Spaces:
Running
Running
oceansweep
commited on
Upload 6 files
Browse files- App_Function_Libraries/RAG/ChromaDB_Library.py +287 -0
- App_Function_Libraries/RAG/RAG_Examples.md +556 -0
- App_Function_Libraries/RAG/RAG_Libary_2.py +172 -0
- App_Function_Libraries/RAG/RAG_Library.py +396 -0
- App_Function_Libraries/RAG/RAPTOR-Skeleton.py +361 -0
- App_Function_Libraries/RAG/__init__.py +0 -0
App_Function_Libraries/RAG/ChromaDB_Library.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import configparser
|
2 |
+
import logging
|
3 |
+
import sqlite3
|
4 |
+
from typing import List, Dict, Any
|
5 |
+
|
6 |
+
import chromadb
|
7 |
+
import requests
|
8 |
+
from chromadb import Settings
|
9 |
+
|
10 |
+
from App_Function_Libraries.Chunk_Lib import improved_chunking_process
|
11 |
+
from App_Function_Libraries.DB.DB_Manager import add_media_chunk, update_fts_for_media
|
12 |
+
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
|
13 |
+
|
14 |
+
#######################################################################################################################
|
15 |
+
#
|
16 |
+
# Functions for ChromaDB
|
17 |
+
|
18 |
+
# Get ChromaDB settings
|
19 |
+
# Load configuration
|
20 |
+
config = configparser.ConfigParser()
|
21 |
+
config.read('config.txt')
|
22 |
+
chroma_db_path = config.get('Database', 'chroma_db_path', fallback='chroma_db')
|
23 |
+
chroma_client = chromadb.PersistentClient(path=chroma_db_path, settings=Settings(anonymized_telemetry=False))
|
24 |
+
|
25 |
+
# Get embedding settings
|
26 |
+
embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
|
27 |
+
embedding_model = config.get('Embeddings', 'model', fallback='text-embedding-3-small')
|
28 |
+
embedding_api_key = config.get('Embeddings', 'api_key', fallback='')
|
29 |
+
embedding_api_url = config.get('Embeddings', 'api_url', fallback='')
|
30 |
+
|
31 |
+
# Get chunking options
|
32 |
+
chunk_options = {
|
33 |
+
'method': config.get('Chunking', 'method', fallback='words'),
|
34 |
+
'max_size': config.getint('Chunking', 'max_size', fallback=400),
|
35 |
+
'overlap': config.getint('Chunking', 'overlap', fallback=200),
|
36 |
+
'adaptive': config.getboolean('Chunking', 'adaptive', fallback=False),
|
37 |
+
'multi_level': config.getboolean('Chunking', 'multi_level', fallback=False),
|
38 |
+
'language': config.get('Chunking', 'language', fallback='english')
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
def auto_update_chroma_embeddings(media_id: int, content: str):
|
43 |
+
"""
|
44 |
+
Automatically update ChromaDB embeddings when a new item is ingested into the SQLite database.
|
45 |
+
|
46 |
+
:param media_id: The ID of the newly ingested media item
|
47 |
+
:param content: The content of the newly ingested media item
|
48 |
+
"""
|
49 |
+
collection_name = f"media_{media_id}"
|
50 |
+
|
51 |
+
# Initialize or get the ChromaDB collection
|
52 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
53 |
+
|
54 |
+
# Check if embeddings already exist for this media_id
|
55 |
+
existing_embeddings = collection.get(ids=[f"{media_id}_chunk_{i}" for i in range(len(content))])
|
56 |
+
|
57 |
+
if existing_embeddings and len(existing_embeddings) > 0:
|
58 |
+
logging.info(f"Embeddings already exist for media ID {media_id}, skipping...")
|
59 |
+
else:
|
60 |
+
# Process and store content if embeddings do not already exist
|
61 |
+
process_and_store_content(content, collection_name, media_id)
|
62 |
+
logging.info(f"Updated ChromaDB embeddings for media ID: {media_id}")
|
63 |
+
|
64 |
+
|
65 |
+
# Function to process content, create chunks, embeddings, and store in ChromaDB and SQLite
|
66 |
+
def process_and_store_content(content: str, collection_name: str, media_id: int):
|
67 |
+
# Process the content into chunks
|
68 |
+
chunks = improved_chunking_process(content, chunk_options)
|
69 |
+
texts = [chunk['text'] for chunk in chunks]
|
70 |
+
|
71 |
+
# Generate embeddings for each chunk
|
72 |
+
embeddings = [create_embedding(text) for text in texts]
|
73 |
+
|
74 |
+
# Create unique IDs for each chunk using the media_id and chunk index
|
75 |
+
ids = [f"{media_id}_chunk_{i}" for i in range(len(texts))]
|
76 |
+
|
77 |
+
# Store the texts, embeddings, and IDs in ChromaDB
|
78 |
+
store_in_chroma(collection_name, texts, embeddings, ids)
|
79 |
+
|
80 |
+
# Store the chunk metadata in SQLite
|
81 |
+
for i, chunk in enumerate(chunks):
|
82 |
+
add_media_chunk(media_id, chunk['text'], chunk['start'], chunk['end'], ids[i])
|
83 |
+
|
84 |
+
# Update the FTS table
|
85 |
+
update_fts_for_media(media_id)
|
86 |
+
|
87 |
+
# Function to store documents and their embeddings in ChromaDB
|
88 |
+
def store_in_chroma(collection_name: str, texts: List[str], embeddings: List[List[float]], ids: List[str]):
|
89 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
90 |
+
collection.add(
|
91 |
+
documents=texts,
|
92 |
+
embeddings=embeddings,
|
93 |
+
ids=ids
|
94 |
+
)
|
95 |
+
|
96 |
+
# Function to perform vector search using ChromaDB
|
97 |
+
def vector_search(collection_name: str, query: str, k: int = 10) -> List[str]:
|
98 |
+
query_embedding = create_embedding(query)
|
99 |
+
collection = chroma_client.get_collection(name=collection_name)
|
100 |
+
results = collection.query(
|
101 |
+
query_embeddings=[query_embedding],
|
102 |
+
n_results=k
|
103 |
+
)
|
104 |
+
return results['documents'][0]
|
105 |
+
|
106 |
+
|
107 |
+
def create_embedding(text: str) -> List[float]:
|
108 |
+
global embedding_provider, embedding_model, embedding_api_url, embedding_api_key
|
109 |
+
|
110 |
+
if embedding_provider == 'openai':
|
111 |
+
return get_openai_embeddings(text, embedding_model)
|
112 |
+
elif embedding_provider == 'local':
|
113 |
+
response = requests.post(
|
114 |
+
embedding_api_url,
|
115 |
+
json={"text": text, "model": embedding_model},
|
116 |
+
headers={"Authorization": f"Bearer {embedding_api_key}"}
|
117 |
+
)
|
118 |
+
return response.json()['embedding']
|
119 |
+
elif embedding_provider == 'huggingface':
|
120 |
+
from transformers import AutoTokenizer, AutoModel
|
121 |
+
import torch
|
122 |
+
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
124 |
+
model = AutoModel.from_pretrained(embedding_model)
|
125 |
+
|
126 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
127 |
+
with torch.no_grad():
|
128 |
+
outputs = model(**inputs)
|
129 |
+
|
130 |
+
# Use the mean of the last hidden state as the sentence embedding
|
131 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
132 |
+
return embeddings[0].tolist() # Convert to list for consistency
|
133 |
+
else:
|
134 |
+
raise ValueError(f"Unsupported embedding provider: {embedding_provider}")
|
135 |
+
|
136 |
+
|
137 |
+
def create_all_embeddings(api_choice: str, model_or_url: str) -> str:
|
138 |
+
try:
|
139 |
+
all_content = get_all_content_from_database()
|
140 |
+
|
141 |
+
if not all_content:
|
142 |
+
return "No content found in the database."
|
143 |
+
|
144 |
+
texts_to_embed = []
|
145 |
+
embeddings_to_store = []
|
146 |
+
ids_to_store = []
|
147 |
+
collection_name = "all_content_embeddings"
|
148 |
+
|
149 |
+
# Initialize or get the ChromaDB collection
|
150 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
151 |
+
|
152 |
+
for content_item in all_content:
|
153 |
+
media_id = content_item['id']
|
154 |
+
text = content_item['content']
|
155 |
+
|
156 |
+
# Check if the embedding already exists in ChromaDB
|
157 |
+
embedding_exists = collection.get(ids=[f"doc_{media_id}"])
|
158 |
+
|
159 |
+
if embedding_exists:
|
160 |
+
logging.info(f"Embedding already exists for media ID {media_id}, skipping...")
|
161 |
+
continue # Skip if embedding already exists
|
162 |
+
|
163 |
+
# Create the embedding
|
164 |
+
if api_choice == "openai":
|
165 |
+
embedding = create_openai_embedding(text, model_or_url)
|
166 |
+
else: # Llama.cpp
|
167 |
+
embedding = create_llamacpp_embedding(text, model_or_url)
|
168 |
+
|
169 |
+
# Collect the text, embedding, and ID for batch storage
|
170 |
+
texts_to_embed.append(text)
|
171 |
+
embeddings_to_store.append(embedding)
|
172 |
+
ids_to_store.append(f"doc_{media_id}")
|
173 |
+
|
174 |
+
# Store all new embeddings in ChromaDB
|
175 |
+
if texts_to_embed and embeddings_to_store:
|
176 |
+
store_in_chroma(collection_name, texts_to_embed, embeddings_to_store, ids_to_store)
|
177 |
+
|
178 |
+
return "Embeddings created and stored successfully for all new content."
|
179 |
+
except Exception as e:
|
180 |
+
logging.error(f"Error during embedding creation: {str(e)}")
|
181 |
+
return f"Error: {str(e)}"
|
182 |
+
|
183 |
+
|
184 |
+
def create_openai_embedding(text: str, model: str) -> List[float]:
|
185 |
+
openai_api_key = config['API']['openai_api_key']
|
186 |
+
embedding = get_openai_embeddings(text, model)
|
187 |
+
return embedding
|
188 |
+
|
189 |
+
|
190 |
+
def create_llamacpp_embedding(text: str, api_url: str) -> List[float]:
|
191 |
+
response = requests.post(
|
192 |
+
api_url,
|
193 |
+
json={"input": text}
|
194 |
+
)
|
195 |
+
if response.status_code == 200:
|
196 |
+
return response.json()['embedding']
|
197 |
+
else:
|
198 |
+
raise Exception(f"Error from Llama.cpp API: {response.text}")
|
199 |
+
|
200 |
+
|
201 |
+
def get_all_content_from_database() -> List[Dict[str, Any]]:
|
202 |
+
"""
|
203 |
+
Retrieve all media content from the database that requires embedding.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
List[Dict[str, Any]]: A list of dictionaries, each containing the media ID, content, title, and other relevant fields.
|
207 |
+
"""
|
208 |
+
try:
|
209 |
+
from App_Function_Libraries.DB.DB_Manager import db
|
210 |
+
with db.get_connection() as conn:
|
211 |
+
cursor = conn.cursor()
|
212 |
+
cursor.execute("""
|
213 |
+
SELECT id, content, title, author, type
|
214 |
+
FROM Media
|
215 |
+
WHERE is_trash = 0 -- Exclude items marked as trash
|
216 |
+
""")
|
217 |
+
media_items = cursor.fetchall()
|
218 |
+
|
219 |
+
# Convert the results into a list of dictionaries
|
220 |
+
all_content = [
|
221 |
+
{
|
222 |
+
'id': item[0],
|
223 |
+
'content': item[1],
|
224 |
+
'title': item[2],
|
225 |
+
'author': item[3],
|
226 |
+
'type': item[4]
|
227 |
+
}
|
228 |
+
for item in media_items
|
229 |
+
]
|
230 |
+
|
231 |
+
return all_content
|
232 |
+
|
233 |
+
except sqlite3.Error as e:
|
234 |
+
logging.error(f"Error retrieving all content from database: {e}")
|
235 |
+
from App_Function_Libraries.DB.SQLite_DB import DatabaseError
|
236 |
+
raise DatabaseError(f"Error retrieving all content from database: {e}")
|
237 |
+
|
238 |
+
|
239 |
+
def store_in_chroma_with_citation(collection_name: str, texts: List[str], embeddings: List[List[float]], ids: List[str], sources: List[str]):
|
240 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
241 |
+
collection.add(
|
242 |
+
documents=texts,
|
243 |
+
embeddings=embeddings,
|
244 |
+
ids=ids,
|
245 |
+
metadatas=[{'source': source} for source in sources]
|
246 |
+
)
|
247 |
+
|
248 |
+
|
249 |
+
def check_embedding_status(selected_item):
|
250 |
+
if not selected_item:
|
251 |
+
return "Please select an item", ""
|
252 |
+
item_id = selected_item.split('(')[0].strip()
|
253 |
+
collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
|
254 |
+
result = collection.get(ids=[f"doc_{item_id}"])
|
255 |
+
if result['ids']:
|
256 |
+
embedding = result['embeddings'][0]
|
257 |
+
embedding_preview = str(embedding[:50]) # Convert first 50 elements to string
|
258 |
+
return f"Embedding exists for item: {item_id}", f"Embedding preview: {embedding_preview}..."
|
259 |
+
else:
|
260 |
+
return f"No embedding found for item: {item_id}", ""
|
261 |
+
|
262 |
+
|
263 |
+
def create_new_embedding(selected_item, api_choice, openai_model, llamacpp_url):
|
264 |
+
if not selected_item:
|
265 |
+
return "Please select an item"
|
266 |
+
item_id = selected_item.split('(')[0].strip()
|
267 |
+
items = get_all_content_from_database()
|
268 |
+
item = next((item for item in items if item['title'] == item_id), None)
|
269 |
+
if not item:
|
270 |
+
return f"Item not found: {item_id}"
|
271 |
+
|
272 |
+
try:
|
273 |
+
if api_choice == "OpenAI":
|
274 |
+
embedding = create_embedding(item['content'])
|
275 |
+
else: # Llama.cpp
|
276 |
+
embedding = create_embedding(item['content'])
|
277 |
+
|
278 |
+
collection_name = "all_content_embeddings"
|
279 |
+
store_in_chroma(collection_name, [item['content']], [embedding], [f"doc_{item['id']}"])
|
280 |
+
return f"New embedding created and stored for item: {item_id}"
|
281 |
+
except Exception as e:
|
282 |
+
return f"Error creating embedding: {str(e)}"
|
283 |
+
|
284 |
+
|
285 |
+
#
|
286 |
+
# End of Functions for ChromaDB
|
287 |
+
#######################################################################################################################
|
App_Function_Libraries/RAG/RAG_Examples.md
ADDED
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
```
|
3 |
+
##################################################################################################################
|
4 |
+
# RAG Pipeline 1
|
5 |
+
# 0.62 0.61 0.75 63402.0
|
6 |
+
# from langchain_openai import ChatOpenAI
|
7 |
+
#
|
8 |
+
# from langchain_community.document_loaders import WebBaseLoader
|
9 |
+
# from langchain_openai import OpenAIEmbeddings
|
10 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
# from langchain_chroma import Chroma
|
12 |
+
#
|
13 |
+
# from langchain_community.retrievers import BM25Retriever
|
14 |
+
# from langchain.retrievers import ParentDocumentRetriever
|
15 |
+
# from langchain.storage import InMemoryStore
|
16 |
+
# import os
|
17 |
+
# from operator import itemgetter
|
18 |
+
# from langchain import hub
|
19 |
+
# from langchain_core.output_parsers import StrOutputParser
|
20 |
+
# from langchain_core.runnables import RunnablePassthrough, RunnableParallel, RunnableLambda
|
21 |
+
# from langchain.retrievers import MergerRetriever
|
22 |
+
# from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
23 |
+
|
24 |
+
|
25 |
+
# def rag_pipeline():
|
26 |
+
# try:
|
27 |
+
# def format_docs(docs):
|
28 |
+
# return "\n".join(doc.page_content for doc in docs)
|
29 |
+
#
|
30 |
+
# llm = ChatOpenAI(model='gpt-4o-mini')
|
31 |
+
#
|
32 |
+
# loader = WebBaseLoader('https://en.wikipedia.org/wiki/European_debt_crisis')
|
33 |
+
# docs = loader.load()
|
34 |
+
#
|
35 |
+
# embedding = OpenAIEmbeddings(model='text-embedding-3-large')
|
36 |
+
#
|
37 |
+
# splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=200)
|
38 |
+
# splits = splitter.split_documents(docs)
|
39 |
+
# c = Chroma.from_documents(documents=splits, embedding=embedding,
|
40 |
+
# collection_name='testindex-ragbuilder-1724657573', )
|
41 |
+
# retrievers = []
|
42 |
+
# retriever = c.as_retriever(search_type='mmr', search_kwargs={'k': 10})
|
43 |
+
# retrievers.append(retriever)
|
44 |
+
# retriever = BM25Retriever.from_documents(docs)
|
45 |
+
# retrievers.append(retriever)
|
46 |
+
#
|
47 |
+
# parent_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=600)
|
48 |
+
# splits = parent_splitter.split_documents(docs)
|
49 |
+
# store = InMemoryStore()
|
50 |
+
# retriever = ParentDocumentRetriever(vectorstore=c, docstore=store, child_splitter=splitter,
|
51 |
+
# parent_splitter=parent_splitter)
|
52 |
+
# retriever.add_documents(docs)
|
53 |
+
# retrievers.append(retriever)
|
54 |
+
# retriever = MergerRetriever(retrievers=retrievers)
|
55 |
+
# prompt = hub.pull("rlm/rag-prompt")
|
56 |
+
# rag_chain = (
|
57 |
+
# RunnableParallel(context=retriever, question=RunnablePassthrough())
|
58 |
+
# .assign(context=itemgetter("context") | RunnableLambda(format_docs))
|
59 |
+
# .assign(answer=prompt | llm | StrOutputParser())
|
60 |
+
# .pick(["answer", "context"]))
|
61 |
+
# return rag_chain
|
62 |
+
# except Exception as e:
|
63 |
+
# print(f"An error occurred: {e}")
|
64 |
+
|
65 |
+
|
66 |
+
# To get the answer and context, use the following code
|
67 |
+
# res=rag_pipeline().invoke("your prompt here")
|
68 |
+
# print(res["answer"])
|
69 |
+
# print(res["context"])
|
70 |
+
|
71 |
+
############################################################################################################
|
72 |
+
|
73 |
+
|
74 |
+
############################################################################################################
|
75 |
+
# RAG Pipeline 2
|
76 |
+
|
77 |
+
# 0.6 0.73 0.68 3125.0
|
78 |
+
# from langchain_openai import ChatOpenAI
|
79 |
+
#
|
80 |
+
# from langchain_community.document_loaders import WebBaseLoader
|
81 |
+
# from langchain_openai import OpenAIEmbeddings
|
82 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
83 |
+
# from langchain_chroma import Chroma
|
84 |
+
# from langchain.retrievers.multi_query import MultiQueryRetriever
|
85 |
+
# from langchain.retrievers import ParentDocumentRetriever
|
86 |
+
# from langchain.storage import InMemoryStore
|
87 |
+
# from langchain_community.document_transformers import EmbeddingsRedundantFilter
|
88 |
+
# from langchain.retrievers.document_compressors import LLMChainFilter
|
89 |
+
# from langchain.retrievers.document_compressors import EmbeddingsFilter
|
90 |
+
# from langchain.retrievers import ContextualCompressionRetriever
|
91 |
+
# import os
|
92 |
+
# from operator import itemgetter
|
93 |
+
# from langchain import hub
|
94 |
+
# from langchain_core.output_parsers import StrOutputParser
|
95 |
+
# from langchain_core.runnables import RunnablePassthrough, RunnableParallel, RunnableLambda
|
96 |
+
# from langchain.retrievers import MergerRetriever
|
97 |
+
# from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
98 |
+
|
99 |
+
|
100 |
+
# def rag_pipeline():
|
101 |
+
# try:
|
102 |
+
# def format_docs(docs):
|
103 |
+
# return "\n".join(doc.page_content for doc in docs)
|
104 |
+
#
|
105 |
+
# llm = ChatOpenAI(model='gpt-4o-mini')
|
106 |
+
#
|
107 |
+
# loader = WebBaseLoader('https://en.wikipedia.org/wiki/European_debt_crisis')
|
108 |
+
# docs = loader.load()
|
109 |
+
#
|
110 |
+
# embedding = OpenAIEmbeddings(model='text-embedding-3-large')
|
111 |
+
#
|
112 |
+
# splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=200)
|
113 |
+
# splits = splitter.split_documents(docs)
|
114 |
+
# c = Chroma.from_documents(documents=splits, embedding=embedding,
|
115 |
+
# collection_name='testindex-ragbuilder-1724650962', )
|
116 |
+
# retrievers = []
|
117 |
+
# retriever = MultiQueryRetriever.from_llm(c.as_retriever(search_type='similarity', search_kwargs={'k': 10}),
|
118 |
+
# llm=llm)
|
119 |
+
# retrievers.append(retriever)
|
120 |
+
#
|
121 |
+
# parent_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=600)
|
122 |
+
# splits = parent_splitter.split_documents(docs)
|
123 |
+
# store = InMemoryStore()
|
124 |
+
# retriever = ParentDocumentRetriever(vectorstore=c, docstore=store, child_splitter=splitter,
|
125 |
+
# parent_splitter=parent_splitter)
|
126 |
+
# retriever.add_documents(docs)
|
127 |
+
# retrievers.append(retriever)
|
128 |
+
# retriever = MergerRetriever(retrievers=retrievers)
|
129 |
+
# arr_comp = []
|
130 |
+
# arr_comp.append(EmbeddingsRedundantFilter(embeddings=embedding))
|
131 |
+
# arr_comp.append(LLMChainFilter.from_llm(llm))
|
132 |
+
# pipeline_compressor = DocumentCompressorPipeline(transformers=arr_comp)
|
133 |
+
# retriever = ContextualCompressionRetriever(base_retriever=retriever, base_compressor=pipeline_compressor)
|
134 |
+
# prompt = hub.pull("rlm/rag-prompt")
|
135 |
+
# rag_chain = (
|
136 |
+
# RunnableParallel(context=retriever, question=RunnablePassthrough())
|
137 |
+
# .assign(context=itemgetter("context") | RunnableLambda(format_docs))
|
138 |
+
# .assign(answer=prompt | llm | StrOutputParser())
|
139 |
+
# .pick(["answer", "context"]))
|
140 |
+
# return rag_chain
|
141 |
+
# except Exception as e:
|
142 |
+
# print(f"An error occurred: {e}")
|
143 |
+
|
144 |
+
|
145 |
+
# To get the answer and context, use the following code
|
146 |
+
# res=rag_pipeline().invoke("your prompt here")
|
147 |
+
# print(res["answer"])
|
148 |
+
# print(res["context"])
|
149 |
+
|
150 |
+
#
|
151 |
+
#
|
152 |
+
#
|
153 |
+
############################################################################################################
|
154 |
+
# Plain bm25 retriever
|
155 |
+
# class BM25Retriever(BaseRetriever):
|
156 |
+
# """`BM25` retriever without Elasticsearch."""
|
157 |
+
#
|
158 |
+
# vectorizer: Any
|
159 |
+
# """ BM25 vectorizer."""
|
160 |
+
# docs: List[Document] = Field(repr=False)
|
161 |
+
# """ List of documents."""
|
162 |
+
# k: int = 4
|
163 |
+
# """ Number of documents to return."""
|
164 |
+
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func
|
165 |
+
# """ Preprocessing function to use on the text before BM25 vectorization."""
|
166 |
+
#
|
167 |
+
# class Config:
|
168 |
+
# arbitrary_types_allowed = True
|
169 |
+
#
|
170 |
+
# @classmethod
|
171 |
+
# def from_texts(
|
172 |
+
# cls,
|
173 |
+
# texts: Iterable[str],
|
174 |
+
# metadatas: Optional[Iterable[dict]] = None,
|
175 |
+
# bm25_params: Optional[Dict[str, Any]] = None,
|
176 |
+
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
|
177 |
+
# **kwargs: Any,
|
178 |
+
# ) -> BM25Retriever:
|
179 |
+
# """
|
180 |
+
# Create a BM25Retriever from a list of texts.
|
181 |
+
# Args:
|
182 |
+
# texts: A list of texts to vectorize.
|
183 |
+
# metadatas: A list of metadata dicts to associate with each text.
|
184 |
+
# bm25_params: Parameters to pass to the BM25 vectorizer.
|
185 |
+
# preprocess_func: A function to preprocess each text before vectorization.
|
186 |
+
# **kwargs: Any other arguments to pass to the retriever.
|
187 |
+
#
|
188 |
+
# Returns:
|
189 |
+
# A BM25Retriever instance.
|
190 |
+
# """
|
191 |
+
# try:
|
192 |
+
# from rank_bm25 import BM25Okapi
|
193 |
+
# except ImportError:
|
194 |
+
# raise ImportError(
|
195 |
+
# "Could not import rank_bm25, please install with `pip install "
|
196 |
+
# "rank_bm25`."
|
197 |
+
# )
|
198 |
+
#
|
199 |
+
# texts_processed = [preprocess_func(t) for t in texts]
|
200 |
+
# bm25_params = bm25_params or {}
|
201 |
+
# vectorizer = BM25Okapi(texts_processed, **bm25_params)
|
202 |
+
# metadatas = metadatas or ({} for _ in texts)
|
203 |
+
# docs = [Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)]
|
204 |
+
# return cls(
|
205 |
+
# vectorizer=vectorizer, docs=docs, preprocess_func=preprocess_func, **kwargs
|
206 |
+
# )
|
207 |
+
#
|
208 |
+
# @classmethod
|
209 |
+
# def from_documents(
|
210 |
+
# cls,
|
211 |
+
# documents: Iterable[Document],
|
212 |
+
# *,
|
213 |
+
# bm25_params: Optional[Dict[str, Any]] = None,
|
214 |
+
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
|
215 |
+
# **kwargs: Any,
|
216 |
+
# ) -> BM25Retriever:
|
217 |
+
# """
|
218 |
+
# Create a BM25Retriever from a list of Documents.
|
219 |
+
# Args:
|
220 |
+
# documents: A list of Documents to vectorize.
|
221 |
+
# bm25_params: Parameters to pass to the BM25 vectorizer.
|
222 |
+
# preprocess_func: A function to preprocess each text before vectorization.
|
223 |
+
# **kwargs: Any other arguments to pass to the retriever.
|
224 |
+
#
|
225 |
+
# Returns:
|
226 |
+
# A BM25Retriever instance.
|
227 |
+
# """
|
228 |
+
# texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
|
229 |
+
# return cls.from_texts(
|
230 |
+
# texts=texts,
|
231 |
+
# bm25_params=bm25_params,
|
232 |
+
# metadatas=metadatas,
|
233 |
+
# preprocess_func=preprocess_func,
|
234 |
+
# **kwargs,
|
235 |
+
# )
|
236 |
+
#
|
237 |
+
# def _get_relevant_documents(
|
238 |
+
# self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
239 |
+
# ) -> List[Document]:
|
240 |
+
# processed_query = self.preprocess_func(query)
|
241 |
+
# return_docs = self.vectorizer.get_top_n(processed_query, self.docs, n=self.k)
|
242 |
+
# return return_docs
|
243 |
+
############################################################################################################
|
244 |
+
|
245 |
+
############################################################################################################
|
246 |
+
# ElasticSearch BM25 Retriever
|
247 |
+
# class ElasticSearchBM25Retriever(BaseRetriever):
|
248 |
+
# """`Elasticsearch` retriever that uses `BM25`.
|
249 |
+
#
|
250 |
+
# To connect to an Elasticsearch instance that requires login credentials,
|
251 |
+
# including Elastic Cloud, use the Elasticsearch URL format
|
252 |
+
# https://username:password@es_host:9243. For example, to connect to Elastic
|
253 |
+
# Cloud, create the Elasticsearch URL with the required authentication details and
|
254 |
+
# pass it to the ElasticVectorSearch constructor as the named parameter
|
255 |
+
# elasticsearch_url.
|
256 |
+
#
|
257 |
+
# You can obtain your Elastic Cloud URL and login credentials by logging in to the
|
258 |
+
# Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
|
259 |
+
# navigating to the "Deployments" page.
|
260 |
+
#
|
261 |
+
# To obtain your Elastic Cloud password for the default "elastic" user:
|
262 |
+
#
|
263 |
+
# 1. Log in to the Elastic Cloud console at https://cloud.elastic.co
|
264 |
+
# 2. Go to "Security" > "Users"
|
265 |
+
# 3. Locate the "elastic" user and click "Edit"
|
266 |
+
# 4. Click "Reset password"
|
267 |
+
# 5. Follow the prompts to reset the password
|
268 |
+
#
|
269 |
+
# The format for Elastic Cloud URLs is
|
270 |
+
# https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
|
271 |
+
# """
|
272 |
+
#
|
273 |
+
# client: Any
|
274 |
+
# """Elasticsearch client."""
|
275 |
+
# index_name: str
|
276 |
+
# """Name of the index to use in Elasticsearch."""
|
277 |
+
#
|
278 |
+
# @classmethod
|
279 |
+
# def create(
|
280 |
+
# cls, elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75
|
281 |
+
# ) -> ElasticSearchBM25Retriever:
|
282 |
+
# """
|
283 |
+
# Create a ElasticSearchBM25Retriever from a list of texts.
|
284 |
+
#
|
285 |
+
# Args:
|
286 |
+
# elasticsearch_url: URL of the Elasticsearch instance to connect to.
|
287 |
+
# index_name: Name of the index to use in Elasticsearch.
|
288 |
+
# k1: BM25 parameter k1.
|
289 |
+
# b: BM25 parameter b.
|
290 |
+
#
|
291 |
+
# Returns:
|
292 |
+
#
|
293 |
+
# """
|
294 |
+
# from elasticsearch import Elasticsearch
|
295 |
+
#
|
296 |
+
# # Create an Elasticsearch client instance
|
297 |
+
# es = Elasticsearch(elasticsearch_url)
|
298 |
+
#
|
299 |
+
# # Define the index settings and mappings
|
300 |
+
# settings = {
|
301 |
+
# "analysis": {"analyzer": {"default": {"type": "standard"}}},
|
302 |
+
# "similarity": {
|
303 |
+
# "custom_bm25": {
|
304 |
+
# "type": "BM25",
|
305 |
+
# "k1": k1,
|
306 |
+
# "b": b,
|
307 |
+
# }
|
308 |
+
# },
|
309 |
+
# }
|
310 |
+
# mappings = {
|
311 |
+
# "properties": {
|
312 |
+
# "content": {
|
313 |
+
# "type": "text",
|
314 |
+
# "similarity": "custom_bm25", # Use the custom BM25 similarity
|
315 |
+
# }
|
316 |
+
# }
|
317 |
+
# }
|
318 |
+
#
|
319 |
+
# # Create the index with the specified settings and mappings
|
320 |
+
# es.indices.create(index=index_name, mappings=mappings, settings=settings)
|
321 |
+
# return cls(client=es, index_name=index_name)
|
322 |
+
#
|
323 |
+
# def add_texts(
|
324 |
+
# self,
|
325 |
+
# texts: Iterable[str],
|
326 |
+
# refresh_indices: bool = True,
|
327 |
+
# ) -> List[str]:
|
328 |
+
# """Run more texts through the embeddings and add to the retriever.
|
329 |
+
#
|
330 |
+
# Args:
|
331 |
+
# texts: Iterable of strings to add to the retriever.
|
332 |
+
# refresh_indices: bool to refresh ElasticSearch indices
|
333 |
+
#
|
334 |
+
# Returns:
|
335 |
+
# List of ids from adding the texts into the retriever.
|
336 |
+
# """
|
337 |
+
# try:
|
338 |
+
# from elasticsearch.helpers import bulk
|
339 |
+
# except ImportError:
|
340 |
+
# raise ImportError(
|
341 |
+
# "Could not import elasticsearch python package. "
|
342 |
+
# "Please install it with `pip install elasticsearch`."
|
343 |
+
# )
|
344 |
+
# requests = []
|
345 |
+
# ids = []
|
346 |
+
# for i, text in enumerate(texts):
|
347 |
+
# _id = str(uuid.uuid4())
|
348 |
+
# request = {
|
349 |
+
# "_op_type": "index",
|
350 |
+
# "_index": self.index_name,
|
351 |
+
# "content": text,
|
352 |
+
# "_id": _id,
|
353 |
+
# }
|
354 |
+
# ids.append(_id)
|
355 |
+
# requests.append(request)
|
356 |
+
# bulk(self.client, requests)
|
357 |
+
#
|
358 |
+
# if refresh_indices:
|
359 |
+
# self.client.indices.refresh(index=self.index_name)
|
360 |
+
# return ids
|
361 |
+
#
|
362 |
+
# def _get_relevant_documents(
|
363 |
+
# self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
364 |
+
# ) -> List[Document]:
|
365 |
+
# query_dict = {"query": {"match": {"content": query}}}
|
366 |
+
# res = self.client.search(index=self.index_name, body=query_dict)
|
367 |
+
#
|
368 |
+
# docs = []
|
369 |
+
# for r in res["hits"]["hits"]:
|
370 |
+
# docs.append(Document(page_content=r["_source"]["content"]))
|
371 |
+
# return docs
|
372 |
+
############################################################################################################
|
373 |
+
|
374 |
+
|
375 |
+
############################################################################################################
|
376 |
+
# Multi Query Retriever
|
377 |
+
# class MultiQueryRetriever(BaseRetriever):
|
378 |
+
# """Given a query, use an LLM to write a set of queries.
|
379 |
+
#
|
380 |
+
# Retrieve docs for each query. Return the unique union of all retrieved docs.
|
381 |
+
# """
|
382 |
+
#
|
383 |
+
# retriever: BaseRetriever
|
384 |
+
# llm_chain: Runnable
|
385 |
+
# verbose: bool = True
|
386 |
+
# parser_key: str = "lines"
|
387 |
+
# """DEPRECATED. parser_key is no longer used and should not be specified."""
|
388 |
+
# include_original: bool = False
|
389 |
+
# """Whether to include the original query in the list of generated queries."""
|
390 |
+
#
|
391 |
+
# @classmethod
|
392 |
+
# def from_llm(
|
393 |
+
# cls,
|
394 |
+
# retriever: BaseRetriever,
|
395 |
+
# llm: BaseLanguageModel,
|
396 |
+
# prompt: BasePromptTemplate = DEFAULT_QUERY_PROMPT,
|
397 |
+
# parser_key: Optional[str] = None,
|
398 |
+
# include_original: bool = False,
|
399 |
+
# ) -> "MultiQueryRetriever":
|
400 |
+
# """Initialize from llm using default template.
|
401 |
+
#
|
402 |
+
# Args:
|
403 |
+
# retriever: retriever to query documents from
|
404 |
+
# llm: llm for query generation using DEFAULT_QUERY_PROMPT
|
405 |
+
# prompt: The prompt which aims to generate several different versions
|
406 |
+
# of the given user query
|
407 |
+
# include_original: Whether to include the original query in the list of
|
408 |
+
# generated queries.
|
409 |
+
#
|
410 |
+
# Returns:
|
411 |
+
# MultiQueryRetriever
|
412 |
+
# """
|
413 |
+
# output_parser = LineListOutputParser()
|
414 |
+
# llm_chain = prompt | llm | output_parser
|
415 |
+
# return cls(
|
416 |
+
# retriever=retriever,
|
417 |
+
# llm_chain=llm_chain,
|
418 |
+
# include_original=include_original,
|
419 |
+
# )
|
420 |
+
#
|
421 |
+
# async def _aget_relevant_documents(
|
422 |
+
# self,
|
423 |
+
# query: str,
|
424 |
+
# *,
|
425 |
+
# run_manager: AsyncCallbackManagerForRetrieverRun,
|
426 |
+
# ) -> List[Document]:
|
427 |
+
# """Get relevant documents given a user query.
|
428 |
+
#
|
429 |
+
# Args:
|
430 |
+
# query: user query
|
431 |
+
#
|
432 |
+
# Returns:
|
433 |
+
# Unique union of relevant documents from all generated queries
|
434 |
+
# """
|
435 |
+
# queries = await self.agenerate_queries(query, run_manager)
|
436 |
+
# if self.include_original:
|
437 |
+
# queries.append(query)
|
438 |
+
# documents = await self.aretrieve_documents(queries, run_manager)
|
439 |
+
# return self.unique_union(documents)
|
440 |
+
#
|
441 |
+
# async def agenerate_queries(
|
442 |
+
# self, question: str, run_manager: AsyncCallbackManagerForRetrieverRun
|
443 |
+
# ) -> List[str]:
|
444 |
+
# """Generate queries based upon user input.
|
445 |
+
#
|
446 |
+
# Args:
|
447 |
+
# question: user query
|
448 |
+
#
|
449 |
+
# Returns:
|
450 |
+
# List of LLM generated queries that are similar to the user input
|
451 |
+
# """
|
452 |
+
# response = await self.llm_chain.ainvoke(
|
453 |
+
# {"question": question}, config={"callbacks": run_manager.get_child()}
|
454 |
+
# )
|
455 |
+
# if isinstance(self.llm_chain, LLMChain):
|
456 |
+
# lines = response["text"]
|
457 |
+
# else:
|
458 |
+
# lines = response
|
459 |
+
# if self.verbose:
|
460 |
+
# logger.info(f"Generated queries: {lines}")
|
461 |
+
# return lines
|
462 |
+
#
|
463 |
+
# async def aretrieve_documents(
|
464 |
+
# self, queries: List[str], run_manager: AsyncCallbackManagerForRetrieverRun
|
465 |
+
# ) -> List[Document]:
|
466 |
+
# """Run all LLM generated queries.
|
467 |
+
#
|
468 |
+
# Args:
|
469 |
+
# queries: query list
|
470 |
+
#
|
471 |
+
# Returns:
|
472 |
+
# List of retrieved Documents
|
473 |
+
# """
|
474 |
+
# document_lists = await asyncio.gather(
|
475 |
+
# *(
|
476 |
+
# self.retriever.ainvoke(
|
477 |
+
# query, config={"callbacks": run_manager.get_child()}
|
478 |
+
# )
|
479 |
+
# for query in queries
|
480 |
+
# )
|
481 |
+
# )
|
482 |
+
# return [doc for docs in document_lists for doc in docs]
|
483 |
+
#
|
484 |
+
# def _get_relevant_documents(
|
485 |
+
# self,
|
486 |
+
# query: str,
|
487 |
+
# *,
|
488 |
+
# run_manager: CallbackManagerForRetrieverRun,
|
489 |
+
# ) -> List[Document]:
|
490 |
+
# """Get relevant documents given a user query.
|
491 |
+
#
|
492 |
+
# Args:
|
493 |
+
# query: user query
|
494 |
+
#
|
495 |
+
# Returns:
|
496 |
+
# Unique union of relevant documents from all generated queries
|
497 |
+
# """
|
498 |
+
# queries = self.generate_queries(query, run_manager)
|
499 |
+
# if self.include_original:
|
500 |
+
# queries.append(query)
|
501 |
+
# documents = self.retrieve_documents(queries, run_manager)
|
502 |
+
# return self.unique_union(documents)
|
503 |
+
#
|
504 |
+
# def generate_queries(
|
505 |
+
# self, question: str, run_manager: CallbackManagerForRetrieverRun
|
506 |
+
# ) -> List[str]:
|
507 |
+
# """Generate queries based upon user input.
|
508 |
+
#
|
509 |
+
# Args:
|
510 |
+
# question: user query
|
511 |
+
#
|
512 |
+
# Returns:
|
513 |
+
# List of LLM generated queries that are similar to the user input
|
514 |
+
# """
|
515 |
+
# response = self.llm_chain.invoke(
|
516 |
+
# {"question": question}, config={"callbacks": run_manager.get_child()}
|
517 |
+
# )
|
518 |
+
# if isinstance(self.llm_chain, LLMChain):
|
519 |
+
# lines = response["text"]
|
520 |
+
# else:
|
521 |
+
# lines = response
|
522 |
+
# if self.verbose:
|
523 |
+
# logger.info(f"Generated queries: {lines}")
|
524 |
+
# return lines
|
525 |
+
#
|
526 |
+
# def retrieve_documents(
|
527 |
+
# self, queries: List[str], run_manager: CallbackManagerForRetrieverRun
|
528 |
+
# ) -> List[Document]:
|
529 |
+
# """Run all LLM generated queries.
|
530 |
+
#
|
531 |
+
# Args:
|
532 |
+
# queries: query list
|
533 |
+
#
|
534 |
+
# Returns:
|
535 |
+
# List of retrieved Documents
|
536 |
+
# """
|
537 |
+
# documents = []
|
538 |
+
# for query in queries:
|
539 |
+
# docs = self.retriever.invoke(
|
540 |
+
# query, config={"callbacks": run_manager.get_child()}
|
541 |
+
# )
|
542 |
+
# documents.extend(docs)
|
543 |
+
# return documents
|
544 |
+
#
|
545 |
+
# def unique_union(self, documents: List[Document]) -> List[Document]:
|
546 |
+
# """Get unique Documents.
|
547 |
+
#
|
548 |
+
# Args:
|
549 |
+
# documents: List of retrieved Documents
|
550 |
+
#
|
551 |
+
# Returns:
|
552 |
+
# List of unique retrieved Documents
|
553 |
+
# """
|
554 |
+
# return _unique_documents(documents)
|
555 |
+
############################################################################################################
|
556 |
+
```
|
App_Function_Libraries/RAG/RAG_Libary_2.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# RAG_Library_2.py
|
2 |
+
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
|
3 |
+
#
|
4 |
+
# Import necessary modules and functions
|
5 |
+
import configparser
|
6 |
+
from typing import Dict, Any
|
7 |
+
# Local Imports
|
8 |
+
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
|
9 |
+
from App_Function_Libraries.Article_Extractor_Lib import scrape_article
|
10 |
+
from App_Function_Libraries.DB.DB_Manager import add_media_to_database, search_db, get_unprocessed_media
|
11 |
+
# 3rd-Party Imports
|
12 |
+
import openai
|
13 |
+
#
|
14 |
+
########################################################################################################################
|
15 |
+
#
|
16 |
+
# Functions:
|
17 |
+
|
18 |
+
# Initialize OpenAI client (adjust this based on your API key management)
|
19 |
+
openai.api_key = "your-openai-api-key"
|
20 |
+
|
21 |
+
config = configparser.ConfigParser()
|
22 |
+
config.read('config.txt')
|
23 |
+
|
24 |
+
# Main RAG pipeline function
|
25 |
+
def rag_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
|
26 |
+
# Extract content
|
27 |
+
article_data = scrape_article(url)
|
28 |
+
content = article_data['content']
|
29 |
+
title = article_data['title']
|
30 |
+
|
31 |
+
# Store the article in the database and get the media_id
|
32 |
+
media_id = add_media_to_database(url, title, 'article', content)
|
33 |
+
|
34 |
+
# Process and store content
|
35 |
+
collection_name = f"article_{media_id}"
|
36 |
+
process_and_store_content(content, collection_name, media_id)
|
37 |
+
|
38 |
+
# Perform searches
|
39 |
+
vector_results = vector_search(collection_name, query, k=5)
|
40 |
+
fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
|
41 |
+
|
42 |
+
# Combine results
|
43 |
+
all_results = vector_results + [result['content'] for result in fts_results]
|
44 |
+
context = "\n".join(all_results)
|
45 |
+
|
46 |
+
# Generate answer using the selected API
|
47 |
+
answer = generate_answer(api_choice, context, query)
|
48 |
+
|
49 |
+
return {
|
50 |
+
"answer": answer,
|
51 |
+
"context": context
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
def generate_answer(api_choice: str, context: str, query: str) -> str:
|
56 |
+
prompt = f"Context: {context}\n\nQuestion: {query}"
|
57 |
+
if api_choice == "OpenAI":
|
58 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai
|
59 |
+
return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
|
60 |
+
elif api_choice == "Anthropic":
|
61 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_anthropic
|
62 |
+
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
|
63 |
+
elif api_choice == "Cohere":
|
64 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_cohere
|
65 |
+
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
|
66 |
+
elif api_choice == "Groq":
|
67 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_groq
|
68 |
+
return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
|
69 |
+
elif api_choice == "OpenRouter":
|
70 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openrouter
|
71 |
+
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
|
72 |
+
elif api_choice == "HuggingFace":
|
73 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_huggingface
|
74 |
+
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
|
75 |
+
elif api_choice == "DeepSeek":
|
76 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_deepseek
|
77 |
+
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
|
78 |
+
elif api_choice == "Mistral":
|
79 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_mistral
|
80 |
+
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
|
81 |
+
elif api_choice == "Local-LLM":
|
82 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_local_llm
|
83 |
+
return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "")
|
84 |
+
elif api_choice == "Llama.cpp":
|
85 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama
|
86 |
+
return summarize_with_llama(config['API']['llama_api_key'], prompt, "")
|
87 |
+
elif api_choice == "Kobold":
|
88 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_kobold
|
89 |
+
return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "")
|
90 |
+
elif api_choice == "Ooba":
|
91 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_oobabooga
|
92 |
+
return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "")
|
93 |
+
elif api_choice == "TabbyAPI":
|
94 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_tabbyapi
|
95 |
+
return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "")
|
96 |
+
elif api_choice == "vLLM":
|
97 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_vllm
|
98 |
+
return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "")
|
99 |
+
elif api_choice == "ollama":
|
100 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_ollama
|
101 |
+
return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "")
|
102 |
+
else:
|
103 |
+
raise ValueError(f"Unsupported API choice: {api_choice}")
|
104 |
+
|
105 |
+
# Function to preprocess and store all existing content in the database
|
106 |
+
def preprocess_all_content():
|
107 |
+
unprocessed_media = get_unprocessed_media()
|
108 |
+
for row in unprocessed_media:
|
109 |
+
media_id = row[0]
|
110 |
+
content = row[1]
|
111 |
+
media_type = row[2]
|
112 |
+
collection_name = f"{media_type}_{media_id}"
|
113 |
+
process_and_store_content(content, collection_name, media_id)
|
114 |
+
|
115 |
+
|
116 |
+
# Function to perform RAG search across all stored content
|
117 |
+
def rag_search(query: str, api_choice: str) -> Dict[str, Any]:
|
118 |
+
# Perform vector search across all collections
|
119 |
+
all_collections = chroma_client.list_collections()
|
120 |
+
vector_results = []
|
121 |
+
for collection in all_collections:
|
122 |
+
vector_results.extend(vector_search(collection.name, query, k=2))
|
123 |
+
|
124 |
+
# Perform FTS search
|
125 |
+
fts_results = search_db(query, ["content"], "", page=1, results_per_page=10)
|
126 |
+
|
127 |
+
# Combine results
|
128 |
+
all_results = vector_results + [result['content'] for result in fts_results]
|
129 |
+
context = "\n".join(all_results[:10]) # Limit to top 10 results
|
130 |
+
|
131 |
+
# Generate answer using the selected API
|
132 |
+
answer = generate_answer(api_choice, context, query)
|
133 |
+
|
134 |
+
return {
|
135 |
+
"answer": answer,
|
136 |
+
"context": context
|
137 |
+
}
|
138 |
+
|
139 |
+
|
140 |
+
# Example usage:
|
141 |
+
# 1. Initialize the system:
|
142 |
+
# create_tables(db) # Ensure FTS tables are set up
|
143 |
+
#
|
144 |
+
# 2. Create ChromaDB
|
145 |
+
# chroma_client = ChromaDBClient()
|
146 |
+
#
|
147 |
+
# 3. Create Embeddings
|
148 |
+
# Store embeddings in ChromaDB
|
149 |
+
# preprocess_all_content() or create_embeddings()
|
150 |
+
#
|
151 |
+
# 4. Perform RAG search across all content:
|
152 |
+
# result = rag_search("What are the key points about climate change?")
|
153 |
+
# print(result['answer'])
|
154 |
+
#
|
155 |
+
# (Extra)5. Perform RAG on a specific URL:
|
156 |
+
# result = rag_pipeline("https://example.com/article", "What is the main topic of this article?")
|
157 |
+
# print(result['answer'])
|
158 |
+
#
|
159 |
+
########################################################################################################################
|
160 |
+
|
161 |
+
|
162 |
+
############################################################################################################
|
163 |
+
#
|
164 |
+
# ElasticSearch Retriever
|
165 |
+
|
166 |
+
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
|
167 |
+
#
|
168 |
+
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
|
169 |
+
|
170 |
+
#
|
171 |
+
# End of RAG_Library_2.py
|
172 |
+
############################################################################################################
|
App_Function_Libraries/RAG/RAG_Library.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import List, Tuple, Dict
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import math
|
7 |
+
from functools import lru_cache
|
8 |
+
from concurrent.futures import ThreadPoolExecutor
|
9 |
+
import openai
|
10 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
11 |
+
import torch
|
12 |
+
import re
|
13 |
+
import psycopg2
|
14 |
+
from psycopg2.extras import execute_values
|
15 |
+
import sqlite3
|
16 |
+
import logging
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
########################################################################################################################################################################################################################################
|
21 |
+
#
|
22 |
+
# RAG Chunking
|
23 |
+
# To fully integrate this chunking system, you'd need to:
|
24 |
+
#
|
25 |
+
# Create the UnvectorizedMediaChunks table in your SQLite database.
|
26 |
+
# Modify your document ingestion process to use chunk_and_store_unvectorized.
|
27 |
+
# Implement a background process that periodically calls vectorize_all_documents to process unvectorized chunks.
|
28 |
+
|
29 |
+
# This chunking is pretty weak and needs improvement
|
30 |
+
# See notes for improvements #FIXME
|
31 |
+
import json
|
32 |
+
from typing import List, Dict, Any
|
33 |
+
from datetime import datetime
|
34 |
+
|
35 |
+
|
36 |
+
def chunk_and_store_unvectorized(
|
37 |
+
db_connection,
|
38 |
+
media_id: int,
|
39 |
+
text: str,
|
40 |
+
chunk_size: int = 1000,
|
41 |
+
overlap: int = 100,
|
42 |
+
chunk_type: str = 'fixed-length'
|
43 |
+
) -> List[int]:
|
44 |
+
chunks = create_chunks(text, chunk_size, overlap)
|
45 |
+
return store_unvectorized_chunks(db_connection, media_id, chunks, chunk_type)
|
46 |
+
|
47 |
+
|
48 |
+
def create_chunks(text: str, chunk_size: int, overlap: int) -> List[Dict[str, Any]]:
|
49 |
+
words = text.split()
|
50 |
+
chunks = []
|
51 |
+
for i in range(0, len(words), chunk_size - overlap):
|
52 |
+
chunk_text = ' '.join(words[i:i + chunk_size])
|
53 |
+
start_char = text.index(words[i])
|
54 |
+
end_char = start_char + len(chunk_text)
|
55 |
+
chunks.append({
|
56 |
+
'text': chunk_text,
|
57 |
+
'start_char': start_char,
|
58 |
+
'end_char': end_char,
|
59 |
+
'index': len(chunks)
|
60 |
+
})
|
61 |
+
return chunks
|
62 |
+
|
63 |
+
|
64 |
+
def store_unvectorized_chunks(
|
65 |
+
db_connection,
|
66 |
+
media_id: int,
|
67 |
+
chunks: List[Dict[str, Any]],
|
68 |
+
chunk_type: str
|
69 |
+
) -> List[int]:
|
70 |
+
cursor = db_connection.cursor()
|
71 |
+
chunk_ids = []
|
72 |
+
for chunk in chunks:
|
73 |
+
cursor.execute("""
|
74 |
+
INSERT INTO UnvectorizedMediaChunks
|
75 |
+
(media_id, chunk_text, chunk_index, start_char, end_char, chunk_type, metadata)
|
76 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
77 |
+
""", (
|
78 |
+
media_id,
|
79 |
+
chunk['text'],
|
80 |
+
chunk['index'],
|
81 |
+
chunk['start_char'],
|
82 |
+
chunk['end_char'],
|
83 |
+
chunk_type,
|
84 |
+
json.dumps({'length': len(chunk['text'])}) # Example metadata
|
85 |
+
))
|
86 |
+
chunk_ids.append(cursor.lastrowid)
|
87 |
+
db_connection.commit()
|
88 |
+
return chunk_ids
|
89 |
+
|
90 |
+
|
91 |
+
def get_unvectorized_chunks(
|
92 |
+
db_connection,
|
93 |
+
media_id: int,
|
94 |
+
limit: int = 100,
|
95 |
+
offset: int = 0
|
96 |
+
) -> List[Dict[str, Any]]:
|
97 |
+
cursor = db_connection.cursor()
|
98 |
+
cursor.execute("""
|
99 |
+
SELECT id, chunk_text, chunk_index, start_char, end_char, chunk_type, metadata
|
100 |
+
FROM UnvectorizedMediaChunks
|
101 |
+
WHERE media_id = ? AND is_processed = FALSE
|
102 |
+
ORDER BY chunk_index
|
103 |
+
LIMIT ? OFFSET ?
|
104 |
+
""", (media_id, limit, offset))
|
105 |
+
return [
|
106 |
+
{
|
107 |
+
'id': row[0],
|
108 |
+
'text': row[1],
|
109 |
+
'index': row[2],
|
110 |
+
'start_char': row[3],
|
111 |
+
'end_char': row[4],
|
112 |
+
'type': row[5],
|
113 |
+
'metadata': json.loads(row[6])
|
114 |
+
}
|
115 |
+
for row in cursor.fetchall()
|
116 |
+
]
|
117 |
+
|
118 |
+
|
119 |
+
def mark_chunks_as_processed(db_connection, chunk_ids: List[int]):
|
120 |
+
cursor = db_connection.cursor()
|
121 |
+
cursor.executemany("""
|
122 |
+
UPDATE UnvectorizedMediaChunks
|
123 |
+
SET is_processed = TRUE, last_modified = ?
|
124 |
+
WHERE id = ?
|
125 |
+
""", [(datetime.now(), chunk_id) for chunk_id in chunk_ids])
|
126 |
+
db_connection.commit()
|
127 |
+
|
128 |
+
|
129 |
+
# Usage example
|
130 |
+
def process_media_chunks(db_connection, media_id: int, text: str):
|
131 |
+
chunk_ids = chunk_and_store_unvectorized(db_connection, media_id, text)
|
132 |
+
print(f"Stored {len(chunk_ids)} unvectorized chunks for media_id {media_id}")
|
133 |
+
|
134 |
+
# Later, when you want to process these chunks:
|
135 |
+
unprocessed_chunks = get_unvectorized_chunks(db_connection, media_id)
|
136 |
+
# Process chunks (e.g., vectorize them)
|
137 |
+
# ...
|
138 |
+
# After processing, mark them as processed
|
139 |
+
mark_chunks_as_processed(db_connection, [chunk['id'] for chunk in unprocessed_chunks])
|
140 |
+
###########################################################################################################################################################################################################
|
141 |
+
#
|
142 |
+
# RAG System
|
143 |
+
|
144 |
+
# To use this updated RAG system in your existing application:
|
145 |
+
#
|
146 |
+
# Install required packages:
|
147 |
+
# pip install sentence-transformers psycopg2-binary scikit-learn transformers torch
|
148 |
+
# Set up PostgreSQL with pgvector:
|
149 |
+
#
|
150 |
+
# Install PostgreSQL and the pgvector extension.
|
151 |
+
# Create a new database for vector storage.
|
152 |
+
#
|
153 |
+
# Update your main application to use the RAG system:
|
154 |
+
#
|
155 |
+
# Import the RAGSystem class from this new file.
|
156 |
+
# Initialize the RAG system with your SQLite and PostgreSQL configurations.
|
157 |
+
# Use the vectorize_all_documents method to initially vectorize your existing documents.
|
158 |
+
#
|
159 |
+
#
|
160 |
+
# Modify your existing PDF_Ingestion_Lib.py and Book_Ingestion_Lib.py:
|
161 |
+
#
|
162 |
+
# After successfully ingesting a document into SQLite, call the vectorization method from the RAG system.
|
163 |
+
|
164 |
+
# Example modification for ingest_text_file in Book_Ingestion_Lib.py:
|
165 |
+
# from RAG_Library import RAGSystem
|
166 |
+
#
|
167 |
+
# # Initialize RAG system (do this once in your main application)
|
168 |
+
# rag_system = RAGSystem(sqlite_path, pg_config)
|
169 |
+
#
|
170 |
+
# def ingest_text_file(file_path, title=None, author=None, keywords=None):
|
171 |
+
# try:
|
172 |
+
# # ... (existing code)
|
173 |
+
#
|
174 |
+
# # Add the text file to the database
|
175 |
+
# doc_id = add_media_with_keywords(
|
176 |
+
# url=file_path,
|
177 |
+
# title=title,
|
178 |
+
# media_type='document',
|
179 |
+
# content=content,
|
180 |
+
# keywords=keywords,
|
181 |
+
# prompt='No prompt for text files',
|
182 |
+
# summary='No summary for text files',
|
183 |
+
# transcription_model='None',
|
184 |
+
# author=author,
|
185 |
+
# ingestion_date=datetime.now().strftime('%Y-%m-%d')
|
186 |
+
# )
|
187 |
+
#
|
188 |
+
# # Vectorize the newly added document
|
189 |
+
# rag_system.vectorize_document(doc_id, content)
|
190 |
+
#
|
191 |
+
# return f"Text file '{title}' by {author} ingested and vectorized successfully."
|
192 |
+
# except Exception as e:
|
193 |
+
# logging.error(f"Error ingesting text file: {str(e)}")
|
194 |
+
# return f"Error ingesting text file: {str(e)}"
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
# Setup logging
|
199 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
200 |
+
logger = logging.getLogger(__name__)
|
201 |
+
|
202 |
+
# Constants
|
203 |
+
EMBEDDING_MODEL = 'all-MiniLM-L6-v2'
|
204 |
+
VECTOR_DIM = 384 # Dimension of the chosen embedding model
|
205 |
+
|
206 |
+
|
207 |
+
class RAGSystem:
|
208 |
+
def __init__(self, sqlite_path: str, pg_config: Dict[str, str], cache_size: int = 100):
|
209 |
+
self.sqlite_path = sqlite_path
|
210 |
+
self.pg_config = pg_config
|
211 |
+
self.model = SentenceTransformer(EMBEDDING_MODEL)
|
212 |
+
self.cache_size = cache_size
|
213 |
+
|
214 |
+
self._init_postgres()
|
215 |
+
|
216 |
+
def _init_postgres(self):
|
217 |
+
with psycopg2.connect(**self.pg_config) as conn:
|
218 |
+
with conn.cursor() as cur:
|
219 |
+
cur.execute("""
|
220 |
+
CREATE TABLE IF NOT EXISTS document_vectors (
|
221 |
+
id SERIAL PRIMARY KEY,
|
222 |
+
document_id INTEGER UNIQUE,
|
223 |
+
vector vector(384)
|
224 |
+
)
|
225 |
+
""")
|
226 |
+
conn.commit()
|
227 |
+
|
228 |
+
@lru_cache(maxsize=100)
|
229 |
+
def _get_embedding(self, text: str) -> np.ndarray:
|
230 |
+
return self.model.encode([text])[0]
|
231 |
+
|
232 |
+
def vectorize_document(self, doc_id: int, content: str):
|
233 |
+
chunks = create_chunks(content, chunk_size=1000, overlap=100)
|
234 |
+
for chunk in chunks:
|
235 |
+
vector = self._get_embedding(chunk['text'])
|
236 |
+
|
237 |
+
with psycopg2.connect(**self.pg_config) as conn:
|
238 |
+
with conn.cursor() as cur:
|
239 |
+
cur.execute("""
|
240 |
+
INSERT INTO document_vectors (document_id, chunk_index, vector, metadata)
|
241 |
+
VALUES (%s, %s, %s, %s)
|
242 |
+
ON CONFLICT (document_id, chunk_index) DO UPDATE SET vector = EXCLUDED.vector
|
243 |
+
""", (doc_id, chunk['index'], vector.tolist(), json.dumps(chunk)))
|
244 |
+
conn.commit()
|
245 |
+
|
246 |
+
def vectorize_all_documents(self):
|
247 |
+
with sqlite3.connect(self.sqlite_path) as sqlite_conn:
|
248 |
+
unprocessed_chunks = get_unvectorized_chunks(sqlite_conn, limit=1000)
|
249 |
+
for chunk in unprocessed_chunks:
|
250 |
+
self.vectorize_document(chunk['id'], chunk['text'])
|
251 |
+
mark_chunks_as_processed(sqlite_conn, [chunk['id'] for chunk in unprocessed_chunks])
|
252 |
+
|
253 |
+
def semantic_search(self, query: str, top_k: int = 5) -> List[Tuple[int, int, float]]:
|
254 |
+
query_vector = self._get_embedding(query)
|
255 |
+
|
256 |
+
with psycopg2.connect(**self.pg_config) as conn:
|
257 |
+
with conn.cursor() as cur:
|
258 |
+
cur.execute("""
|
259 |
+
SELECT document_id, chunk_index, 1 - (vector <-> %s) AS similarity
|
260 |
+
FROM document_vectors
|
261 |
+
ORDER BY vector <-> %s ASC
|
262 |
+
LIMIT %s
|
263 |
+
""", (query_vector.tolist(), query_vector.tolist(), top_k))
|
264 |
+
results = cur.fetchall()
|
265 |
+
|
266 |
+
return results
|
267 |
+
|
268 |
+
def get_document_content(self, doc_id: int) -> str:
|
269 |
+
with sqlite3.connect(self.sqlite_path) as conn:
|
270 |
+
cur = conn.cursor()
|
271 |
+
cur.execute("SELECT content FROM media WHERE id = ?", (doc_id,))
|
272 |
+
result = cur.fetchone()
|
273 |
+
return result[0] if result else ""
|
274 |
+
|
275 |
+
def bm25_search(self, query: str, top_k: int = 5) -> List[Tuple[int, float]]:
|
276 |
+
with sqlite3.connect(self.sqlite_path) as conn:
|
277 |
+
cur = conn.cursor()
|
278 |
+
cur.execute("SELECT id, content FROM media")
|
279 |
+
documents = cur.fetchall()
|
280 |
+
|
281 |
+
vectorizer = TfidfVectorizer(use_idf=True)
|
282 |
+
tfidf_matrix = vectorizer.fit_transform([doc[1] for doc in documents])
|
283 |
+
|
284 |
+
query_vector = vectorizer.transform([query])
|
285 |
+
doc_lengths = tfidf_matrix.sum(axis=1).A1
|
286 |
+
avg_doc_length = np.mean(doc_lengths)
|
287 |
+
|
288 |
+
k1, b = 1.5, 0.75
|
289 |
+
scores = []
|
290 |
+
for i, doc_vector in enumerate(tfidf_matrix):
|
291 |
+
score = np.sum(
|
292 |
+
((k1 + 1) * query_vector.multiply(doc_vector)).A1 /
|
293 |
+
(k1 * (1 - b + b * doc_lengths[i] / avg_doc_length) + query_vector.multiply(doc_vector).A1)
|
294 |
+
)
|
295 |
+
scores.append((documents[i][0], score))
|
296 |
+
|
297 |
+
return sorted(scores, key=lambda x: x[1], reverse=True)[:top_k]
|
298 |
+
|
299 |
+
def combine_search_results(self, bm25_results: List[Tuple[int, float]], vector_results: List[Tuple[int, float]],
|
300 |
+
alpha: float = 0.5) -> List[Tuple[int, float]]:
|
301 |
+
combined_scores = {}
|
302 |
+
for idx, score in bm25_results + vector_results:
|
303 |
+
if idx in combined_scores:
|
304 |
+
combined_scores[idx] += score * (alpha if idx in dict(bm25_results) else (1 - alpha))
|
305 |
+
else:
|
306 |
+
combined_scores[idx] = score * (alpha if idx in dict(bm25_results) else (1 - alpha))
|
307 |
+
return sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
|
308 |
+
|
309 |
+
def expand_query(self, query: str) -> str:
|
310 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
311 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
312 |
+
|
313 |
+
input_text = f"expand query: {query}"
|
314 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
315 |
+
|
316 |
+
outputs = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
317 |
+
expanded_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
318 |
+
|
319 |
+
return f"{query} {expanded_query}"
|
320 |
+
|
321 |
+
def cross_encoder_rerank(self, query: str, initial_results: List[Tuple[int, float]], top_k: int = 5) -> List[
|
322 |
+
Tuple[int, float]]:
|
323 |
+
from sentence_transformers import CrossEncoder
|
324 |
+
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
325 |
+
|
326 |
+
candidate_docs = [self.get_document_content(doc_id) for doc_id, _ in initial_results[:top_k * 2]]
|
327 |
+
pairs = [[query, doc] for doc in candidate_docs]
|
328 |
+
scores = model.predict(pairs)
|
329 |
+
|
330 |
+
reranked = sorted(zip(initial_results[:top_k * 2], scores), key=lambda x: x[1], reverse=True)
|
331 |
+
return [(idx, score) for (idx, _), score in reranked[:top_k]]
|
332 |
+
|
333 |
+
def rag_query(self, query: str, search_type: str = 'combined', top_k: int = 5, use_hyde: bool = False,
|
334 |
+
rerank: bool = False, expand: bool = False) -> List[Dict[str, any]]:
|
335 |
+
try:
|
336 |
+
if expand:
|
337 |
+
query = self.expand_query(query)
|
338 |
+
|
339 |
+
if use_hyde:
|
340 |
+
# Implement HyDE if needed
|
341 |
+
pass
|
342 |
+
elif search_type == 'vector':
|
343 |
+
results = self.semantic_search(query, top_k)
|
344 |
+
elif search_type == 'bm25':
|
345 |
+
results = self.bm25_search(query, top_k)
|
346 |
+
elif search_type == 'combined':
|
347 |
+
bm25_results = self.bm25_search(query, top_k)
|
348 |
+
vector_results = self.semantic_search(query, top_k)
|
349 |
+
results = self.combine_search_results(bm25_results, vector_results)
|
350 |
+
else:
|
351 |
+
raise ValueError("Invalid search type. Choose 'vector', 'bm25', or 'combined'.")
|
352 |
+
|
353 |
+
if rerank:
|
354 |
+
results = self.cross_encoder_rerank(query, results, top_k)
|
355 |
+
|
356 |
+
enriched_results = []
|
357 |
+
for doc_id, score in results:
|
358 |
+
content = self.get_document_content(doc_id)
|
359 |
+
enriched_results.append({
|
360 |
+
"document_id": doc_id,
|
361 |
+
"score": score,
|
362 |
+
"content": content[:500] # Truncate content for brevity
|
363 |
+
})
|
364 |
+
|
365 |
+
return enriched_results
|
366 |
+
except Exception as e:
|
367 |
+
logger.error(f"An error occurred during RAG query: {str(e)}")
|
368 |
+
return []
|
369 |
+
|
370 |
+
|
371 |
+
# Example usage
|
372 |
+
if __name__ == "__main__":
|
373 |
+
sqlite_path = "path/to/your/sqlite/database.db"
|
374 |
+
pg_config = {
|
375 |
+
"dbname": "your_db_name",
|
376 |
+
"user": "your_username",
|
377 |
+
"password": "your_password",
|
378 |
+
"host": "localhost"
|
379 |
+
}
|
380 |
+
|
381 |
+
rag_system = RAGSystem(sqlite_path, pg_config)
|
382 |
+
|
383 |
+
# Vectorize all documents (run this once or periodically)
|
384 |
+
rag_system.vectorize_all_documents()
|
385 |
+
|
386 |
+
# Example query
|
387 |
+
query = "programming concepts for beginners"
|
388 |
+
results = rag_system.rag_query(query, search_type='combined', expand=True, rerank=True)
|
389 |
+
|
390 |
+
print(f"Search results for query: '{query}'\n")
|
391 |
+
for i, result in enumerate(results, 1):
|
392 |
+
print(f"Result {i}:")
|
393 |
+
print(f"Document ID: {result['document_id']}")
|
394 |
+
print(f"Score: {result['score']:.4f}")
|
395 |
+
print(f"Content snippet: {result['content']}")
|
396 |
+
print("---")
|
App_Function_Libraries/RAG/RAPTOR-Skeleton.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Requirements
|
2 |
+
# scikit-learn umap-learn
|
3 |
+
from itertools import chain
|
4 |
+
from typing import List, Dict
|
5 |
+
|
6 |
+
from App_Function_Libraries.RAG.ChromaDB_Library import store_in_chroma, create_embedding, vector_search, chroma_client
|
7 |
+
from App_Function_Libraries.Chunk_Lib import improved_chunking_process, recursive_summarize_chunks
|
8 |
+
import logging
|
9 |
+
from sklearn.mixture import GaussianMixture
|
10 |
+
import umap
|
11 |
+
from nltk.corpus import wordnet
|
12 |
+
|
13 |
+
|
14 |
+
# Logging setup
|
15 |
+
logging.basicConfig(filename='raptor.log', level=logging.DEBUG)
|
16 |
+
|
17 |
+
# FIXME
|
18 |
+
MAX_LEVELS = 3
|
19 |
+
|
20 |
+
|
21 |
+
def log_and_summarize(text, prompt):
|
22 |
+
logging.debug(f"Summarizing text: {text[:100]} with prompt: {prompt}")
|
23 |
+
return dummy_summarize(text, prompt)
|
24 |
+
|
25 |
+
# 1. Data Preparation
|
26 |
+
def prepare_data(content: str, media_id: int, chunk_options: dict):
|
27 |
+
chunks = improved_chunking_process(content, chunk_options)
|
28 |
+
embeddings = [create_embedding(chunk['text']) for chunk in chunks]
|
29 |
+
return chunks, embeddings
|
30 |
+
|
31 |
+
# 2. Recursive Summarization
|
32 |
+
def recursive_summarization(chunks, summarize_func, custom_prompt):
|
33 |
+
summarized_chunks = recursive_summarize_chunks(
|
34 |
+
[chunk['text'] for chunk in chunks],
|
35 |
+
summarize_func=summarize_func,
|
36 |
+
custom_prompt=custom_prompt
|
37 |
+
)
|
38 |
+
return summarized_chunks
|
39 |
+
|
40 |
+
# Initial gen
|
41 |
+
# 3. Tree Organization
|
42 |
+
#def build_tree_structure(chunks, embeddings, collection_name, level=0):
|
43 |
+
# if len(chunks) <= 1:
|
44 |
+
# return chunks # Base case: if chunks are small enough, return as is
|
45 |
+
|
46 |
+
# Recursive case: cluster and summarize
|
47 |
+
# summarized_chunks = recursive_summarization(chunks, summarize_func=dummy_summarize, custom_prompt="Summarize:")
|
48 |
+
# new_chunks, new_embeddings = prepare_data(' '.join(summarized_chunks), media_id, chunk_options)
|
49 |
+
|
50 |
+
# Store in ChromaDB
|
51 |
+
# ids = [f"{media_id}_L{level}_chunk_{i}" for i in range(len(new_chunks))]
|
52 |
+
# store_in_chroma(collection_name, [chunk['text'] for chunk in new_chunks], new_embeddings, ids)
|
53 |
+
|
54 |
+
# Recursively build tree
|
55 |
+
# return build_tree_structure(new_chunks, new_embeddings, collection_name, level+1)
|
56 |
+
|
57 |
+
# Second iteration
|
58 |
+
def build_tree_structure(chunks, collection_name, level=0):
|
59 |
+
# Dynamic clustering
|
60 |
+
clustered_texts = dynamic_clustering([chunk['text'] for chunk in chunks])
|
61 |
+
|
62 |
+
# Summarize each cluster
|
63 |
+
summarized_clusters = {}
|
64 |
+
for cluster_id, cluster_texts in clustered_texts.items():
|
65 |
+
summary = dummy_summarize(' '.join(cluster_texts), custom_prompt="Summarize:")
|
66 |
+
summarized_clusters[cluster_id] = summary
|
67 |
+
|
68 |
+
# Store summaries at current level
|
69 |
+
ids = []
|
70 |
+
embeddings = []
|
71 |
+
summaries = []
|
72 |
+
for cluster_id, summary in summarized_clusters.items():
|
73 |
+
ids.append(f"{collection_name}_L{level}_C{cluster_id}")
|
74 |
+
embeddings.append(create_embedding(summary))
|
75 |
+
summaries.append(summary)
|
76 |
+
|
77 |
+
store_in_chroma(collection_name, summaries, embeddings, ids)
|
78 |
+
|
79 |
+
# Recursively build tree structure if necessary
|
80 |
+
if level < MAX_LEVELS:
|
81 |
+
for cluster_id, cluster_texts in clustered_texts.items():
|
82 |
+
build_tree_structure(cluster_texts, collection_name, level + 1)
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
# Dummy summarize function (replace with actual summarization)
|
88 |
+
def dummy_summarize(text, custom_prompt, temp=None, system_prompt=None):
|
89 |
+
return text # Replace this with actual call to summarization model (like GPT-3.5-turbo)
|
90 |
+
|
91 |
+
# 4. Retrieval
|
92 |
+
def raptor_retrieve(query, collection_name, level=0):
|
93 |
+
results = vector_search(collection_name, query, k=5)
|
94 |
+
return results
|
95 |
+
|
96 |
+
# Main function integrating RAPTOR
|
97 |
+
def raptor_pipeline(media_id, content, chunk_options):
|
98 |
+
collection_name = f"media_{media_id}_raptor"
|
99 |
+
|
100 |
+
# Step 1: Prepare Data
|
101 |
+
chunks, embeddings = prepare_data(content, media_id, chunk_options)
|
102 |
+
|
103 |
+
# Step 2: Build Tree
|
104 |
+
build_tree_structure(chunks, embeddings, collection_name)
|
105 |
+
|
106 |
+
# Step 3: Retrieve Information
|
107 |
+
query = "Your query here"
|
108 |
+
result = raptor_retrieve(query, collection_name)
|
109 |
+
print(result)
|
110 |
+
|
111 |
+
# Example usage
|
112 |
+
content = "Your long document content here"
|
113 |
+
chunk_options = {
|
114 |
+
'method': 'sentences',
|
115 |
+
'max_size': 300,
|
116 |
+
'overlap': 50
|
117 |
+
}
|
118 |
+
media_id = 1
|
119 |
+
raptor_pipeline(media_id, content, chunk_options)
|
120 |
+
|
121 |
+
|
122 |
+
#
|
123 |
+
#
|
124 |
+
###################################################################################################################
|
125 |
+
#
|
126 |
+
# Additions:
|
127 |
+
|
128 |
+
|
129 |
+
def dynamic_clustering(texts, n_components=2):
|
130 |
+
# Step 1: Convert text to embeddings
|
131 |
+
embeddings = [create_embedding(text) for text in texts]
|
132 |
+
|
133 |
+
# Step 2: Dimensionality reduction (UMAP)
|
134 |
+
reducer = umap.UMAP(n_components=n_components)
|
135 |
+
reduced_embeddings = reducer.fit_transform(embeddings)
|
136 |
+
|
137 |
+
# Step 3: Find optimal number of clusters using BIC
|
138 |
+
best_gmm = None
|
139 |
+
best_bic = float('inf')
|
140 |
+
n_clusters = range(2, 10)
|
141 |
+
for n in n_clusters:
|
142 |
+
gmm = GaussianMixture(n_components=n, covariance_type='full')
|
143 |
+
gmm.fit(reduced_embeddings)
|
144 |
+
bic = gmm.bic(reduced_embeddings)
|
145 |
+
if bic < best_bic:
|
146 |
+
best_bic = bic
|
147 |
+
best_gmm = gmm
|
148 |
+
|
149 |
+
# Step 4: Cluster the reduced embeddings
|
150 |
+
cluster_labels = best_gmm.predict(reduced_embeddings)
|
151 |
+
clustered_texts = {i: [] for i in range(best_gmm.n_components)}
|
152 |
+
for label, text in zip(cluster_labels, texts):
|
153 |
+
clustered_texts[label].append(text)
|
154 |
+
|
155 |
+
return clustered_texts
|
156 |
+
|
157 |
+
|
158 |
+
def tree_traversal_retrieve(query, collection_name, max_depth=3):
|
159 |
+
logging.info(f"Starting tree traversal for query: {query}")
|
160 |
+
results = []
|
161 |
+
current_level = 0
|
162 |
+
current_nodes = [collection_name + '_L0']
|
163 |
+
|
164 |
+
while current_level <= max_depth and current_nodes:
|
165 |
+
next_level_nodes = []
|
166 |
+
for node_id in current_nodes:
|
167 |
+
documents = vector_search(node_id, query, k=5)
|
168 |
+
results.extend(documents)
|
169 |
+
next_level_nodes.extend([doc['id'] for doc in documents]) # Assuming your doc structure includes an 'id' field
|
170 |
+
current_nodes = next_level_nodes
|
171 |
+
current_level += 1
|
172 |
+
|
173 |
+
logging.info(f"Tree traversal completed with {len(results)} results")
|
174 |
+
return results
|
175 |
+
|
176 |
+
|
177 |
+
def collapsed_tree_retrieve(query, collection_name):
|
178 |
+
all_layers = [f"{collection_name}_L{level}" for level in range(MAX_LEVELS)]
|
179 |
+
all_results = []
|
180 |
+
|
181 |
+
for layer in all_layers:
|
182 |
+
all_results.extend(vector_search(layer, query, k=5))
|
183 |
+
|
184 |
+
# Sort and rank results by relevance
|
185 |
+
sorted_results = sorted(all_results, key=lambda x: x['relevance'], reverse=True) # Assuming 'relevance' is a key
|
186 |
+
return sorted_results[:5] # Return top 5 results
|
187 |
+
|
188 |
+
# Test collaped tree retrieval
|
189 |
+
query = "Your broad query here"
|
190 |
+
results = collapsed_tree_retrieve(query, collection_name=f"media_{media_id}_raptor")
|
191 |
+
print(results)
|
192 |
+
|
193 |
+
|
194 |
+
# Parallel processing
|
195 |
+
# pip install joblib
|
196 |
+
from joblib import Parallel, delayed
|
197 |
+
|
198 |
+
def parallel_process_chunks(chunks):
|
199 |
+
return Parallel(n_jobs=-1)(delayed(create_embedding)(chunk['text']) for chunk in chunks)
|
200 |
+
|
201 |
+
def build_tree_structure(chunks, collection_name, level=0):
|
202 |
+
clustered_texts = dynamic_clustering([chunk['text'] for chunk in chunks])
|
203 |
+
|
204 |
+
summarized_clusters = {}
|
205 |
+
for cluster_id, cluster_texts in clustered_texts.items():
|
206 |
+
summary = dummy_summarize(' '.join(cluster_texts), custom_prompt="Summarize:")
|
207 |
+
summarized_clusters[cluster_id] = summary
|
208 |
+
|
209 |
+
# Parallel processing of embeddings
|
210 |
+
embeddings = parallel_process_chunks([{'text': summary} for summary in summarized_clusters.values()])
|
211 |
+
|
212 |
+
ids = [f"{collection_name}_L{level}_C{cluster_id}" for cluster_id in summarized_clusters.keys()]
|
213 |
+
store_in_chroma(collection_name, list(summarized_clusters.values()), embeddings, ids)
|
214 |
+
|
215 |
+
if len(summarized_clusters) > 1 and level < MAX_LEVELS:
|
216 |
+
build_tree_structure(summarized_clusters.values(), collection_name, level + 1)
|
217 |
+
|
218 |
+
# Asynchronous processing
|
219 |
+
import asyncio
|
220 |
+
|
221 |
+
async def async_create_embedding(text):
|
222 |
+
return create_embedding(text) # Assuming create_embedding is now async
|
223 |
+
|
224 |
+
async def build_tree_structure_async(chunks, collection_name, level=0):
|
225 |
+
clustered_texts = dynamic_clustering([chunk['text'] for chunk in chunks])
|
226 |
+
|
227 |
+
summarized_clusters = {}
|
228 |
+
for cluster_id, cluster_texts in clustered_texts.items():
|
229 |
+
summary = await async_create_embedding(' '.join(cluster_texts))
|
230 |
+
summarized_clusters[cluster_id] = summary
|
231 |
+
|
232 |
+
embeddings = await asyncio.gather(*[async_create_embedding(summary) for summary in summarized_clusters.values()])
|
233 |
+
|
234 |
+
ids = [f"{collection_name}_L{level}_C{cluster_id}" for cluster_id in summarized_clusters.keys()]
|
235 |
+
store_in_chroma(collection_name, list(summarized_clusters.values()), embeddings, ids)
|
236 |
+
|
237 |
+
if len(summarized_clusters) > 1 and level < MAX_LEVELS:
|
238 |
+
await build_tree_structure_async(summarized_clusters.values(), collection_name, level + 1)
|
239 |
+
|
240 |
+
|
241 |
+
# User feedback Loop
|
242 |
+
def get_user_feedback(results):
|
243 |
+
print("Please review the following results:")
|
244 |
+
for i, result in enumerate(results):
|
245 |
+
print(f"{i + 1}: {result['text'][:100]}...")
|
246 |
+
|
247 |
+
feedback = input("Enter the numbers of the results that were relevant (comma-separated): ")
|
248 |
+
relevant_indices = [int(i.strip()) - 1 for i in feedback.split(",")]
|
249 |
+
return relevant_indices
|
250 |
+
|
251 |
+
|
252 |
+
def raptor_pipeline_with_feedback(media_id, content, chunk_options):
|
253 |
+
# ... Existing pipeline steps ...
|
254 |
+
|
255 |
+
query = "Your query here"
|
256 |
+
initial_results = tree_traversal_retrieve(query, collection_name=f"media_{media_id}_raptor")
|
257 |
+
relevant_indices = get_user_feedback(initial_results)
|
258 |
+
|
259 |
+
if relevant_indices:
|
260 |
+
relevant_results = [initial_results[i] for i in relevant_indices]
|
261 |
+
refined_query = " ".join([res['text'] for res in relevant_results])
|
262 |
+
try:
|
263 |
+
final_results = tree_traversal_retrieve(refined_query, collection_name=f"media_{media_id}_raptor")
|
264 |
+
except Exception as e:
|
265 |
+
logging.error(f"Error during retrieval: {str(e)}")
|
266 |
+
raise
|
267 |
+
print("Refined Results:", final_results)
|
268 |
+
else:
|
269 |
+
print("No relevant results were found in the initial search.")
|
270 |
+
|
271 |
+
|
272 |
+
def identify_uncertain_results(results):
|
273 |
+
threshold = 0.5 # Define a confidence threshold
|
274 |
+
uncertain_results = [res for res in results if res['confidence'] < threshold]
|
275 |
+
return uncertain_results
|
276 |
+
|
277 |
+
|
278 |
+
def raptor_pipeline_with_active_learning(media_id, content, chunk_options):
|
279 |
+
# ... Existing pipeline steps ...
|
280 |
+
|
281 |
+
query = "Your query here"
|
282 |
+
initial_results = tree_traversal_retrieve(query, collection_name=f"media_{media_id}_raptor")
|
283 |
+
uncertain_results = identify_uncertain_results(initial_results)
|
284 |
+
|
285 |
+
if uncertain_results:
|
286 |
+
print("The following results are uncertain. Please provide feedback:")
|
287 |
+
feedback_indices = get_user_feedback(uncertain_results)
|
288 |
+
# Use feedback to adjust retrieval or refine the query
|
289 |
+
refined_query = " ".join([uncertain_results[i]['text'] for i in feedback_indices])
|
290 |
+
final_results = tree_traversal_retrieve(refined_query, collection_name=f"media_{media_id}_raptor")
|
291 |
+
print("Refined Results:", final_results)
|
292 |
+
else:
|
293 |
+
print("No uncertain results were found.")
|
294 |
+
|
295 |
+
|
296 |
+
# Query Expansion
|
297 |
+
def expand_query_with_synonyms(query):
|
298 |
+
words = query.split()
|
299 |
+
expanded_query = []
|
300 |
+
for word in words:
|
301 |
+
synonyms = wordnet.synsets(word)
|
302 |
+
lemmas = set(chain.from_iterable([syn.lemma_names() for syn in synonyms]))
|
303 |
+
expanded_query.append(" ".join(lemmas))
|
304 |
+
return " ".join(expanded_query)
|
305 |
+
|
306 |
+
|
307 |
+
def contextual_query_expansion(query, context):
|
308 |
+
# FIXME: Replace with actual contextual model
|
309 |
+
expanded_terms = some_contextual_model.get_expansions(query, context)
|
310 |
+
return query + " " + " ".join(expanded_terms)
|
311 |
+
|
312 |
+
|
313 |
+
def raptor_pipeline_with_query_expansion(media_id, content, chunk_options):
|
314 |
+
# ... Existing pipeline steps ...
|
315 |
+
|
316 |
+
query = "Your initial query"
|
317 |
+
expanded_query = expand_query_with_synonyms(query)
|
318 |
+
initial_results = tree_traversal_retrieve(expanded_query, collection_name=f"media_{media_id}_raptor")
|
319 |
+
# ... Continue with feedback loop ...
|
320 |
+
|
321 |
+
|
322 |
+
def generate_summary_with_citations(query: str, collection_name: str):
|
323 |
+
results = vector_search_with_citation(collection_name, query)
|
324 |
+
# FIXME
|
325 |
+
summary = summarize([res['text'] for res in results])
|
326 |
+
# Deduplicate sources
|
327 |
+
sources = list(set(res['source'] for res in results))
|
328 |
+
return f"{summary}\n\nCitations:\n" + "\n".join(sources)
|
329 |
+
|
330 |
+
|
331 |
+
def vector_search_with_citation(collection_name: str, query: str, k: int = 10) -> List[Dict[str, str]]:
|
332 |
+
query_embedding = create_embedding(query)
|
333 |
+
collection = chroma_client.get_collection(name=collection_name)
|
334 |
+
results = collection.query(
|
335 |
+
query_embeddings=[query_embedding],
|
336 |
+
n_results=k
|
337 |
+
)
|
338 |
+
return [{'text': doc, 'source': meta['source']} for doc, meta in zip(results['documents'], results['metadatas'])]
|
339 |
+
|
340 |
+
|
341 |
+
def generate_summary_with_footnotes(query: str, collection_name: str):
|
342 |
+
results = vector_search_with_citation(collection_name, query)
|
343 |
+
summary_parts = []
|
344 |
+
citations = []
|
345 |
+
for i, res in enumerate(results):
|
346 |
+
summary_parts.append(f"{res['text']} [{i + 1}]")
|
347 |
+
citations.append(f"[{i + 1}] {res['source']}")
|
348 |
+
return " ".join(summary_parts) + "\n\nFootnotes:\n" + "\n".join(citations)
|
349 |
+
|
350 |
+
|
351 |
+
def generate_summary_with_hyperlinks(query: str, collection_name: str):
|
352 |
+
results = vector_search_with_citation(collection_name, query)
|
353 |
+
summary_parts = []
|
354 |
+
for res in results:
|
355 |
+
summary_parts.append(f'<a href="{res["source"]}">{res["text"][:100]}...</a>')
|
356 |
+
return " ".join(summary_parts)
|
357 |
+
|
358 |
+
|
359 |
+
#
|
360 |
+
# End of Additions
|
361 |
+
############################################3############################################3##############################
|
App_Function_Libraries/RAG/__init__.py
ADDED
File without changes
|