# RAG_Library_2.py # Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline. # # Import necessary modules and functions import configparser import logging import os import time from typing import Dict, Any, List, Optional from App_Function_Libraries.DB.Character_Chat_DB import get_character_chats, perform_full_text_search_chat, \ fetch_keywords_for_chats, search_character_chat, search_character_cards, fetch_character_ids_by_keywords from App_Function_Libraries.DB.RAG_QA_Chat_DB import search_rag_chat, search_rag_notes # # Local Imports from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client from App_Function_Libraries.RAG.RAG_Persona_Chat import perform_vector_search_chat from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_custom_openai from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article from App_Function_Libraries.DB.DB_Manager import fetch_keywords_for_media, search_media_db, get_notes_by_keywords, \ search_conversations_by_keywords from App_Function_Libraries.Utils.Utils import load_comprehensive_config from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram # # 3rd-Party Imports import openai from flashrank import Ranker, RerankRequest # ######################################################################################################################## # # Functions: # Initialize OpenAI client (adjust this based on your API key management) openai.api_key = "your-openai-api-key" # Get the directory of the current script current_dir = os.path.dirname(os.path.abspath(__file__)) # Construct the path to the config file config_path = os.path.join(current_dir, 'Config_Files', 'config.txt') # Read the config file config = configparser.ConfigParser() # Read the configuration file config.read('config.txt') search_functions = { "Media DB": search_media_db, "RAG Chat": search_rag_chat, "RAG Notes": search_rag_notes, "Character Chat": search_character_chat, "Character Cards": search_character_cards } # RAG pipeline function for web scraping # def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]: # try: # # Extract content # try: # article_data = scrape_article(url) # content = article_data['content'] # title = article_data['title'] # except Exception as e: # logging.error(f"Error scraping article: {str(e)}") # return {"error": "Failed to scrape article", "details": str(e)} # # # Store the article in the database and get the media_id # try: # media_id = add_media_to_database(url, title, 'article', content) # except Exception as e: # logging.error(f"Error adding article to database: {str(e)}") # return {"error": "Failed to store article in database", "details": str(e)} # # # Process and store content # collection_name = f"article_{media_id}" # try: # # Assuming you have a database object available, let's call it 'db' # db = get_database_connection() # # process_and_store_content( # database=db, # content=content, # collection_name=collection_name, # media_id=media_id, # file_name=title, # create_embeddings=True, # create_contextualized=True, # api_name=api_choice # ) # except Exception as e: # logging.error(f"Error processing and storing content: {str(e)}") # return {"error": "Failed to process and store content", "details": str(e)} # # # Perform searches # try: # vector_results = vector_search(collection_name, query, k=5) # fts_results = search_db(query, ["content"], "", page=1, results_per_page=5) # except Exception as e: # logging.error(f"Error performing searches: {str(e)}") # return {"error": "Failed to perform searches", "details": str(e)} # # # Combine results with error handling for missing 'content' key # all_results = [] # for result in vector_results + fts_results: # if isinstance(result, dict) and 'content' in result: # all_results.append(result['content']) # else: # logging.warning(f"Unexpected result format: {result}") # all_results.append(str(result)) # # context = "\n".join(all_results) # # # Generate answer using the selected API # try: # answer = generate_answer(api_choice, context, query) # except Exception as e: # logging.error(f"Error generating answer: {str(e)}") # return {"error": "Failed to generate answer", "details": str(e)} # # return { # "answer": answer, # "context": context # } # # except Exception as e: # logging.error(f"Unexpected error in rag_pipeline: {str(e)}") # return {"error": "An unexpected error occurred", "details": str(e)} # RAG Search with keyword filtering # FIXME - Update each called function to support modifiable top-k results def enhanced_rag_pipeline(query: str, api_choice: str, keywords: str = None, fts_top_k=10, apply_re_ranking=True, database_types: List[str] = "Media DB") -> Dict[str, Any]: """ Perform full text search across specified database type. Args: query: Search query string api_choice: API to use for generating the response fts_top_k: Maximum number of results to return keywords: Optional list of media IDs to filter results database_types: Type of database to search ("Media DB", "RAG Chat", or "Character Chat") Returns: Dictionary containing search results with content """ log_counter("enhanced_rag_pipeline_attempt", labels={"api_choice": api_choice}) start_time = time.time() try: # Load embedding provider from config, or fallback to 'openai' embedding_provider = config.get('Embeddings', 'provider', fallback='openai') # Log the provider used logging.debug(f"Using embedding provider: {embedding_provider}") # Process keywords if provided keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else [] logging.debug(f"\n\nenhanced_rag_pipeline - Keywords: {keyword_list}") relevant_ids = {} # Fetch relevant IDs based on keywords if keywords are provided if keyword_list: try: for db_type in database_types: if db_type == "Media DB": relevant_media_ids = fetch_relevant_media_ids(keyword_list) relevant_ids[db_type] = relevant_media_ids logging.debug(f"enhanced_rag_pipeline - {db_type} relevant media IDs: {relevant_media_ids}") elif db_type == "RAG Chat": conversations, total_pages, total_count = search_conversations_by_keywords( keywords=keyword_list) relevant_conversation_ids = [conv['conversation_id'] for conv in conversations] relevant_ids[db_type] = relevant_conversation_ids logging.debug( f"enhanced_rag_pipeline - {db_type} relevant conversation IDs: {relevant_conversation_ids}") elif db_type == "RAG Notes": notes, total_pages, total_count = get_notes_by_keywords(keyword_list) relevant_note_ids = [note_id for note_id, _, _, _ in notes] # Unpack note_id from the tuple relevant_ids[db_type] = relevant_note_ids logging.debug(f"enhanced_rag_pipeline - {db_type} relevant note IDs: {relevant_note_ids}") elif db_type == "Character Chat": relevant_chat_ids = fetch_keywords_for_chats(keyword_list) relevant_ids[db_type] = relevant_chat_ids logging.debug(f"enhanced_rag_pipeline - {db_type} relevant chat IDs: {relevant_chat_ids}") elif db_type == "Character Cards": # Assuming we have a function to fetch character IDs by keywords relevant_character_ids = fetch_character_ids_by_keywords(keyword_list) relevant_ids[db_type] = relevant_character_ids logging.debug( f"enhanced_rag_pipeline - {db_type} relevant character IDs: {relevant_character_ids}") else: logging.error(f"Unsupported database type: {db_type}") except Exception as e: logging.error(f"Error fetching relevant IDs: {str(e)}") else: relevant_ids = None # Extract relevant media IDs for each selected DB # Prepare a dict to hold relevant_media_ids per DB relevant_media_ids_dict = {} if relevant_ids: for db_type in database_types: relevant_media_ids = relevant_ids.get(db_type, None) if relevant_media_ids: # Convert to List[str] if not None relevant_media_ids_dict[db_type] = [str(media_id) for media_id in relevant_media_ids] else: relevant_media_ids_dict[db_type] = None else: relevant_media_ids_dict = {db_type: None for db_type in database_types} # Perform vector search for all selected databases vector_results = [] for db_type in database_types: try: db_relevant_ids = relevant_media_ids_dict.get(db_type) results = perform_vector_search(query, db_relevant_ids, top_k=fts_top_k) vector_results.extend(results) logging.debug(f"\nenhanced_rag_pipeline - Vector search results for {db_type}: {results}") except Exception as e: logging.error(f"Error performing vector search on {db_type}: {str(e)}") # Perform vector search # FIXME vector_results = perform_vector_search(query, relevant_media_ids) logging.debug(f"\n\nenhanced_rag_pipeline - Vector search results: {vector_results}") # Perform full-text search #v1 #fts_results = perform_full_text_search(query, database_type, relevant_media_ids, fts_top_k) # v2 # Perform full-text search across specified databases fts_results = [] for db_type in database_types: try: db_relevant_ids = relevant_ids.get(db_type) if relevant_ids else None db_results = perform_full_text_search(query, db_type, db_relevant_ids, fts_top_k) fts_results.extend(db_results) logging.debug(f"enhanced_rag_pipeline - FTS results for {db_type}: {db_results}") except Exception as e: logging.error(f"Error performing full-text search on {db_type}: {str(e)}") logging.debug("\n\nenhanced_rag_pipeline - Full-text search results:") logging.debug( "\n\nenhanced_rag_pipeline - Full-text search results:\n" + "\n".join( [str(item) for item in fts_results]) + "\n" ) # Combine results all_results = vector_results + fts_results if apply_re_ranking: logging.debug(f"\nenhanced_rag_pipeline - Applying Re-Ranking") # FIXME - add option to use re-ranking at call time # FIXME - specify model + add param to modify at call time # FIXME - add option to set a custom top X results # You can specify a model if necessary, e.g., model_name="ms-marco-MiniLM-L-12-v2" if all_results: ranker = Ranker() # Prepare passages for re-ranking passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)] rerank_request = RerankRequest(query=query, passages=passages) # Rerank the results reranked_results = ranker.rerank(rerank_request) # Sort results based on the re-ranking score reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True) # Log reranked results logging.debug(f"\n\nenhanced_rag_pipeline - Reranked results: {reranked_results}") # Update all_results based on reranking all_results = [all_results[result['id']] for result in reranked_results] # Extract content from results (top fts_top_k by default) context = "\n".join([result['content'] for result in all_results[:fts_top_k]]) logging.debug(f"Context length: {len(context)}") logging.debug(f"Context: {context[:200]}") # Generate answer using the selected API answer = generate_answer(api_choice, context, query) if not all_results: logging.info(f"No results found. Query: {query}, Keywords: {keywords}") return { "answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer, "context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query } # Metrics pipeline_duration = time.time() - start_time log_histogram("enhanced_rag_pipeline_duration", pipeline_duration, labels={"api_choice": api_choice}) log_counter("enhanced_rag_pipeline_success", labels={"api_choice": api_choice}) return { "answer": answer, "context": context } except Exception as e: # Metrics log_counter("enhanced_rag_pipeline_error", labels={"api_choice": api_choice, "error": str(e)}) logging.error(f"Error in enhanced_rag_pipeline: {str(e)}") logging.error(f"Error in enhanced_rag_pipeline: {str(e)}") return { "answer": "An error occurred while processing your request.", "context": "" } # Need to write a test for this function FIXME def generate_answer(api_choice: str, context: str, query: str) -> str: # Metrics log_counter("generate_answer_attempt", labels={"api_choice": api_choice}) start_time = time.time() logging.debug("Entering generate_answer function") config = load_comprehensive_config() logging.debug(f"Config sections: {config.sections()}") prompt = f"Context: {context}\n\nQuestion: {query}" try: if api_choice == "OpenAI": from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_openai(config['API']['openai_api_key'], prompt, "") elif api_choice == "Anthropic": from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "") elif api_choice == "Cohere": from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "") elif api_choice == "Groq": from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_groq(config['API']['groq_api_key'], prompt, "") elif api_choice == "OpenRouter": from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "") elif api_choice == "HuggingFace": from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "") elif api_choice == "DeepSeek": from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "") elif api_choice == "Mistral": from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "") # Local LLM APIs elif api_choice == "Local-LLM": from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) # FIXME return summarize_with_local_llm(config['Local-API']['local_llm_path'], prompt, "") elif api_choice == "Llama.cpp": from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_llama(prompt, "", config['Local-API']['llama_api_key'], None, None) elif api_choice == "Kobold": from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_kobold(prompt, config['Local-API']['kobold_api_key'], "", system_message=None, temp=None) elif api_choice == "Ooba": from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_oobabooga(prompt, config['Local-API']['ooba_api_key'], custom_prompt="", system_message=None, temp=None) elif api_choice == "TabbyAPI": from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_tabbyapi(prompt, None, None, None, None, ) elif api_choice == "vLLM": from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_vllm(prompt, "", config['Local-API']['vllm_api_key'], None, None) elif api_choice.lower() == "ollama": from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama answer_generation_duration = time.time() - start_time log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) log_counter("generate_answer_success", labels={"api_choice": api_choice}) return summarize_with_ollama(prompt, "", config['Local-API']['ollama_api_IP'], config['Local-API']['ollama_api_key'], None, None, None) elif api_choice.lower() == "custom_openai_api": logging.debug(f"RAG Answer Gen: Trying with Custom_OpenAI API") summary = summarize_with_custom_openai(prompt, "", config['API']['custom_openai_api_key'], None, None) else: log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str()}) raise ValueError(f"Unsupported API choice: {api_choice}") except Exception as e: log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str(e)}) logging.error(f"Error in generate_answer: {str(e)}") return "An error occurred while generating the answer." def perform_vector_search(query: str, relevant_media_ids: List[str] = None, top_k=10) -> List[Dict[str, Any]]: log_counter("perform_vector_search_attempt") start_time = time.time() all_collections = chroma_client.list_collections() vector_results = [] try: for collection in all_collections: collection_results = vector_search(collection.name, query, k=top_k) if not collection_results: continue # Skip empty results filtered_results = [ result for result in collection_results if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids ] vector_results.extend(filtered_results) search_duration = time.time() - start_time log_histogram("perform_vector_search_duration", search_duration) log_counter("perform_vector_search_success", labels={"result_count": len(vector_results)}) return vector_results except Exception as e: log_counter("perform_vector_search_error", labels={"error": str(e)}) logging.error(f"Error in perform_vector_search: {str(e)}") raise # V2 def perform_full_text_search(query: str, database_type: str, relevant_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]: """ Perform full-text search on a specified database type. Args: query: Search query string database_type: Type of database to search ("Media DB", "RAG Chat", "RAG Notes", "Character Chat", "Character Cards") relevant_ids: Optional list of media IDs to filter results fts_top_k: Maximum number of results to return Returns: List of search results with content and metadata """ log_counter("perform_full_text_search_attempt", labels={"database_type": database_type}) start_time = time.time() try: # Set default for fts_top_k if fts_top_k is None: fts_top_k = 10 # Call appropriate search function based on database type if database_type not in search_functions: raise ValueError(f"Unsupported database type: {database_type}") # Call the appropriate search function results = search_functions[database_type](query, fts_top_k, relevant_ids) search_duration = time.time() - start_time log_histogram("perform_full_text_search_duration", search_duration, labels={"database_type": database_type}) log_counter("perform_full_text_search_success", labels={"database_type": database_type, "result_count": len(results)}) return results except Exception as e: log_counter("perform_full_text_search_error", labels={"database_type": database_type, "error": str(e)}) logging.error(f"Error in perform_full_text_search ({database_type}): {str(e)}") raise # v1 # def perform_full_text_search(query: str, relevant_media_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]: # log_counter("perform_full_text_search_attempt") # start_time = time.time() # try: # fts_results = search_db(query, ["content"], "", page=1, results_per_page=fts_top_k or 10) # filtered_fts_results = [ # { # "content": result['content'], # "metadata": {"media_id": result['id']} # } # for result in fts_results # if relevant_media_ids is None or result['id'] in relevant_media_ids # ] # search_duration = time.time() - start_time # log_histogram("perform_full_text_search_duration", search_duration) # log_counter("perform_full_text_search_success", labels={"result_count": len(filtered_fts_results)}) # return filtered_fts_results # except Exception as e: # log_counter("perform_full_text_search_error", labels={"error": str(e)}) # logging.error(f"Error in perform_full_text_search: {str(e)}") # raise def fetch_relevant_media_ids(keywords: List[str], top_k=10) -> List[int]: log_counter("fetch_relevant_media_ids_attempt", labels={"keyword_count": len(keywords)}) start_time = time.time() relevant_ids = set() for keyword in keywords: try: media_ids = fetch_keywords_for_media(keyword) relevant_ids.update(media_ids) except Exception as e: log_counter("fetch_relevant_media_ids_error", labels={"error": str(e)}) logging.error(f"Error fetching relevant media IDs for keyword '{keyword}': {str(e)}") # Continue processing other keywords fetch_duration = time.time() - start_time log_histogram("fetch_relevant_media_ids_duration", fetch_duration) log_counter("fetch_relevant_media_ids_success", labels={"result_count": len(relevant_ids)}) return list(relevant_ids) def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]: log_counter("filter_results_by_keywords_attempt", labels={"result_count": len(results), "keyword_count": len(keywords)}) start_time = time.time() if not keywords: return results filtered_results = [] for result in results: try: metadata = result.get('metadata', {}) if metadata is None: logging.warning(f"No metadata found for result: {result}") continue if not isinstance(metadata, dict): logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.") continue media_id = metadata.get('media_id') if media_id is None: logging.warning(f"No media_id found in metadata: {metadata}") continue media_keywords = fetch_keywords_for_media(media_id) if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords): filtered_results.append(result) except Exception as e: logging.error(f"Error processing result: {result}. Error: {str(e)}") filter_duration = time.time() - start_time log_histogram("filter_results_by_keywords_duration", filter_duration) log_counter("filter_results_by_keywords_success", labels={"filtered_count": len(filtered_results)}) return filtered_results # FIXME: to be implememted def extract_media_id_from_result(result: str) -> Optional[int]: # Implement this function based on how you store the media_id in your results # For example, if it's stored at the beginning of each result: try: return int(result.split('_')[0]) except (IndexError, ValueError): logging.error(f"Failed to extract media_id from result: {result}") return None # # ######################################################################################################################## ############################################################################################################ # # Chat RAG def enhanced_rag_pipeline_chat(query: str, api_choice: str, character_id: int, keywords: Optional[str] = None) -> Dict[str, Any]: """ Enhanced RAG pipeline tailored for the Character Chat tab. Args: query (str): The user's input query. api_choice (str): The API to use for generating the response. character_id (int): The ID of the character being interacted with. keywords (Optional[str]): Comma-separated keywords to filter search results. Returns: Dict[str, Any]: Contains the generated answer and the context used. """ log_counter("enhanced_rag_pipeline_chat_attempt", labels={"api_choice": api_choice, "character_id": character_id}) start_time = time.time() try: # Load embedding provider from config, or fallback to 'openai' embedding_provider = config.get('Embeddings', 'provider', fallback='openai') logging.debug(f"Using embedding provider: {embedding_provider}") # Process keywords if provided keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else [] logging.debug(f"enhanced_rag_pipeline_chat - Keywords: {keyword_list}") # Fetch relevant chat IDs based on character_id and keywords if keyword_list: relevant_chat_ids = fetch_keywords_for_chats(keyword_list) else: relevant_chat_ids = fetch_all_chat_ids(character_id) logging.debug(f"enhanced_rag_pipeline_chat - Relevant chat IDs: {relevant_chat_ids}") if not relevant_chat_ids: logging.info(f"No chats found for the given keywords and character ID: {character_id}") # Fallback to generating answer without context answer = generate_answer(api_choice, "", query) # Metrics pipeline_duration = time.time() - start_time log_histogram("enhanced_rag_pipeline_chat_duration", pipeline_duration, labels={"api_choice": api_choice}) log_counter("enhanced_rag_pipeline_chat_success", labels={"api_choice": api_choice, "character_id": character_id}) return { "answer": answer, "context": "" } # Perform vector search within the relevant chats vector_results = perform_vector_search_chat(query, relevant_chat_ids) logging.debug(f"enhanced_rag_pipeline_chat - Vector search results: {vector_results}") # Perform full-text search within the relevant chats # FIXME - Update for DB Selection fts_results = perform_full_text_search_chat(query, relevant_chat_ids) logging.debug("enhanced_rag_pipeline_chat - Full-text search results:") logging.debug("\n".join([str(item) for item in fts_results])) # Combine results all_results = vector_results + fts_results apply_re_ranking = True if apply_re_ranking: logging.debug("enhanced_rag_pipeline_chat - Applying Re-Ranking") ranker = Ranker() # Prepare passages for re-ranking passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)] rerank_request = RerankRequest(query=query, passages=passages) # Rerank the results reranked_results = ranker.rerank(rerank_request) # Sort results based on the re-ranking score reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True) # Log reranked results logging.debug(f"enhanced_rag_pipeline_chat - Reranked results: {reranked_results}") # Update all_results based on reranking all_results = [all_results[result['id']] for result in reranked_results] # Extract context from top results (limit to top 10) context = "\n".join([result['content'] for result in all_results[:10]]) logging.debug(f"Context length: {len(context)}") logging.debug(f"Context: {context[:200]}") # Log only the first 200 characters for brevity # Generate answer using the selected API answer = generate_answer(api_choice, context, query) if not all_results: logging.info(f"No results found. Query: {query}, Keywords: {keywords}") return { "answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer, "context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query } return { "answer": answer, "context": context } except Exception as e: log_counter("enhanced_rag_pipeline_chat_error", labels={"api_choice": api_choice, "character_id": character_id, "error": str(e)}) logging.error(f"Error in enhanced_rag_pipeline_chat: {str(e)}") return { "answer": "An error occurred while processing your request.", "context": "" } def fetch_relevant_chat_ids(character_id: int, keywords: List[str]) -> List[int]: """ Fetch chat IDs associated with a character and filtered by keywords. Args: character_id (int): The ID of the character. keywords (List[str]): List of keywords to filter chats. Returns: List[int]: List of relevant chat IDs. """ log_counter("fetch_relevant_chat_ids_attempt", labels={"character_id": character_id, "keyword_count": len(keywords)}) start_time = time.time() relevant_ids = set() try: media_ids = fetch_keywords_for_chats(keywords) fetch_duration = time.time() - start_time log_histogram("fetch_relevant_chat_ids_duration", fetch_duration) log_counter("fetch_relevant_chat_ids_success", labels={"character_id": character_id, "result_count": len(relevant_ids)}) relevant_ids.update(media_ids) return list(relevant_ids) except Exception as e: log_counter("fetch_relevant_chat_ids_error", labels={"character_id": character_id, "error": str(e)}) logging.error(f"Error fetching relevant chat IDs: {str(e)}") return [] def fetch_all_chat_ids(character_id: int) -> List[int]: """ Fetch all chat IDs associated with a specific character. Args: character_id (int): The ID of the character. Returns: List[int]: List of all chat IDs for the character. """ log_counter("fetch_all_chat_ids_attempt", labels={"character_id": character_id}) start_time = time.time() try: chats = get_character_chats(character_id=character_id) chat_ids = [chat['id'] for chat in chats] fetch_duration = time.time() - start_time log_histogram("fetch_all_chat_ids_duration", fetch_duration) log_counter("fetch_all_chat_ids_success", labels={"character_id": character_id, "chat_count": len(chat_ids)}) return chat_ids except Exception as e: log_counter("fetch_all_chat_ids_error", labels={"character_id": character_id, "error": str(e)}) logging.error(f"Error fetching all chat IDs for character {character_id}: {str(e)}") return [] # # End of Chat RAG ############################################################################################################ # Function to preprocess and store all existing content in the database # def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"): # unprocessed_media = get_unprocessed_media() # total_media = len(unprocessed_media) # # for index, row in enumerate(unprocessed_media, 1): # media_id, content, media_type, file_name = row # collection_name = f"{media_type}_{media_id}" # # logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}") # # try: # process_and_store_content( # database=database, # content=content, # collection_name=collection_name, # media_id=media_id, # file_name=file_name or f"{media_type}_{media_id}", # create_embeddings=True, # create_contextualized=create_contextualized, # api_name=api_name # ) # # # Mark the media as processed in the database # mark_media_as_processed(database, media_id) # # logger.info(f"Successfully processed media ID {media_id}") # except Exception as e: # logger.error(f"Error processing media ID {media_id}: {str(e)}") # # logger.info("Finished preprocessing all unprocessed content") ############################################################################################################ # # ElasticSearch Retriever # https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch # # https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query # # End of RAG_Library_2.py ############################################################################################################