# Local_Summarization_Lib.py ######################################### # Local Summarization Library # This library is used to perform summarization with a 'local' inference engine. # #### #################### # Function List # FIXME - UPDATE Function Arguments # 1. chat_with_local_llm(text, custom_prompt_arg) # 2. chat_with_llama(api_url, text, token, custom_prompt) # 3. chat_with_kobold(api_url, text, kobold_api_token, custom_prompt) # 4. chat_with_oobabooga(api_url, text, ooba_api_token, custom_prompt) # 5. chat_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) # 6. chat_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) # 7. save_summary_to_file(summary, file_path) # # #################### # Import necessary libraries # Import Local from Utils import * # ####################################################################################################################### # Function Definitions # def chat_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None): try: if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("Local LLM: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("openai: Using provided string data for summarization") data = input_data logging.debug(f"Local LLM: Loaded data: {data}") logging.debug(f"Local LLM: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Local LLM: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Invalid input data format") if system_message is None: system_message = "You are a helpful AI assistant." headers = { 'Content-Type': 'application/json' } logging.debug("Local LLM: Preparing data + prompt for submittal") local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" data = { "messages": [ { "role": "system", "content": system_message }, { "role": "user", "content": local_llm_prompt } ], "max_tokens": 28000, # Adjust tokens as needed } logging.debug("Local LLM: Posting request") response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data) if response.status_code == 200: response_data = response.json() if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'].strip() logging.debug("Local LLM: Summarization successful") print("Local LLM: Summarization successful.") return summary else: logging.warning("Local LLM: Chat response not found in the response data") return "Local LLM: Chat response not available" else: logging.debug("Local LLM: Chat request failed") print("Local LLM: Failed to process Chat response:", response.text) return "Local LLM: Failed to process Chat response" except Exception as e: logging.debug("Local LLM: Error in processing: %s", str(e)) print("Error occurred while processing Chat request with Local LLM:", str(e)) return "Local LLM: Error occurred while processing Chat response" def chat_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/completion", api_key=None, system_prompt=None): loaded_config_data = load_and_log_configs() try: # API key validation if api_key is None: logging.info("llama.cpp: API key not provided as parameter") logging.info("llama.cpp: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['llama'] if api_key is None or api_key.strip() == "": logging.info("llama.cpp: API key not found or is empty") logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}") headers = { 'accept': 'application/json', 'content-type': 'application/json', } if len(api_key) > 5: headers['Authorization'] = f'Bearer {api_key}' if system_prompt is None: system_prompt = "You are a helpful AI assistant that provides accurate and concise information." logging.debug("Llama.cpp: System prompt being used is: %s", system_prompt) logging.debug("Llama.cpp: User prompt being used is: %s", custom_prompt) llama_prompt = f"{custom_prompt} \n\n\n\n{input_data}" logging.debug(f"llama: Prompt being sent is {llama_prompt}") data = { "prompt": f"{llama_prompt}", "system_prompt": f"{system_prompt}" } logging.debug("llama: Submitting request to API endpoint") print("llama: Submitting request to API endpoint") response = requests.post(api_url, headers=headers, json=data) response_data = response.json() logging.debug("API Response Data: %s", response_data) if response.status_code == 200: # if 'X' in response_data: logging.debug(response_data) summary = response_data['content'].strip() logging.debug("llama: Summarization successful") print("Summarization successful.") return summary else: logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}") return f"Llama: API request failed: {response.text}" except Exception as e: logging.error("Llama: Error in processing: %s", str(e)) return f"Llama: Error occurred while processing summary with llama: {str(e)}" # System prompts not supported through API requests. # https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate def chat_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_ip="http://127.0.0.1:5001/api/v1/generate", temp=None, system_message=None): logging.debug("Kobold: Summarization process starting...") try: logging.debug("Kobold: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") kobold_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): kobold_api_key = api_key logging.info("Kobold: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config kobold_api_key = loaded_config_data['api_keys'].get('kobold') if kobold_api_key: logging.info("Kobold: Using API key from config file") else: logging.warning("Kobold: No API key found in config file") logging.debug(f"Kobold: Using API Key: {kobold_api_key[:5]}...{kobold_api_key[-5:]}") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("Kobold.cpp: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("Kobold.cpp: Using provided string data for summarization") data = input_data logging.debug(f"Kobold.cpp: Loaded data: {data}") logging.debug(f"Kobold.cpp: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Kobold.cpp: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Kobold.cpp: Invalid input data format") headers = { 'accept': 'application/json', 'content-type': 'application/json', } kobold_prompt = f"{custom_prompt_input}\n\n\n\n{text}" logging.debug("kobold: Prompt being sent is {kobold_prompt}") # FIXME # Values literally c/p from the api docs.... data = { "max_context_length": 8096, "max_length": 4096, "prompt": kobold_prompt, "temperature": 0.7, #"top_p": 0.9, #"top_k": 100 #"rep_penalty": 1.0, } logging.debug("kobold: Submitting request to API endpoint") print("kobold: Submitting request to API endpoint") kobold_api_ip = loaded_config_data['local_api_ip']['kobold'] try: response = requests.post(kobold_api_ip, headers=headers, json=data) logging.debug("kobold: API Response Status Code: %d", response.status_code) if response.status_code == 200: try: response_data = response.json() logging.debug("kobold: API Response Data: %s", response_data) if response_data and 'results' in response_data and len(response_data['results']) > 0: summary = response_data['results'][0]['text'].strip() logging.debug("kobold: Chat request successful") return summary else: logging.error("Expected data not found in API response.") return "Expected data not found in API response." except ValueError as e: logging.error("kobold: Error parsing JSON response: %s", str(e)) return f"Error parsing JSON response: {str(e)}" else: logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") return f"kobold: API request failed: {response.text}" except Exception as e: logging.error("kobold: Error in processing: %s", str(e)) return f"kobold: Error occurred while processing summary with kobold: {str(e)}" except Exception as e: logging.error("kobold: Error in processing: %s", str(e)) return f"kobold: Error occurred while processing chat response with kobold: {str(e)}" # System prompt doesn't work. FIXME # https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API def chat_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions", system_prompt=None): loaded_config_data = load_and_log_configs() try: # API key validation if api_key is None: logging.info("ooba: API key not provided as parameter") logging.info("ooba: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['ooba'] if api_key is None or api_key.strip() == "": logging.info("ooba: API key not found or is empty") if system_prompt is None: system_prompt = "You are a helpful AI assistant that provides accurate and concise information." headers = { 'accept': 'application/json', 'content-type': 'application/json', } # prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It # is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are # my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable ooba_prompt = f"{input_data}" + f"\n\n\n\n{custom_prompt}" logging.debug("ooba: Prompt being sent is {ooba_prompt}") data = { "mode": "chat", "character": "Example", "messages": [{"role": "user", "content": ooba_prompt}] } logging.debug("ooba: Submitting request to API endpoint") print("ooba: Submitting request to API endpoint") response = requests.post(api_url, headers=headers, json=data, verify=False) logging.debug("ooba: API Response Data: %s", response) if response.status_code == 200: response_data = response.json() summary = response.json()['choices'][0]['message']['content'] logging.debug("ooba: Summarization successful") print("Summarization successful.") return summary else: logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") return f"ooba: API request failed with status code {response.status_code}: {response.text}" except Exception as e: logging.error("ooba: Error in processing: %s", str(e)) return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" # FIXME - Install is more trouble than care to deal with right now. def chat_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"): loaded_config_data = load_and_log_configs() model = loaded_config_data['models']['tabby'] # API key validation if api_key is None: logging.info("tabby: API key not provided as parameter") logging.info("tabby: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['tabby'] if api_key is None or api_key.strip() == "": logging.info("tabby: API key not found or is empty") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("tabby: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("tabby: Using provided string data for summarization") data = input_data logging.debug(f"tabby: Loaded data: {data}") logging.debug(f"tabby: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("tabby: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Invalid input data format") headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } data2 = { 'text': text, 'model': 'tabby' # Specify the model if needed } tabby_api_ip = loaded_config_data['local_api']['tabby']['ip'] try: response = requests.post(tabby_api_ip, headers=headers, json=data2) response.raise_for_status() summary = response.json().get('summary', '') return summary except requests.exceptions.RequestException as e: logging.error(f"Error summarizing with TabbyAPI: {e}") return "Error summarizing with TabbyAPI." # FIXME aphrodite engine - code was literally tab complete in one go from copilot... :/ def chat_with_aphrodite(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:8080/completion"): loaded_config_data = load_and_log_configs() model = loaded_config_data['models']['aphrodite'] # API key validation if api_key is None: logging.info("aphrodite: API key not provided as parameter") logging.info("aphrodite: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['aphrodite'] if api_key is None or api_key.strip() == "": logging.info("aphrodite: API key not found or is empty") headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } data2 = { 'text': input_data, } try: response = requests.post(api_IP, headers=headers, json=data2) response.raise_for_status() summary = response.json().get('summary', '') return summary except requests.exceptions.RequestException as e: logging.error(f"Error summarizing with Aphrodite: {e}") return "Error summarizing with Aphrodite." def chat_with_ollama(input_data, prompt, temp, system_message): pass def save_summary_to_file(summary, file_path): logging.debug("Now saving summary to file...") base_name = os.path.splitext(os.path.basename(file_path))[0] summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt') os.makedirs(os.path.dirname(summary_file_path), exist_ok=True) logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") with open(summary_file_path, 'w') as file: file.write(summary) logging.info(f"Summary saved to file: {summary_file_path}") # # #######################################################################################################################