages}")
|
190 |
+
page += 1
|
191 |
+
|
192 |
+
if not all_content:
|
193 |
+
return "No content found in the selected database."
|
194 |
+
|
195 |
+
chunk_options = {
|
196 |
+
'method': method,
|
197 |
+
'max_size': max_size,
|
198 |
+
'overlap': overlap,
|
199 |
+
'adaptive': adaptive
|
200 |
+
}
|
201 |
+
|
202 |
+
collection_name = f"{database_type.lower().replace(' ', '_')}_embeddings"
|
203 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
204 |
+
|
205 |
+
# Determine the model to use
|
206 |
+
if provider == "huggingface":
|
207 |
+
model = custom_model if hf_model == "custom" else hf_model
|
208 |
+
elif provider == "openai":
|
209 |
+
model = openai_model
|
210 |
+
else:
|
211 |
+
model = api_url
|
212 |
+
|
213 |
+
total_items = len(all_content)
|
214 |
+
for idx, item in enumerate(all_content):
|
215 |
+
progress((idx + 1) / total_items, desc=f"Processing item {idx + 1} of {total_items}")
|
216 |
+
|
217 |
+
content_id = item['id']
|
218 |
+
text = item['content']
|
219 |
+
|
220 |
+
chunks = improved_chunking_process(text, chunk_options)
|
221 |
+
for chunk_idx, chunk in enumerate(chunks):
|
222 |
+
chunk_text = chunk['text']
|
223 |
+
chunk_id = f"{database_type.lower()}_{content_id}_chunk_{chunk_idx}"
|
224 |
+
|
225 |
+
try:
|
226 |
+
embedding = create_embedding(chunk_text, provider, model, api_url)
|
227 |
+
metadata = {
|
228 |
+
'content_id': str(content_id),
|
229 |
+
'chunk_index': int(chunk_idx),
|
230 |
+
'total_chunks': int(len(chunks)),
|
231 |
+
'chunking_method': method,
|
232 |
+
'max_chunk_size': int(max_size),
|
233 |
+
'chunk_overlap': int(overlap),
|
234 |
+
'adaptive_chunking': bool(adaptive),
|
235 |
+
'embedding_model': model,
|
236 |
+
'embedding_provider': provider,
|
237 |
+
'content_type': item.get('type', 'media'),
|
238 |
+
'conversation_id': item.get('conversation_id'),
|
239 |
+
**{k: (int(v) if isinstance(v, str) and v.isdigit() else v)
|
240 |
+
for k, v in chunk['metadata'].items()}
|
241 |
+
}
|
242 |
+
store_in_chroma(collection_name, [chunk_text], [embedding], [chunk_id], [metadata])
|
243 |
+
|
244 |
+
except Exception as e:
|
245 |
+
logging.error(f"Error processing chunk {chunk_id}: {str(e)}")
|
246 |
+
continue
|
247 |
+
|
248 |
+
return f"Embeddings created and stored successfully for all {database_type} content."
|
249 |
+
except Exception as e:
|
250 |
+
logging.error(f"Error during embedding creation: {str(e)}")
|
251 |
+
return f"Error: {str(e)}"
|
252 |
+
|
253 |
+
# Event handlers
|
254 |
+
embedding_provider.change(
|
255 |
+
fn=update_provider_options,
|
256 |
+
inputs=[embedding_provider],
|
257 |
+
outputs=[huggingface_model, openai_model, custom_embedding_model, embedding_api_url]
|
258 |
+
)
|
259 |
+
|
260 |
+
huggingface_model.change(
|
261 |
+
fn=update_huggingface_options,
|
262 |
+
inputs=[huggingface_model],
|
263 |
+
outputs=[custom_embedding_model]
|
264 |
+
)
|
265 |
+
|
266 |
+
database_selection.change(
|
267 |
+
fn=update_database_path,
|
268 |
+
inputs=[database_selection],
|
269 |
+
outputs=[current_db_path]
|
270 |
+
)
|
271 |
+
|
272 |
+
create_button.click(
|
273 |
+
fn=create_all_embeddings,
|
274 |
+
inputs=[
|
275 |
+
embedding_provider, huggingface_model, openai_model, custom_embedding_model,
|
276 |
+
embedding_api_url, chunking_method, max_chunk_size, chunk_overlap,
|
277 |
+
adaptive_chunking, database_selection
|
278 |
+
],
|
279 |
+
outputs=status_output
|
280 |
+
)
|
281 |
+
|
282 |
+
|
283 |
+
def create_view_embeddings_tab():
|
284 |
+
# Load configuration first
|
285 |
+
config = load_and_log_configs()
|
286 |
+
if not config:
|
287 |
+
raise ValueError("Could not load configuration")
|
288 |
+
|
289 |
+
# Get database paths from config
|
290 |
+
db_config = config['db_config']
|
291 |
+
media_db_path = db_config['sqlite_path']
|
292 |
+
rag_qa_db_path = os.path.join(os.path.dirname(media_db_path), "rag_chat.db")
|
293 |
+
character_chat_db_path = os.path.join(os.path.dirname(media_db_path), "character_chat.db")
|
294 |
+
chroma_db_path = db_config['chroma_db_path']
|
295 |
+
|
296 |
+
with gr.TabItem("View/Update Embeddings", visible=True):
|
297 |
+
gr.Markdown("# View and Update Embeddings")
|
298 |
+
# Initialize item_mapping as a Gradio State
|
299 |
+
|
300 |
+
|
301 |
+
with gr.Row():
|
302 |
+
with gr.Column():
|
303 |
+
# Add database selection
|
304 |
+
database_selection = gr.Radio(
|
305 |
+
choices=["Media DB", "RAG Chat", "Character Chat"],
|
306 |
+
label="Select Content Source",
|
307 |
+
value="Media DB",
|
308 |
+
info="Choose which database to view embeddings from"
|
309 |
+
)
|
310 |
+
|
311 |
+
# Add database path display
|
312 |
+
current_db_path = gr.Textbox(
|
313 |
+
label="Current Database Path",
|
314 |
+
value=media_db_path,
|
315 |
+
interactive=False
|
316 |
+
)
|
317 |
+
|
318 |
+
item_dropdown = gr.Dropdown(label="Select Item", choices=[], interactive=True)
|
319 |
+
refresh_button = gr.Button("Refresh Item List")
|
320 |
+
embedding_status = gr.Textbox(label="Embedding Status", interactive=False)
|
321 |
+
embedding_preview = gr.Textbox(label="Embedding Preview", interactive=False, lines=5)
|
322 |
+
embedding_metadata = gr.Textbox(label="Embedding Metadata", interactive=False, lines=10)
|
323 |
+
|
324 |
+
with gr.Column():
|
325 |
+
create_new_embedding_button = gr.Button("Create New Embedding")
|
326 |
+
embedding_provider = gr.Radio(
|
327 |
+
choices=["huggingface", "local", "openai"],
|
328 |
+
label="Select Embedding Provider",
|
329 |
+
value="huggingface"
|
330 |
+
)
|
331 |
+
gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.")
|
332 |
+
gr.Markdown("OpenAI provider requires a valid API key.")
|
333 |
+
|
334 |
+
huggingface_model = gr.Dropdown(
|
335 |
+
choices=[
|
336 |
+
"jinaai/jina-embeddings-v3",
|
337 |
+
"Alibaba-NLP/gte-large-en-v1.5",
|
338 |
+
"dunzhang/stella_en_400M_v5",
|
339 |
+
"custom"
|
340 |
+
],
|
341 |
+
label="Hugging Face Model",
|
342 |
+
value="jinaai/jina-embeddings-v3",
|
343 |
+
visible=True
|
344 |
+
)
|
345 |
+
|
346 |
+
openai_model = gr.Dropdown(
|
347 |
+
choices=[
|
348 |
+
"text-embedding-3-small",
|
349 |
+
"text-embedding-3-large"
|
350 |
+
],
|
351 |
+
label="OpenAI Embedding Model",
|
352 |
+
value="text-embedding-3-small",
|
353 |
+
visible=False
|
354 |
+
)
|
355 |
+
|
356 |
+
custom_embedding_model = gr.Textbox(
|
357 |
+
label="Custom Embedding Model",
|
358 |
+
placeholder="Enter your custom embedding model name here",
|
359 |
+
visible=False
|
360 |
+
)
|
361 |
+
|
362 |
+
embedding_api_url = gr.Textbox(
|
363 |
+
label="API URL (for local provider)",
|
364 |
+
value=config['embedding_config']['embedding_api_url'],
|
365 |
+
visible=False
|
366 |
+
)
|
367 |
+
|
368 |
+
chunking_method = gr.Dropdown(
|
369 |
+
choices=["words", "sentences", "paragraphs", "tokens", "semantic"],
|
370 |
+
label="Chunking Method",
|
371 |
+
value="words"
|
372 |
+
)
|
373 |
+
max_chunk_size = gr.Slider(
|
374 |
+
minimum=1, maximum=8000, step=5, value=500,
|
375 |
+
label="Max Chunk Size"
|
376 |
+
)
|
377 |
+
chunk_overlap = gr.Slider(
|
378 |
+
minimum=0, maximum=5000, step=5, value=200,
|
379 |
+
label="Chunk Overlap"
|
380 |
+
)
|
381 |
+
adaptive_chunking = gr.Checkbox(
|
382 |
+
label="Use Adaptive Chunking",
|
383 |
+
value=False
|
384 |
+
)
|
385 |
+
contextual_api_choice = gr.Dropdown(
|
386 |
+
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
|
387 |
+
label="Select API for Contextualized Embeddings",
|
388 |
+
value="OpenAI"
|
389 |
+
)
|
390 |
+
use_contextual_embeddings = gr.Checkbox(
|
391 |
+
label="Use Contextual Embeddings",
|
392 |
+
value=True
|
393 |
+
)
|
394 |
+
contextual_api_key = gr.Textbox(label="API Key", lines=1)
|
395 |
+
|
396 |
+
item_mapping = gr.State(value={})
|
397 |
+
|
398 |
+
def update_database_path(database_type):
|
399 |
+
if database_type == "Media DB":
|
400 |
+
return media_db_path
|
401 |
+
elif database_type == "RAG Chat":
|
402 |
+
return rag_qa_db_path
|
403 |
+
else: # Character Chat
|
404 |
+
return character_chat_db_path
|
405 |
+
|
406 |
+
def get_items_with_embedding_status(database_type):
|
407 |
+
try:
|
408 |
+
# Get items based on database selection
|
409 |
+
if database_type == "Media DB":
|
410 |
+
items = get_all_content_from_database()
|
411 |
+
elif database_type == "RAG Chat":
|
412 |
+
conversations, _, _ = get_all_conversations(page=1)
|
413 |
+
items = [{
|
414 |
+
'id': conv['conversation_id'],
|
415 |
+
'title': conv['title'],
|
416 |
+
'type': 'conversation'
|
417 |
+
} for conv in conversations]
|
418 |
+
else: # Character Chat
|
419 |
+
notes, _, _ = get_all_notes(page=1)
|
420 |
+
items = [{
|
421 |
+
'id': note['id'],
|
422 |
+
'title': note['title'],
|
423 |
+
'type': 'note'
|
424 |
+
} for note in notes]
|
425 |
+
|
426 |
+
collection_name = f"{database_type.lower().replace(' ', '_')}_embeddings"
|
427 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
428 |
+
|
429 |
+
choices = []
|
430 |
+
new_item_mapping = {}
|
431 |
+
for item in items:
|
432 |
+
try:
|
433 |
+
chunk_id = f"{database_type.lower()}_{item['id']}_chunk_0"
|
434 |
+
result = collection.get(ids=[chunk_id])
|
435 |
+
embedding_exists = result is not None and result.get('ids') and len(result['ids']) > 0
|
436 |
+
status = "Embedding exists" if embedding_exists else "No embedding"
|
437 |
+
except Exception as e:
|
438 |
+
print(f"Error checking embedding for item {item['id']}: {str(e)}")
|
439 |
+
status = "Error checking"
|
440 |
+
choice = f"{item['title']} ({status})"
|
441 |
+
choices.append(choice)
|
442 |
+
new_item_mapping[choice] = item['id']
|
443 |
+
return gr.update(choices=choices), new_item_mapping
|
444 |
+
except Exception as e:
|
445 |
+
print(f"Error in get_items_with_embedding_status: {str(e)}")
|
446 |
+
return gr.update(choices=["Error: Unable to fetch items"]), {}
|
447 |
+
|
448 |
+
def update_provider_options(provider):
|
449 |
+
if provider == "huggingface":
|
450 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
451 |
+
elif provider == "local":
|
452 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
453 |
+
else: # OpenAI
|
454 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
455 |
+
|
456 |
+
def update_huggingface_options(model):
|
457 |
+
if model == "custom":
|
458 |
+
return gr.update(visible=True)
|
459 |
+
else:
|
460 |
+
return gr.update(visible=False)
|
461 |
+
|
462 |
+
def check_embedding_status(selected_item, database_type, item_mapping):
|
463 |
+
if not selected_item:
|
464 |
+
return "Please select an item", "", ""
|
465 |
+
|
466 |
+
if item_mapping is None:
|
467 |
+
# If mapping is None, try to refresh it
|
468 |
+
try:
|
469 |
+
_, item_mapping = get_items_with_embedding_status(database_type)
|
470 |
+
except Exception as e:
|
471 |
+
return f"Error initializing item mapping: {str(e)}", "", ""
|
472 |
+
|
473 |
+
try:
|
474 |
+
item_id = item_mapping.get(selected_item)
|
475 |
+
if item_id is None:
|
476 |
+
return f"Invalid item selected: {selected_item}", "", ""
|
477 |
+
|
478 |
+
item_title = selected_item.rsplit(' (', 1)[0]
|
479 |
+
collection_name = f"{database_type.lower().replace(' ', '_')}_embeddings"
|
480 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
481 |
+
chunk_id = f"{database_type.lower()}_{item_id}_chunk_0"
|
482 |
+
|
483 |
+
try:
|
484 |
+
result = collection.get(ids=[chunk_id], include=["embeddings", "metadatas"])
|
485 |
+
except Exception as e:
|
486 |
+
logging.error(f"ChromaDB get error: {str(e)}")
|
487 |
+
return f"Error retrieving embedding for '{item_title}': {str(e)}", "", ""
|
488 |
+
|
489 |
+
# Check if result exists and has the expected structure
|
490 |
+
if not result or not isinstance(result, dict):
|
491 |
+
return f"No embedding found for item '{item_title}' (ID: {item_id})", "", ""
|
492 |
+
|
493 |
+
# Check if we have any results
|
494 |
+
if not result.get('ids') or len(result['ids']) == 0:
|
495 |
+
return f"No embedding found for item '{item_title}' (ID: {item_id})", "", ""
|
496 |
+
|
497 |
+
# Check if embeddings exist
|
498 |
+
if not result.get('embeddings') or not result['embeddings'][0]:
|
499 |
+
return f"Embedding data missing for item '{item_title}' (ID: {item_id})", "", ""
|
500 |
+
|
501 |
+
embedding = result['embeddings'][0]
|
502 |
+
metadata = result.get('metadatas', [{}])[0] if result.get('metadatas') else {}
|
503 |
+
embedding_preview = str(embedding[:50])
|
504 |
+
status = f"Embedding exists for item '{item_title}' (ID: {item_id})"
|
505 |
+
return status, f"First 50 elements of embedding:\n{embedding_preview}", json.dumps(metadata, indent=2)
|
506 |
+
|
507 |
+
except Exception as e:
|
508 |
+
logging.error(f"Error in check_embedding_status: {str(e)}", exc_info=True)
|
509 |
+
return f"Error processing item: {selected_item}. Details: {str(e)}", "", ""
|
510 |
+
|
511 |
+
def refresh_and_update(database_type):
|
512 |
+
choices_update, new_mapping = get_items_with_embedding_status(database_type)
|
513 |
+
return choices_update, new_mapping
|
514 |
+
|
515 |
+
def create_new_embedding_for_item(selected_item, database_type, provider, hf_model, openai_model,
|
516 |
+
custom_model, api_url, method, max_size, overlap, adaptive,
|
517 |
+
item_mapping, use_contextual, contextual_api_choice=None):
|
518 |
+
if not selected_item:
|
519 |
+
return "Please select an item", "", ""
|
520 |
+
|
521 |
+
try:
|
522 |
+
item_id = item_mapping.get(selected_item)
|
523 |
+
if item_id is None:
|
524 |
+
return f"Invalid item selected: {selected_item}", "", ""
|
525 |
+
|
526 |
+
# Get item content based on database type
|
527 |
+
if database_type == "Media DB":
|
528 |
+
items = get_all_content_from_database()
|
529 |
+
item = next((item for item in items if item['id'] == item_id), None)
|
530 |
+
elif database_type == "RAG Chat":
|
531 |
+
item = {
|
532 |
+
'id': item_id,
|
533 |
+
'content': get_conversation_text(item_id),
|
534 |
+
'title': selected_item.rsplit(' (', 1)[0],
|
535 |
+
'type': 'conversation'
|
536 |
+
}
|
537 |
+
else: # Character Chat
|
538 |
+
note = get_note_by_id(item_id)
|
539 |
+
item = {
|
540 |
+
'id': item_id,
|
541 |
+
'content': f"{note['title']}\n\n{note['content']}",
|
542 |
+
'title': note['title'],
|
543 |
+
'type': 'note'
|
544 |
+
}
|
545 |
+
|
546 |
+
if not item:
|
547 |
+
return f"Item not found: {item_id}", "", ""
|
548 |
+
|
549 |
+
chunk_options = {
|
550 |
+
'method': method,
|
551 |
+
'max_size': max_size,
|
552 |
+
'overlap': overlap,
|
553 |
+
'adaptive': adaptive
|
554 |
+
}
|
555 |
+
|
556 |
+
logging.info(f"Chunking content for item: {item['title']} (ID: {item_id})")
|
557 |
+
chunks = chunk_for_embedding(item['content'], item['title'], chunk_options)
|
558 |
+
collection_name = f"{database_type.lower().replace(' ', '_')}_embeddings"
|
559 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
560 |
+
|
561 |
+
# Delete existing embeddings for this item
|
562 |
+
existing_ids = [f"{database_type.lower()}_{item_id}_chunk_{i}" for i in range(len(chunks))]
|
563 |
+
collection.delete(ids=existing_ids)
|
564 |
+
logging.info(f"Deleted {len(existing_ids)} existing embeddings for item {item_id}")
|
565 |
+
|
566 |
+
texts, ids, metadatas = [], [], []
|
567 |
+
chunk_count = 0
|
568 |
+
logging.info("Generating contextual summaries and preparing chunks for embedding")
|
569 |
+
for i, chunk in enumerate(chunks):
|
570 |
+
chunk_text = chunk['text']
|
571 |
+
chunk_metadata = chunk['metadata']
|
572 |
+
if use_contextual:
|
573 |
+
logging.debug(f"Generating contextual summary for chunk {chunk_count}")
|
574 |
+
context = situate_context(contextual_api_choice, item['content'], chunk_text)
|
575 |
+
contextualized_text = f"{chunk_text}\n\nContextual Summary: {context}"
|
576 |
+
else:
|
577 |
+
contextualized_text = chunk_text
|
578 |
+
context = None
|
579 |
+
|
580 |
+
chunk_id = f"{database_type.lower()}_{item_id}_chunk_{i}"
|
581 |
+
|
582 |
+
# Determine the model to use
|
583 |
+
if provider == "huggingface":
|
584 |
+
model = custom_model if hf_model == "custom" else hf_model
|
585 |
+
elif provider == "openai":
|
586 |
+
model = openai_model
|
587 |
+
else:
|
588 |
+
model = custom_model
|
589 |
+
|
590 |
+
metadata = {
|
591 |
+
"content_id": str(item_id),
|
592 |
+
"chunk_index": i,
|
593 |
+
"total_chunks": len(chunks),
|
594 |
+
"chunking_method": method,
|
595 |
+
"max_chunk_size": max_size,
|
596 |
+
"chunk_overlap": overlap,
|
597 |
+
"adaptive_chunking": adaptive,
|
598 |
+
"embedding_model": model,
|
599 |
+
"embedding_provider": provider,
|
600 |
+
"original_text": chunk_text,
|
601 |
+
"use_contextual_embeddings": use_contextual,
|
602 |
+
"contextual_summary": context,
|
603 |
+
**chunk_metadata
|
604 |
+
}
|
605 |
+
|
606 |
+
texts.append(contextualized_text)
|
607 |
+
ids.append(chunk_id)
|
608 |
+
metadatas.append(metadata)
|
609 |
+
chunk_count += 1
|
610 |
+
|
611 |
+
# Create embeddings in batch
|
612 |
+
logging.info(f"Creating embeddings for {len(texts)} chunks")
|
613 |
+
embeddings = create_embeddings_batch(texts, provider, model, api_url)
|
614 |
+
|
615 |
+
# Store in Chroma
|
616 |
+
store_in_chroma(collection_name, texts, embeddings, ids, metadatas)
|
617 |
+
|
618 |
+
# Create a preview of the first embedding
|
619 |
+
if isinstance(embeddings, np.ndarray) and embeddings.size > 0:
|
620 |
+
embedding_preview = str(embeddings[0][:50])
|
621 |
+
elif isinstance(embeddings, list) and len(embeddings) > 0:
|
622 |
+
embedding_preview = str(embeddings[0][:50])
|
623 |
+
else:
|
624 |
+
embedding_preview = "No embeddings created"
|
625 |
+
|
626 |
+
# Return status message
|
627 |
+
status = f"New embeddings created and stored for item: {item['title']} (ID: {item_id})"
|
628 |
+
|
629 |
+
# Add contextual summaries to status message if enabled
|
630 |
+
if use_contextual:
|
631 |
+
status += " (with contextual summaries)"
|
632 |
+
|
633 |
+
# Return status message, embedding preview, and metadata
|
634 |
+
return status, f"First 50 elements of new embedding:\n{embedding_preview}", json.dumps(metadatas[0],
|
635 |
+
indent=2)
|
636 |
+
except Exception as e:
|
637 |
+
logging.error(f"Error in create_new_embedding_for_item: {str(e)}", exc_info=True)
|
638 |
+
return f"Error creating embedding: {str(e)}", "", ""
|
639 |
+
|
640 |
+
# Wire up all the event handlers
|
641 |
+
database_selection.change(
|
642 |
+
update_database_path,
|
643 |
+
inputs=[database_selection],
|
644 |
+
outputs=[current_db_path]
|
645 |
+
)
|
646 |
+
|
647 |
+
refresh_button.click(
|
648 |
+
get_items_with_embedding_status,
|
649 |
+
inputs=[database_selection],
|
650 |
+
outputs=[item_dropdown, item_mapping]
|
651 |
+
)
|
652 |
+
|
653 |
+
item_dropdown.change(
|
654 |
+
check_embedding_status,
|
655 |
+
inputs=[item_dropdown, database_selection, item_mapping],
|
656 |
+
outputs=[embedding_status, embedding_preview, embedding_metadata]
|
657 |
+
)
|
658 |
+
|
659 |
+
create_new_embedding_button.click(
|
660 |
+
create_new_embedding_for_item,
|
661 |
+
inputs=[item_dropdown, embedding_provider, huggingface_model, openai_model, custom_embedding_model, embedding_api_url,
|
662 |
+
chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, item_mapping,
|
663 |
+
use_contextual_embeddings, contextual_api_choice],
|
664 |
+
outputs=[embedding_status, embedding_preview, embedding_metadata]
|
665 |
+
)
|
666 |
+
embedding_provider.change(
|
667 |
+
update_provider_options,
|
668 |
+
inputs=[embedding_provider],
|
669 |
+
outputs=[huggingface_model, openai_model, custom_embedding_model, embedding_api_url]
|
670 |
+
)
|
671 |
+
huggingface_model.change(
|
672 |
+
update_huggingface_options,
|
673 |
+
inputs=[huggingface_model],
|
674 |
+
outputs=[custom_embedding_model]
|
675 |
+
)
|
676 |
+
|
677 |
+
return (item_dropdown, refresh_button, embedding_status, embedding_preview, embedding_metadata,
|
678 |
+
create_new_embedding_button, embedding_provider, huggingface_model, openai_model,
|
679 |
+
custom_embedding_model, embedding_api_url, chunking_method, max_chunk_size,
|
680 |
+
chunk_overlap, adaptive_chunking, use_contextual_embeddings,
|
681 |
+
contextual_api_choice, contextual_api_key)
|
682 |
+
|
683 |
+
|
684 |
+
def create_purge_embeddings_tab():
|
685 |
+
with gr.TabItem("Purge Embeddings", visible=True):
|
686 |
+
gr.Markdown("# Purge Embeddings")
|
687 |
+
|
688 |
+
with gr.Row():
|
689 |
+
with gr.Column():
|
690 |
+
purge_button = gr.Button("Purge All Embeddings")
|
691 |
+
with gr.Column():
|
692 |
+
status_output = gr.Textbox(label="Status", lines=10)
|
693 |
+
|
694 |
+
def purge_all_embeddings():
|
695 |
+
try:
|
696 |
+
# It came to me in a dream....I literally don't remember how the fuck this works, cant find documentation...
|
697 |
+
collection_name = "all_content_embeddings"
|
698 |
+
chroma_client.delete_collection(collection_name)
|
699 |
+
chroma_client.create_collection(collection_name)
|
700 |
+
logging.info(f"All embeddings have been purged successfully.")
|
701 |
+
return "All embeddings have been purged successfully."
|
702 |
+
except Exception as e:
|
703 |
+
logging.error(f"Error during embedding purge: {str(e)}")
|
704 |
+
return f"Error: {str(e)}"
|
705 |
+
|
706 |
+
purge_button.click(
|
707 |
+
fn=purge_all_embeddings,
|
708 |
+
outputs=status_output
|
709 |
+
)
|
710 |
+
|
711 |
+
|
712 |
+
|
713 |
+
#
|
714 |
+
# End of file
|
715 |
+
########################################################################################################################
|