# Character_Interaction_tab.py # Description: This file contains the functions that are used for Character Interactions in the Gradio UI. # # Imports import base64 import io import uuid from datetime import datetime as datetime import logging import json import os from typing import List, Dict, Tuple, Union # # External Imports import gradio as gr from PIL import Image # # Local Imports from App_Function_Libraries.Chat import chat, load_characters, save_chat_history_to_db_wrapper from App_Function_Libraries.Gradio_UI.Chat_ui import chat_wrapper from App_Function_Libraries.Gradio_UI.Writing_tab import generate_writing_feedback # ######################################################################################################################## # # Single-Character chat Functions: # FIXME - add these functions to the Personas library def chat_with_character(user_message, history, char_data, api_name_input, api_key): if char_data is None: return history, "Please import a character card first." bot_message = generate_writing_feedback(user_message, char_data['name'], "Overall", api_name_input, api_key) history.append((user_message, bot_message)) return history, "" def import_character_card(file): if file is None: logging.warning("No file provided for character card import") return None try: if file.name.lower().endswith(('.png', '.webp')): logging.info(f"Attempting to import character card from image: {file.name}") json_data = extract_json_from_image(file) if json_data: logging.info("JSON data extracted from image, attempting to parse") card_data = import_character_card_json(json_data) if card_data: # Save the image data with Image.open(file) as img: img_byte_arr = io.BytesIO() img.save(img_byte_arr, format='PNG') card_data['image'] = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8') return card_data else: logging.warning("No JSON data found in the image") else: logging.info(f"Attempting to import character card from JSON file: {file.name}") content = file.read().decode('utf-8') return import_character_card_json(content) except Exception as e: logging.error(f"Error importing character card: {e}") return None def import_character_card_json(json_content): try: # Remove any leading/trailing whitespace json_content = json_content.strip() # Log the first 100 characters of the content logging.debug(f"JSON content (first 100 chars): {json_content[:100]}...") card_data = json.loads(json_content) logging.debug(f"Parsed JSON data keys: {list(card_data.keys())}") if 'spec' in card_data and card_data['spec'] == 'chara_card_v2': logging.info("Detected V2 character card") return card_data['data'] else: logging.info("Assuming V1 character card") return card_data except json.JSONDecodeError as e: logging.error(f"JSON decode error: {e}") logging.error(f"Problematic JSON content: {json_content[:500]}...") except Exception as e: logging.error(f"Unexpected error parsing JSON: {e}") return None def extract_json_from_image(image_file): logging.debug(f"Attempting to extract JSON from image: {image_file.name}") try: with Image.open(image_file) as img: logging.debug("Image opened successfully") metadata = img.info if 'chara' in metadata: logging.debug("Found 'chara' in image metadata") chara_content = metadata['chara'] logging.debug(f"Content of 'chara' metadata (first 100 chars): {chara_content[:100]}...") try: decoded_content = base64.b64decode(chara_content).decode('utf-8') logging.debug(f"Decoded content (first 100 chars): {decoded_content[:100]}...") return decoded_content except Exception as e: logging.error(f"Error decoding base64 content: {e}") logging.debug("'chara' not found in metadata, checking for base64 encoded data") raw_data = img.tobytes() possible_json = raw_data.split(b'{', 1)[-1].rsplit(b'}', 1)[0] if possible_json: try: decoded = base64.b64decode(possible_json).decode('utf-8') if decoded.startswith('{') and decoded.endswith('}'): logging.debug("Found and decoded base64 JSON data") return '{' + decoded + '}' except Exception as e: logging.error(f"Error decoding base64 data: {e}") logging.warning("No JSON data found in the image") except Exception as e: logging.error(f"Error extracting JSON from image: {e}") return None def load_chat_history(file): try: content = file.read().decode('utf-8') chat_data = json.loads(content) return chat_data['history'], chat_data['character'] except Exception as e: logging.error(f"Error loading chat history: {e}") return None, None # # End of X ###################################################################################################################### # # Multi-Character Chat Interface # FIXME - refactor and move these functions to the Character_Chat library so that it uses the same functions def character_interaction_setup(): characters = load_characters() return characters, [], None, None def extract_character_response(response: Union[str, Tuple]) -> str: if isinstance(response, tuple): # If it's a tuple, try to extract the first string element for item in response: if isinstance(item, str): return item.strip() # If no string found, return a default message return "I'm not sure how to respond." elif isinstance(response, str): # If it's already a string, just return it return response.strip() else: # For any other type, return a default message return "I'm having trouble forming a response." # def process_character_response(response: str) -> str: # # Remove any leading explanatory text before the first '---' # parts = response.split('---') # if len(parts) > 1: # return '---' + '---'.join(parts[1:]) # return response.strip() def process_character_response(response: Union[str, Tuple]) -> str: if isinstance(response, tuple): response = ' '.join(str(item) for item in response if isinstance(item, str)) if isinstance(response, str): # Remove any leading explanatory text before the first '---' parts = response.split('---') if len(parts) > 1: return '---' + '---'.join(parts[1:]) return response.strip() else: return "I'm having trouble forming a response." def character_turn(characters: Dict, conversation: List[Tuple[str, str]], current_character: str, other_characters: List[str], api_endpoint: str, api_key: str, temperature: float, scenario: str = "") -> Tuple[List[Tuple[str, str]], str]: if not current_character or current_character not in characters: return conversation, current_character if not conversation and scenario: conversation.append(("Scenario", scenario)) current_char = characters[current_character] other_chars = [characters[char] for char in other_characters if char in characters and char != current_character] prompt = f"{current_char['name']}'s personality: {current_char['personality']}\n" for char in other_chars: prompt += f"{char['name']}'s personality: {char['personality']}\n" prompt += "Conversation so far:\n" + "\n".join([f"{sender}: {message}" for sender, message in conversation]) prompt += f"\n\nHow would {current_char['name']} respond?" try: response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") processed_response = process_character_response(response) conversation.append((current_char['name'], processed_response)) except Exception as e: error_message = f"Error generating response: {str(e)}" conversation.append((current_char['name'], error_message)) return conversation, current_character def character_interaction(character1: str, character2: str, api_endpoint: str, api_key: str, num_turns: int, scenario: str, temperature: float, user_interjection: str = "") -> List[str]: characters = load_characters() char1 = characters[character1] char2 = characters[character2] conversation = [] current_speaker = char1 other_speaker = char2 # Add scenario to the conversation start if scenario: conversation.append(f"Scenario: {scenario}") for turn in range(num_turns): # Construct the prompt for the current speaker prompt = f"{current_speaker['name']}'s personality: {current_speaker['personality']}\n" prompt += f"{other_speaker['name']}'s personality: {other_speaker['personality']}\n" prompt += f"Conversation so far:\n" + "\n".join( [msg if isinstance(msg, str) else f"{msg[0]}: {msg[1]}" for msg in conversation]) # Add user interjection if provided if user_interjection and turn == num_turns // 2: prompt += f"\n\nUser interjection: {user_interjection}\n" conversation.append(f"User: {user_interjection}") prompt += f"\n\nHow would {current_speaker['name']} respond?" # FIXME - figure out why the double print is happening # Get response from the LLM response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") # Add the response to the conversation conversation.append((current_speaker['name'], response)) # Switch speakers current_speaker, other_speaker = other_speaker, current_speaker # Convert the conversation to a list of strings for output return [f"{msg[0]}: {msg[1]}" if isinstance(msg, tuple) else msg for msg in conversation] def create_multiple_character_chat_tab(): with gr.TabItem("Multi-Character Chat"): characters, conversation, current_character, other_character = character_interaction_setup() with gr.Blocks() as character_interaction: gr.Markdown("# Multi-Character Chat") with gr.Row(): num_characters = gr.Dropdown(label="Number of Characters", choices=["2", "3", "4"], value="2") character_selectors = [gr.Dropdown(label=f"Character {i + 1}", choices=list(characters.keys())) for i in range(4)] api_endpoint = gr.Dropdown(label="API Endpoint", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace", "Custom-OpenAI-API"], value="HuggingFace") api_key = gr.Textbox(label="API Key (if required)", type="password") temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7) scenario = gr.Textbox(label="Scenario (optional)", lines=3) chat_display = gr.Chatbot(label="Character Interaction") current_index = gr.State(0) next_turn_btn = gr.Button("Next Turn") narrator_input = gr.Textbox(label="Narrator Input", placeholder="Add a narration or description...") add_narration_btn = gr.Button("Add Narration") error_box = gr.Textbox(label="Error Messages", visible=False) reset_btn = gr.Button("Reset Conversation") chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True) save_chat_history_to_db = gr.Button("Save Chat History to DataBase") def update_character_selectors(num): return [gr.update(visible=True) if i < int(num) else gr.update(visible=False) for i in range(4)] num_characters.change( update_character_selectors, inputs=[num_characters], outputs=character_selectors ) def reset_conversation(): return [], 0, gr.update(value=""), gr.update(value="") def take_turn(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature, scenario): char_selectors = [char for char in [char1, char2, char3, char4] if char] # Remove None values num_chars = len(char_selectors) if num_chars == 0: return conversation, current_index # No characters selected, return without changes if not conversation: conversation = [] if scenario: conversation.append(("Scenario", scenario)) current_character = char_selectors[current_index % num_chars] next_index = (current_index + 1) % num_chars prompt = f"Character speaking: {current_character}\nOther characters: {', '.join(char for char in char_selectors if char != current_character)}\n" prompt += "Generate the next part of the conversation, including character dialogues and actions. Characters should speak in first person." response, new_conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") # Format the response formatted_lines = [] for line in response.split('\n'): if ':' in line: speaker, text = line.split(':', 1) formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}") else: formatted_lines.append(line) formatted_response = '\n'.join(formatted_lines) # Update the last message in the conversation with the formatted response if new_conversation: new_conversation[-1] = (new_conversation[-1][0], formatted_response) else: new_conversation.append((current_character, formatted_response)) return new_conversation, next_index def add_narration(narration, conversation): if narration: conversation.append(("Narrator", narration)) return conversation, "" def take_turn_with_error_handling(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature, scenario): try: new_conversation, next_index = take_turn(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature, scenario) return new_conversation, next_index, gr.update(visible=False, value="") except Exception as e: error_message = f"An error occurred: {str(e)}" return conversation, current_index, gr.update(visible=True, value=error_message) # Define States for conversation_id and media_content, which are required for saving chat history media_content = gr.State({}) conversation_id = gr.State(str(uuid.uuid4())) next_turn_btn.click( take_turn_with_error_handling, inputs=[chat_display, current_index] + character_selectors + [api_endpoint, api_key, temperature, scenario], outputs=[chat_display, current_index, error_box] ) add_narration_btn.click( add_narration, inputs=[narrator_input, chat_display], outputs=[chat_display, narrator_input] ) reset_btn.click( reset_conversation, outputs=[chat_display, current_index, scenario, narrator_input] ) # FIXME - Implement saving chat history to database; look at Chat_UI.py for reference save_chat_history_to_db.click( save_chat_history_to_db_wrapper, inputs=[chat_display, conversation_id, media_content, chat_media_name], outputs=[conversation_id, gr.Textbox(label="Save Status")] ) return character_interaction # # End of Multi-Character chat tab ######################################################################################################################## # # Narrator-Controlled Conversation Tab # From `Fuzzlewumper` on Reddit. def create_narrator_controlled_conversation_tab(): with gr.TabItem("Narrator-Controlled Conversation"): gr.Markdown("# Narrator-Controlled Conversation") with gr.Row(): with gr.Column(scale=1): api_endpoint = gr.Dropdown( label="API Endpoint", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace", "Custom-OpenAI-API"], value="HuggingFace" ) api_key = gr.Textbox(label="API Key (if required)", type="password") temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7) with gr.Column(scale=2): narrator_input = gr.Textbox( label="Narrator Input", placeholder="Set the scene or provide context...", lines=3 ) character_inputs = [] for i in range(4): # Allow up to 4 characters with gr.Row(): name = gr.Textbox(label=f"Character {i + 1} Name") description = gr.Textbox(label=f"Character {i + 1} Description", lines=3) character_inputs.append((name, description)) conversation_display = gr.Chatbot(label="Conversation", height=400) user_input = gr.Textbox(label="Your Input (optional)", placeholder="Add your own dialogue or action...") with gr.Row(): generate_btn = gr.Button("Generate Next Interaction") reset_btn = gr.Button("Reset Conversation") chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True) save_chat_history_to_db = gr.Button("Save Chat History to DataBase") error_box = gr.Textbox(label="Error Messages", visible=False) # Define States for conversation_id and media_content, which are required for saving chat history conversation_id = gr.State(str(uuid.uuid4())) media_content = gr.State({}) def generate_interaction(conversation, narrator_text, user_text, api_endpoint, api_key, temperature, *character_data): try: characters = [{"name": name.strip(), "description": desc.strip()} for name, desc in zip(character_data[::2], character_data[1::2]) if name.strip() and desc.strip()] if not characters: raise ValueError("At least one character must be defined.") prompt = f"Narrator: {narrator_text}\n\n" for char in characters: prompt += f"Character '{char['name']}': {char['description']}\n" prompt += "\nGenerate the next part of the conversation, including character dialogues and actions. " prompt += "Characters should speak in first person. " if user_text: prompt += f"\nIncorporate this user input: {user_text}" prompt += "\nResponse:" response, conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") # Format the response formatted_lines = [] for line in response.split('\n'): if ':' in line: speaker, text = line.split(':', 1) formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}") else: formatted_lines.append(line) formatted_response = '\n'.join(formatted_lines) # Update the last message in the conversation with the formatted response if conversation: conversation[-1] = (conversation[-1][0], formatted_response) else: conversation.append((None, formatted_response)) return conversation, gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="") except Exception as e: error_message = f"An error occurred: {str(e)}" return conversation, gr.update(), gr.update(), gr.update(visible=True, value=error_message) def reset_conversation(): return [], gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="") generate_btn.click( generate_interaction, inputs=[conversation_display, narrator_input, user_input, api_endpoint, api_key, temperature] + [input for char_input in character_inputs for input in char_input], outputs=[conversation_display, narrator_input, user_input, error_box] ) reset_btn.click( reset_conversation, outputs=[conversation_display, narrator_input, user_input, error_box] ) # FIXME - Implement saving chat history to database; look at Chat_UI.py for reference save_chat_history_to_db.click( save_chat_history_to_db_wrapper, inputs=[conversation_display, conversation_id, media_content, chat_media_name], outputs=[conversation_id, gr.Textbox(label="Save Status")] ) return api_endpoint, api_key, temperature, narrator_input, conversation_display, user_input, generate_btn, reset_btn, error_box # # End of Narrator-Controlled Conversation tab ########################################################################################################################