# Chat_ui.py # Description: Chat interface functions for Gradio # # Imports import html import json import logging import os import sqlite3 from datetime import datetime # # External Imports import gradio as gr # # Local Imports from App_Function_Libraries.Chat import chat, save_chat_history, update_chat_content, save_chat_history_to_db_wrapper from App_Function_Libraries.DB.DB_Manager import add_chat_message, search_chat_conversations, create_chat_conversation, \ get_chat_messages, update_chat_message, delete_chat_message, load_preset_prompts, db from App_Function_Libraries.Gradio_UI.Gradio_Shared import update_dropdown, update_user_prompt # # ######################################################################################################################## # # Functions: def show_edit_message(selected): if selected: return gr.update(value=selected[0], visible=True), gr.update(value=selected[1], visible=True), gr.update( visible=True) return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) def show_delete_message(selected): if selected: return gr.update(value=selected[1], visible=True), gr.update(visible=True) return gr.update(visible=False), gr.update(visible=False) def debug_output(media_content, selected_parts): print(f"Debug - Media Content: {media_content}") print(f"Debug - Selected Parts: {selected_parts}") return "" def update_selected_parts(use_content, use_summary, use_prompt): selected_parts = [] if use_content: selected_parts.append("content") if use_summary: selected_parts.append("summary") if use_prompt: selected_parts.append("prompt") print(f"Debug - Update Selected Parts: {selected_parts}") return selected_parts # Old update_user_prompt shim for backwards compatibility def get_system_prompt(preset_name): # For backwards compatibility prompts = update_user_prompt(preset_name) return prompts["system_prompt"] def clear_chat(): """ Return empty list for chatbot and None for conversation_id @return: """ return gr.update(value=[]), None def clear_chat_single(): """ Clears the chatbot and chat history. Returns: list: Empty list for chatbot messages. list: Empty list for chat history. """ return [], [] # FIXME - add additional features.... def chat_wrapper(message, history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, conversation_id, save_conversation, temperature, system_prompt, max_tokens=None, top_p=None, frequency_penalty=None, presence_penalty=None, stop_sequence=None): try: if save_conversation: if conversation_id is None: # Create a new conversation media_id = media_content.get('id', None) conversation_name = f"Chat about {media_content.get('title', 'Unknown Media')} - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" conversation_id = create_chat_conversation(media_id, conversation_name) # Add user message to the database user_message_id = add_chat_message(conversation_id, "user", message) # Include the selected parts and custom_prompt only for the first message if not history and selected_parts: message_body = "\n".join(selected_parts) full_message = f"{custom_prompt}\n\n{message}\n\n{message_body}" elif custom_prompt: full_message = f"{custom_prompt}\n\n{message}" else: full_message = message # Generate bot response bot_message = chat(full_message, history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature, system_prompt) logging.debug(f"Bot message being returned: {bot_message}") if save_conversation: # Add assistant message to the database add_chat_message(conversation_id, "assistant", bot_message) # Update history new_history = history + [(message, bot_message)] return bot_message, new_history, conversation_id except Exception as e: logging.error(f"Error in chat wrapper: {str(e)}") return "An error occurred.", history, conversation_id def search_conversations(query): try: conversations = search_chat_conversations(query) if not conversations: print(f"Debug - Search Conversations - No results found for query: {query}") return gr.update(choices=[]) conversation_options = [ (f"{c['conversation_name']} (Media: {c['media_title']}, ID: {c['id']})", c['id']) for c in conversations ] print(f"Debug - Search Conversations - Options: {conversation_options}") return gr.update(choices=conversation_options) except Exception as e: print(f"Debug - Search Conversations - Error: {str(e)}") return gr.update(choices=[]) def load_conversation(conversation_id): if not conversation_id: return [], None messages = get_chat_messages(conversation_id) history = [ (msg['message'], None) if msg['sender'] == 'user' else (None, msg['message']) for msg in messages ] return history, conversation_id def update_message_in_chat(message_id, new_text, history): update_chat_message(message_id, new_text) updated_history = [(msg1, msg2) if msg1[1] != message_id and msg2[1] != message_id else ((new_text, msg1[1]) if msg1[1] == message_id else (new_text, msg2[1])) for msg1, msg2 in history] return updated_history def delete_message_from_chat(message_id, history): delete_chat_message(message_id) updated_history = [(msg1, msg2) for msg1, msg2 in history if msg1[1] != message_id and msg2[1] != message_id] return updated_history def regenerate_last_message(history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature, system_prompt): if not history: return history, "No messages to regenerate." last_entry = history[-1] last_user_message, last_bot_message = last_entry if last_bot_message is None: return history, "The last message is not from the bot." new_history = history[:-1] if not last_user_message: return new_history, "No user message to regenerate the bot response." full_message = last_user_message bot_message = chat( full_message, new_history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature, system_prompt ) new_history.append((last_user_message, bot_message)) return new_history, "Last message regenerated successfully." def create_chat_interface(): custom_css = """ .chatbot-container .message-wrap .message { font-size: 14px !important; } """ with gr.TabItem("Remote LLM Chat (Horizontal)"): gr.Markdown("# Chat with a designated LLM Endpoint, using your selected item as starting context") chat_history = gr.State([]) media_content = gr.State({}) selected_parts = gr.State([]) conversation_id = gr.State(None) with gr.Row(): with gr.Column(scale=1): search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...") search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By") search_button = gr.Button("Search") items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True) item_mapping = gr.State({}) with gr.Row(): use_content = gr.Checkbox(label="Use Content") use_summary = gr.Checkbox(label="Use Summary") use_prompt = gr.Checkbox(label="Use Prompt") save_conversation = gr.Checkbox(label="Save Conversation", value=False, visible=True) with gr.Row(): temperature = gr.Slider(label="Temperature", minimum=0.00, maximum=1.0, step=0.05, value=0.7) with gr.Row(): conversation_search = gr.Textbox(label="Search Conversations") with gr.Row(): search_conversations_btn = gr.Button("Search Conversations") with gr.Row(): previous_conversations = gr.Dropdown(label="Select Conversation", choices=[], interactive=True) with gr.Row(): load_conversations_btn = gr.Button("Load Selected Conversation") api_endpoint = gr.Dropdown(label="Select API Endpoint", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"]) api_key = gr.Textbox(label="API Key (if required)", type="password") custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt", value=False, visible=True) preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt", value=False, visible=True) preset_prompt = gr.Dropdown(label="Select Preset Prompt", choices=load_preset_prompts(), visible=False) user_prompt = gr.Textbox(label="Custom Prompt", placeholder="Enter custom prompt here", lines=3, visible=False) system_prompt_input = gr.Textbox(label="System Prompt", value="You are a helpful AI assitant", lines=3, visible=False) with gr.Column(scale=2): chatbot = gr.Chatbot(height=600, elem_classes="chatbot-container") msg = gr.Textbox(label="Enter your message") submit = gr.Button("Submit") regenerate_button = gr.Button("Regenerate Last Message") clear_chat_button = gr.Button("Clear Chat") edit_message_id = gr.Number(label="Message ID to Edit", visible=False) edit_message_text = gr.Textbox(label="Edit Message", visible=False) update_message_button = gr.Button("Update Message", visible=False) delete_message_id = gr.Number(label="Message ID to Delete", visible=False) delete_message_button = gr.Button("Delete Message", visible=False) chat_media_name = gr.Textbox(label="Custom Chat Name(optional)") save_chat_history_to_db = gr.Button("Save Chat History to DataBase") save_chat_history_as_file = gr.Button("Save Chat History as File") download_file = gr.File(label="Download Chat History") save_status = gr.Textbox(label="Save Status", interactive=False) # Restore original functionality search_button.click( fn=update_dropdown, inputs=[search_query_input, search_type_input], outputs=[items_output, item_mapping] ) def save_chat_wrapper(history, conversation_id, media_content): file_path = save_chat_history(history, conversation_id, media_content) if file_path: return file_path, f"Chat history saved successfully as {os.path.basename(file_path)}!" else: return None, "Error saving chat history. Please check the logs and try again." save_chat_history_as_file.click( save_chat_wrapper, inputs=[chatbot, conversation_id, media_content], outputs=[download_file, save_status] ) def update_prompts(preset_name): prompts = update_user_prompt(preset_name) return ( gr.update(value=prompts["user_prompt"], visible=True), gr.update(value=prompts["system_prompt"], visible=True) ) def clear_chat(): return [], None # Return empty list for chatbot and None for conversation_id clear_chat_button.click( clear_chat, outputs=[chatbot, conversation_id] ) preset_prompt.change( update_prompts, inputs=preset_prompt, outputs=[user_prompt, system_prompt_input] ) custom_prompt_checkbox.change( fn=lambda x: (gr.update(visible=x), gr.update(visible=x)), inputs=[custom_prompt_checkbox], outputs=[user_prompt, system_prompt_input] ) preset_prompt_checkbox.change( fn=lambda x: gr.update(visible=x), inputs=[preset_prompt_checkbox], outputs=[preset_prompt] ) submit.click( chat_wrapper, inputs=[msg, chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, conversation_id, save_conversation, temperature, system_prompt_input], outputs=[msg, chatbot, conversation_id] ).then( # Clear the message box after submission lambda x: gr.update(value=""), inputs=[chatbot], outputs=[msg] ).then( # Clear the user prompt after the first message lambda: (gr.update(value=""), gr.update(value="")), outputs=[user_prompt, system_prompt_input] ) items_output.change( update_chat_content, inputs=[items_output, use_content, use_summary, use_prompt, item_mapping], outputs=[media_content, selected_parts] ) use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt], outputs=[selected_parts]) use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt], outputs=[selected_parts]) use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt], outputs=[selected_parts]) items_output.change(debug_output, inputs=[media_content, selected_parts], outputs=[]) search_conversations_btn.click( search_conversations, inputs=[conversation_search], outputs=[previous_conversations] ) load_conversations_btn.click( clear_chat, outputs=[chatbot, chat_history] ).then( load_conversation, inputs=[previous_conversations], outputs=[chatbot, conversation_id] ) previous_conversations.change( load_conversation, inputs=[previous_conversations], outputs=[chat_history] ) update_message_button.click( update_message_in_chat, inputs=[edit_message_id, edit_message_text, chat_history], outputs=[chatbot] ) delete_message_button.click( delete_message_from_chat, inputs=[delete_message_id, chat_history], outputs=[chatbot] ) save_chat_history_as_file.click( save_chat_history, inputs=[chatbot, conversation_id], outputs=[download_file] ) save_chat_history_to_db.click( save_chat_history_to_db_wrapper, inputs=[chatbot, conversation_id, media_content, chat_media_name], outputs=[conversation_id, gr.Textbox(label="Save Status")] ) regenerate_button.click( regenerate_last_message, inputs=[chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, temperature, system_prompt_input], outputs=[chatbot, save_status] ) chatbot.select(show_edit_message, None, [edit_message_text, edit_message_id, update_message_button]) chatbot.select(show_delete_message, None, [delete_message_id, delete_message_button]) def create_chat_interface_stacked(): custom_css = """ .chatbot-container .message-wrap .message { font-size: 14px !important; } """ with gr.TabItem("Remote LLM Chat - Stacked"): gr.Markdown("# Stacked Chat") chat_history = gr.State([]) media_content = gr.State({}) selected_parts = gr.State([]) conversation_id = gr.State(None) with gr.Row(): with gr.Column(): search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...") search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By") search_button = gr.Button("Search") items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True) item_mapping = gr.State({}) with gr.Row(): use_content = gr.Checkbox(label="Use Content") use_summary = gr.Checkbox(label="Use Summary") use_prompt = gr.Checkbox(label="Use Prompt") save_conversation = gr.Checkbox(label="Save Conversation", value=False, visible=True) temp = gr.Slider(label="Temperature", minimum=0.00, maximum=1.0, step=0.05, value=0.7) with gr.Row(): conversation_search = gr.Textbox(label="Search Conversations") with gr.Row(): previous_conversations = gr.Dropdown(label="Select Conversation", choices=[], interactive=True) with gr.Row(): search_conversations_btn = gr.Button("Search Conversations") load_conversations_btn = gr.Button("Load Selected Conversation") with gr.Column(): api_endpoint = gr.Dropdown(label="Select API Endpoint", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter", "Mistral", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"]) api_key = gr.Textbox(label="API Key (if required)", type="password") preset_prompt = gr.Dropdown(label="Select Preset Prompt", choices=load_preset_prompts(), visible=True) system_prompt = gr.Textbox(label="System Prompt", value="You are a helpful AI assistant.", lines=3, visible=True) user_prompt = gr.Textbox(label="Custom User Prompt", placeholder="Enter custom prompt here", lines=3, visible=True) gr.Markdown("Scroll down for the chat window...") with gr.Row(): with gr.Column(scale=1): chatbot = gr.Chatbot(height=600, elem_classes="chatbot-container") msg = gr.Textbox(label="Enter your message") with gr.Row(): with gr.Column(): submit = gr.Button("Submit") regenerate_button = gr.Button("Regenerate Last Message") clear_chat_button = gr.Button("Clear Chat") chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True) save_chat_history_to_db = gr.Button("Save Chat History to DataBase") save_chat_history_as_file = gr.Button("Save Chat History as File") with gr.Column(): download_file = gr.File(label="Download Chat History") # Restore original functionality search_button.click( fn=update_dropdown, inputs=[search_query_input, search_type_input], outputs=[items_output, item_mapping] ) def update_prompts(preset_name): prompts = update_user_prompt(preset_name) return ( gr.update(value=prompts["user_prompt"], visible=True), gr.update(value=prompts["system_prompt"], visible=True) ) clear_chat_button.click( clear_chat, outputs=[chatbot, conversation_id] ) preset_prompt.change( update_prompts, inputs=preset_prompt, outputs=[user_prompt, system_prompt] ) submit.click( chat_wrapper, inputs=[msg, chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, conversation_id, save_conversation, temp, system_prompt], outputs=[msg, chatbot, conversation_id] ).then( # Clear the message box after submission lambda x: gr.update(value=""), inputs=[chatbot], outputs=[msg] ).then( # Clear the user prompt after the first message lambda: gr.update(value=""), outputs=[user_prompt, system_prompt] ) items_output.change( update_chat_content, inputs=[items_output, use_content, use_summary, use_prompt, item_mapping], outputs=[media_content, selected_parts] ) use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt], outputs=[selected_parts]) use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt], outputs=[selected_parts]) use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt], outputs=[selected_parts]) items_output.change(debug_output, inputs=[media_content, selected_parts], outputs=[]) search_conversations_btn.click( search_conversations, inputs=[conversation_search], outputs=[previous_conversations] ) load_conversations_btn.click( clear_chat, outputs=[chatbot, chat_history] ).then( load_conversation, inputs=[previous_conversations], outputs=[chatbot, conversation_id] ) previous_conversations.change( load_conversation, inputs=[previous_conversations], outputs=[chat_history] ) save_chat_history_as_file.click( save_chat_history, inputs=[chatbot, conversation_id], outputs=[download_file] ) save_chat_history_to_db.click( save_chat_history_to_db_wrapper, inputs=[chatbot, conversation_id, media_content, chat_media_name], outputs=[conversation_id, gr.Textbox(label="Save Status")] ) regenerate_button.click( regenerate_last_message, inputs=[chatbot, media_content, selected_parts, api_endpoint, api_key, user_prompt, temp, system_prompt], outputs=[chatbot, gr.Textbox(label="Regenerate Status")] ) # FIXME - System prompts def create_chat_interface_multi_api(): custom_css = """ .chatbot-container .message-wrap .message { font-size: 14px !important; } .chat-window { height: 400px; overflow-y: auto; } """ with gr.TabItem("One Prompt - Multiple APIs"): gr.Markdown("# One Prompt but Multiple APIs Chat Interface") with gr.Row(): with gr.Column(scale=1): search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...") search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By") search_button = gr.Button("Search") items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True) item_mapping = gr.State({}) with gr.Row(): use_content = gr.Checkbox(label="Use Content") use_summary = gr.Checkbox(label="Use Summary") use_prompt = gr.Checkbox(label="Use Prompt") with gr.Column(): preset_prompt = gr.Dropdown(label="Select Preset Prompt", choices=load_preset_prompts(), visible=True) system_prompt = gr.Textbox(label="System Prompt", value="You are a helpful AI assistant.", lines=5) user_prompt = gr.Textbox(label="Modify Prompt (Prefixed to your message every time)", lines=5, value="", visible=True) with gr.Row(): chatbots = [] api_endpoints = [] api_keys = [] temperatures = [] regenerate_buttons = [] for i in range(3): with gr.Column(): gr.Markdown(f"### Chat Window {i + 1}") api_endpoint = gr.Dropdown(label=f"API Endpoint {i + 1}", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"]) api_key = gr.Textbox(label=f"API Key {i + 1} (if required)", type="password") temperature = gr.Slider(label=f"Temperature {i + 1}", minimum=0.0, maximum=1.0, step=0.05, value=0.7) chatbot = gr.Chatbot(height=800, elem_classes="chat-window") regenerate_button = gr.Button(f"Regenerate Last Message {i + 1}") chatbots.append(chatbot) api_endpoints.append(api_endpoint) api_keys.append(api_key) temperatures.append(temperature) regenerate_buttons.append(regenerate_button) with gr.Row(): msg = gr.Textbox(label="Enter your message", scale=4) submit = gr.Button("Submit", scale=1) clear_chat_button = gr.Button("Clear All Chats") # State variables chat_history = [gr.State([]) for _ in range(3)] media_content = gr.State({}) selected_parts = gr.State([]) conversation_id = gr.State(None) # Event handlers search_button.click( fn=update_dropdown, inputs=[search_query_input, search_type_input], outputs=[items_output, item_mapping] ) preset_prompt.change(update_user_prompt, inputs=preset_prompt, outputs=user_prompt) def clear_all_chats(): return [[]] * 3 + [[]] * 3 clear_chat_button.click( clear_all_chats, outputs=chatbots + chat_history ) def chat_wrapper_multi(message, custom_prompt, system_prompt, *args): chat_histories = args[:3] chatbots = args[3:6] api_endpoints = args[6:9] api_keys = args[9:12] temperatures = args[12:15] media_content = args[15] selected_parts = args[16] new_chat_histories = [] new_chatbots = [] for i in range(3): # Call chat_wrapper with dummy values for conversation_id and save_conversation bot_message, new_history, _ = chat_wrapper( message, chat_histories[i], media_content, selected_parts, api_endpoints[i], api_keys[i], custom_prompt, None, # None for conversation_id False, # False for save_conversation temperature=temperatures[i], system_prompt=system_prompt ) new_chatbot = chatbots[i] + [(message, bot_message)] new_chat_histories.append(new_history) new_chatbots.append(new_chatbot) return [gr.update(value="")] + new_chatbots + new_chat_histories def regenerate_last_message(chat_history, chatbot, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature, system_prompt): if not chat_history: return chatbot, chat_history, "No messages to regenerate." last_entry = chat_history[-1] last_user_message, last_bot_message = last_entry if last_bot_message is None: return chatbot, chat_history, "The last message is not from the bot." new_history = chat_history[:-1] if not last_user_message: return chatbot[:-1], new_history, "No user message to regenerate the bot response." bot_message = chat( last_user_message, new_history, media_content, selected_parts, api_endpoint, api_key, custom_prompt, temperature, system_prompt ) new_history.append((last_user_message, bot_message)) new_chatbot = chatbot[:-1] + [(last_user_message, bot_message)] return new_chatbot, new_history, "Last message regenerated successfully." for i in range(3): regenerate_buttons[i].click( regenerate_last_message, inputs=[chat_history[i], chatbots[i], media_content, selected_parts, api_endpoints[i], api_keys[i], user_prompt, temperatures[i], system_prompt], outputs=[chatbots[i], chat_history[i], gr.Textbox(label=f"Regenerate Status {i + 1}")] ) # In the create_chat_interface_multi_api function: submit.click( chat_wrapper_multi, inputs=[msg, user_prompt, system_prompt] + chat_history + chatbots + api_endpoints + api_keys + temperatures + [media_content, selected_parts], outputs=[msg] + chatbots + chat_history ).then( lambda: (gr.update(value=""), gr.update(value="")), outputs=[msg, user_prompt] ) items_output.change( update_chat_content, inputs=[items_output, use_content, use_summary, use_prompt, item_mapping], outputs=[media_content, selected_parts] ) for checkbox in [use_content, use_summary, use_prompt]: checkbox.change( update_selected_parts, inputs=[use_content, use_summary, use_prompt], outputs=[selected_parts] ) def create_chat_interface_four(): custom_css = """ .chatbot-container .message-wrap .message { font-size: 14px !important; } .chat-window { height: 400px; overflow-y: auto; } """ with gr.TabItem("Four Independent API Chats"): gr.Markdown("# Four Independent API Chat Interfaces") with gr.Row(): with gr.Column(): preset_prompt = gr.Dropdown( label="Select Preset Prompt", choices=load_preset_prompts(), visible=True ) user_prompt = gr.Textbox( label="Modify Prompt", lines=3 ) with gr.Column(): gr.Markdown("Scroll down for the chat windows...") chat_interfaces = [] def create_single_chat_interface(index, user_prompt_component): with gr.Column(): gr.Markdown(f"### Chat Window {index + 1}") api_endpoint = gr.Dropdown( label=f"API Endpoint {index + 1}", choices=[ "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace" ] ) api_key = gr.Textbox( label=f"API Key {index + 1} (if required)", type="password" ) temperature = gr.Slider( label=f"Temperature {index + 1}", minimum=0.0, maximum=1.0, step=0.05, value=0.7 ) chatbot = gr.Chatbot(height=400, elem_classes="chat-window") msg = gr.Textbox(label=f"Enter your message for Chat {index + 1}") submit = gr.Button(f"Submit to Chat {index + 1}") regenerate_button = gr.Button(f"Regenerate Last Message {index + 1}") clear_chat_button = gr.Button(f"Clear Chat {index + 1}") # State to maintain chat history chat_history = gr.State([]) # Append to chat_interfaces list chat_interfaces.append({ 'api_endpoint': api_endpoint, 'api_key': api_key, 'temperature': temperature, 'chatbot': chatbot, 'msg': msg, 'submit': submit, 'regenerate_button': regenerate_button, 'clear_chat_button': clear_chat_button, 'chat_history': chat_history }) # Create four chat interfaces arranged in a 2x2 grid with gr.Row(): for i in range(2): with gr.Column(): for j in range(2): create_single_chat_interface(i * 2 + j, user_prompt) # Update user_prompt based on preset_prompt selection preset_prompt.change( fn=update_user_prompt, inputs=preset_prompt, outputs=user_prompt ) def chat_wrapper_single(message, chat_history, api_endpoint, api_key, temperature, user_prompt): logging.debug(f"Chat Wrapper Single - Message: {message}, Chat History: {chat_history}") new_msg, new_history, _ = chat_wrapper( message, chat_history, {}, # Empty media_content [], # Empty selected_parts api_endpoint, api_key, user_prompt, # custom_prompt None, # conversation_id False, # save_conversation temperature, # temperature system_prompt="", # system_prompt max_tokens=None, top_p=None, frequency_penalty=None, presence_penalty=None, stop_sequence=None ) if "API request failed" not in new_msg: chat_history.append((message, new_msg)) else: logging.error(f"API request failed: {new_msg}") return "", chat_history, chat_history def regenerate_last_message(chat_history, api_endpoint, api_key, temperature, user_prompt): if not chat_history: return chat_history, chat_history, "No messages to regenerate." last_user_message, _ = chat_history[-1] new_msg, new_history, _ = chat_wrapper( last_user_message, chat_history[:-1], {}, # Empty media_content [], # Empty selected_parts api_endpoint, api_key, user_prompt, # custom_prompt None, # conversation_id False, # save_conversation temperature, # temperature system_prompt="", # system_prompt max_tokens=None, top_p=None, frequency_penalty=None, presence_penalty=None, stop_sequence=None ) if "API request failed" not in new_msg: new_history.append((last_user_message, new_msg)) return new_history, new_history, "Last message regenerated successfully." else: logging.error(f"API request failed during regeneration: {new_msg}") return chat_history, chat_history, f"Failed to regenerate: {new_msg}" # Attach click events for each chat interface for interface in chat_interfaces: interface['submit'].click( chat_wrapper_single, inputs=[ interface['msg'], interface['chat_history'], interface['api_endpoint'], interface['api_key'], interface['temperature'], user_prompt ], outputs=[ interface['msg'], interface['chatbot'], interface['chat_history'] ] ) interface['regenerate_button'].click( regenerate_last_message, inputs=[ interface['chat_history'], interface['api_endpoint'], interface['api_key'], interface['temperature'], user_prompt ], outputs=[ interface['chatbot'], interface['chat_history'], gr.Textbox(label="Regenerate Status") ] ) interface['clear_chat_button'].click( clear_chat_single, inputs=[], outputs=[interface['chatbot'], interface['chat_history']] ) def chat_wrapper_single(message, chat_history, chatbot, api_endpoint, api_key, temperature, media_content, selected_parts, conversation_id, save_conversation, user_prompt): new_msg, new_history, new_conv_id = chat_wrapper( message, chat_history, media_content, selected_parts, api_endpoint, api_key, user_prompt, conversation_id, save_conversation, temperature, system_prompt="" ) if new_msg: updated_chatbot = chatbot + [(message, new_msg)] else: updated_chatbot = chatbot return new_msg, updated_chatbot, new_history, new_conv_id # FIXME - Finish implementing functions + testing/valdidation def create_chat_management_tab(): with gr.TabItem("Chat Management"): gr.Markdown("# Chat Management") with gr.Row(): search_query = gr.Textbox(label="Search Conversations") search_button = gr.Button("Search") conversation_list = gr.Dropdown(label="Select Conversation", choices=[]) conversation_mapping = gr.State({}) with gr.Tabs(): with gr.TabItem("Edit"): chat_content = gr.TextArea(label="Chat Content (JSON)", lines=20, max_lines=50) save_button = gr.Button("Save Changes") delete_button = gr.Button("Delete Conversation", variant="stop") with gr.TabItem("Preview"): chat_preview = gr.HTML(label="Chat Preview") result_message = gr.Markdown("") def search_conversations(query): conversations = search_chat_conversations(query) choices = [f"{conv['conversation_name']} (Media: {conv['media_title']}, ID: {conv['id']})" for conv in conversations] mapping = {choice: conv['id'] for choice, conv in zip(choices, conversations)} return gr.update(choices=choices), mapping def load_conversations(selected, conversation_mapping): logging.info(f"Selected: {selected}") logging.info(f"Conversation mapping: {conversation_mapping}") try: if selected and selected in conversation_mapping: conversation_id = conversation_mapping[selected] messages = get_chat_messages(conversation_id) conversation_data = { "conversation_id": conversation_id, "messages": messages } json_content = json.dumps(conversation_data, indent=2) # Create HTML preview html_preview = "
" for msg in messages: sender_style = "background-color: #e6f3ff;" if msg[ 'sender'] == 'user' else "background-color: #f0f0f0;" html_preview += f"
" html_preview += f"{msg['sender']}: {html.escape(msg['message'])}
" html_preview += f"Timestamp: {msg['timestamp']}" html_preview += "
" html_preview += "
" logging.info("Returning json_content and html_preview") return json_content, html_preview else: logging.warning("No conversation selected or not in mapping") return "", "

No conversation selected

" except Exception as e: logging.error(f"Error in load_conversations: {str(e)}") return f"Error: {str(e)}", "

Error loading conversation

" def validate_conversation_json(content): try: data = json.loads(content) if not isinstance(data, dict): return False, "Invalid JSON structure: root should be an object" if "conversation_id" not in data or not isinstance(data["conversation_id"], int): return False, "Missing or invalid conversation_id" if "messages" not in data or not isinstance(data["messages"], list): return False, "Missing or invalid messages array" for msg in data["messages"]: if not all(key in msg for key in ["sender", "message"]): return False, "Invalid message structure: missing required fields" return True, data except json.JSONDecodeError as e: return False, f"Invalid JSON: {str(e)}" def save_conversation(selected, conversation_mapping, content): if not selected or selected not in conversation_mapping: return "Please select a conversation before saving.", "

No changes made

" conversation_id = conversation_mapping[selected] is_valid, result = validate_conversation_json(content) if not is_valid: return f"Error: {result}", "

No changes made due to error

" conversation_data = result if conversation_data["conversation_id"] != conversation_id: return "Error: Conversation ID mismatch.", "

No changes made due to ID mismatch

" try: with db.get_connection() as conn: conn.execute("BEGIN TRANSACTION") cursor = conn.cursor() # Backup original conversation cursor.execute("SELECT * FROM ChatMessages WHERE conversation_id = ?", (conversation_id,)) original_messages = cursor.fetchall() backup_data = json.dumps({"conversation_id": conversation_id, "messages": original_messages}) # You might want to save this backup_data somewhere # Delete existing messages cursor.execute("DELETE FROM ChatMessages WHERE conversation_id = ?", (conversation_id,)) # Insert updated messages for message in conversation_data["messages"]: cursor.execute(''' INSERT INTO ChatMessages (conversation_id, sender, message, timestamp) VALUES (?, ?, ?, COALESCE(?, CURRENT_TIMESTAMP)) ''', (conversation_id, message["sender"], message["message"], message.get("timestamp"))) conn.commit() # Create updated HTML preview html_preview = "
" for msg in conversation_data["messages"]: sender_style = "background-color: #e6f3ff;" if msg[ 'sender'] == 'user' else "background-color: #f0f0f0;" html_preview += f"
" html_preview += f"{msg['sender']}: {html.escape(msg['message'])}
" html_preview += f"Timestamp: {msg.get('timestamp', 'N/A')}" html_preview += "
" html_preview += "
" return "Conversation updated successfully.", html_preview except sqlite3.Error as e: conn.rollback() logging.error(f"Database error in save_conversation: {e}") return f"Error updating conversation: {str(e)}", "

Error occurred while saving

" except Exception as e: conn.rollback() logging.error(f"Unexpected error in save_conversation: {e}") return f"Unexpected error: {str(e)}", "

Unexpected error occurred

" def delete_conversation(selected, conversation_mapping): if not selected or selected not in conversation_mapping: return "Please select a conversation before deleting.", "

No changes made

", gr.update(choices=[]) conversation_id = conversation_mapping[selected] try: with db.get_connection() as conn: cursor = conn.cursor() # Delete messages associated with the conversation cursor.execute("DELETE FROM ChatMessages WHERE conversation_id = ?", (conversation_id,)) # Delete the conversation itself cursor.execute("DELETE FROM ChatConversations WHERE id = ?", (conversation_id,)) conn.commit() # Update the conversation list remaining_conversations = [choice for choice in conversation_mapping.keys() if choice != selected] updated_mapping = {choice: conversation_mapping[choice] for choice in remaining_conversations} return "Conversation deleted successfully.", "

Conversation deleted

", gr.update(choices=remaining_conversations) except sqlite3.Error as e: conn.rollback() logging.error(f"Database error in delete_conversation: {e}") return f"Error deleting conversation: {str(e)}", "

Error occurred while deleting

", gr.update() except Exception as e: conn.rollback() logging.error(f"Unexpected error in delete_conversation: {e}") return f"Unexpected error: {str(e)}", "

Unexpected error occurred

", gr.update() def parse_formatted_content(formatted_content): lines = formatted_content.split('\n') conversation_id = int(lines[0].split(': ')[1]) timestamp = lines[1].split(': ')[1] history = [] current_role = None current_content = None for line in lines[3:]: if line.startswith("Role: "): if current_role is not None: history.append({"role": current_role, "content": ["", current_content]}) current_role = line.split(': ')[1] elif line.startswith("Content: "): current_content = line.split(': ', 1)[1] if current_role is not None: history.append({"role": current_role, "content": ["", current_content]}) return json.dumps({ "conversation_id": conversation_id, "timestamp": timestamp, "history": history }, indent=2) search_button.click( search_conversations, inputs=[search_query], outputs=[conversation_list, conversation_mapping] ) conversation_list.change( load_conversations, inputs=[conversation_list, conversation_mapping], outputs=[chat_content, chat_preview] ) save_button.click( save_conversation, inputs=[conversation_list, conversation_mapping, chat_content], outputs=[result_message, chat_preview] ) delete_button.click( delete_conversation, inputs=[conversation_list, conversation_mapping], outputs=[result_message, chat_preview, conversation_list] ) return search_query, search_button, conversation_list, conversation_mapping, chat_content, save_button, delete_button, result_message, chat_preview # Mock function to simulate LLM processing def process_with_llm(workflow, context, prompt, api_endpoint, api_key): api_key_snippet = api_key[:5] + "..." if api_key else "Not provided" return f"LLM output using {api_endpoint} (API Key: {api_key_snippet}) for {workflow} with context: {context[:30]}... and prompt: {prompt[:30]}..." # # End of Chat_ui.py #######################################################################################################################