live-lm-critic / critic /PIE /word_level_perturb.py
Olivia Figueira
Upload code with streamlit addition
b6e5241
raw
history blame
8.21 kB
"""
Word-level perturbation generator.
Originally by https://github.com/awasthiabhijeet/PIE/tree/master/errorify
"""
import os
import math
import pickle
import random
import editdistance
from numpy.random import choice as npchoice
from collections import defaultdict
try:
dir_path = os.path.dirname(os.path.realpath(__file__))
except:
dir_path = '.'
VERBS = pickle.load(open(f'{dir_path}/verbs.p', 'rb'))
COMMON_INSERTS = set(pickle.load(open(f'{dir_path}/common_inserts.p', 'rb'))) #common inserts *to fix a sent*
COMMON_DELETES = pickle.load(open(f'{dir_path}/common_deletes.p','rb')) #common deletes *to fix a sent*
_COMMON_REPLACES = pickle.load(open(f'{dir_path}/common_replaces.p', 'rb')) #common replacements *to errorify a sent*
COMMON_REPLACES = {}
for src in _COMMON_REPLACES:
for tgt in _COMMON_REPLACES[src]:
if (src=="'re" and tgt=="are") or (tgt=="'re" and src=="are"):
continue
ED = editdistance.eval(tgt, src)
if ED > 2:
continue
longer = max(len(src), len(tgt))
if float(ED)/longer >= 0.5:
continue
if tgt not in COMMON_REPLACES:
COMMON_REPLACES[tgt] = {}
COMMON_REPLACES[tgt][src] = _COMMON_REPLACES[src][tgt]
VERBS_refine = defaultdict(list)
for src in VERBS:
for tgt in VERBS[src]:
ED = editdistance.eval(tgt, src)
if ED > 2:
continue
longer = max(len(src), len(tgt))
if float(ED)/longer >= 0.5:
continue
VERBS_refine[src].append(tgt)
class WordLevelPerturber_all:
def __init__(self, sentence: str):
self.original_sentence = sentence.rstrip()
self.sentence = self.original_sentence
self.tokenized = None
self.tokenize()
def tokenize(self):
self.tokenized = self.sentence.split()
def orig(self):
return self.original_sentence
def _insert(self):
"""Insert a commonly deleted word."""
if len(self.tokenized) > 0:
insertable = list(range(len(self.tokenized)))
index = random.choice(insertable)
plist = list(COMMON_DELETES.values())
plistsum = sum(plist)
plist = [x / plistsum for x in plist]
# Choose a word
ins_word = npchoice(list(COMMON_DELETES.keys()), p=plist)
self.tokenized.insert(index,ins_word)
return ' '.join(self.tokenized)
def _mod_verb(self, redir=True):
if len(self.tokenized) > 0:
verbs = [i for i, w in enumerate(self.tokenized) if w in VERBS]
if not verbs:
if redir:
return self._replace(redir=False)
return self.sentence
index = random.choice(verbs)
word = self.tokenized[index]
if not VERBS[word]:
return self.sentence
repl = random.choice(VERBS[word])
self.tokenized[index] = repl
return ' '.join(self.tokenized)
def _delete(self):
"""Delete a commonly inserted word."""
if len(self.tokenized) > 1:
toks_len = len(self.tokenized)
toks = self.tokenized
deletable = [i for i, w in enumerate(toks) if w in COMMON_INSERTS]
if not deletable:
return self.sentence
index = random.choice(deletable)
del self.tokenized[index]
return ' '.join(self.tokenized)
def _replace(self, redir=True):
if len(self.tokenized) > 0:
deletable = [i for i, w in enumerate(self.tokenized) if (w in COMMON_REPLACES)]
if not deletable:
if redir:
return self._mod_verb(redir=False)
return self.sentence
index = random.choice(deletable)
word = self.tokenized[index]
if not COMMON_REPLACES[word]:
return self.sentence
# Normalize probabilities
plist = list(COMMON_REPLACES[word].values())
plistsum = sum(plist)
plist = [x / plistsum for x in plist]
# Choose a word
repl = npchoice(list(COMMON_REPLACES[word].keys()), p=plist)
self.tokenized[index] = repl
return ' '.join(self.tokenized)
def perturb(self):
count = 1
orig_sent = self.sentence
for x in range(count):
perturb_probs = [.30,.30,.30,.10]
perturb_fun = npchoice([self._insert, self._mod_verb, self._replace, self._delete],p=perturb_probs)
self.sentence = perturb_fun()
self.tokenize()
res_sentence = self.sentence
self.sentence = self.original_sentence
self.tokenize()
return res_sentence
class WordLevelPerturber_refine:
def __init__(self, sentence: str):
self.original_sentence = sentence.rstrip()
self.sentence = self.original_sentence
self.tokenized = None
self.tokenize()
def tokenize(self):
self.tokenized = self.sentence.split()
def orig(self):
return self.original_sentence
def _insert(self):
"""Insert a commonly deleted word."""
if len(self.tokenized) > 0:
insertable = list(range(len(self.tokenized)))
index = random.choice(insertable)
plist = list(COMMON_DELETES.values())
plistsum = sum(plist)
plist = [x / plistsum for x in plist]
# Choose a word
ins_word = npchoice(list(COMMON_DELETES.keys()), p=plist)
self.tokenized.insert(index,ins_word)
return ' '.join(self.tokenized)
def _mod_verb(self, redir=True):
if len(self.tokenized) > 0:
verbs = [i for i, w in enumerate(self.tokenized) if w in VERBS_refine]
if not verbs:
if redir:
return self._replace(redir=False)
return self.sentence
index = random.choice(verbs)
word = self.tokenized[index]
if not VERBS_refine[word]:
return self.sentence
repl = random.choice(VERBS_refine[word])
self.tokenized[index] = repl
return ' '.join(self.tokenized)
def _delete(self):
"""Delete a commonly inserted word."""
if len(self.tokenized) > 1:
toks_len = len(self.tokenized)
toks = self.tokenized
deletable = [i for i, w in enumerate(toks) if (w in COMMON_INSERTS) and (i>0 and toks[i-1].lower() == toks[i].lower())]
if not deletable:
return self.sentence
index = random.choice(deletable)
del self.tokenized[index]
return ' '.join(self.tokenized)
def _replace(self, redir=True):
def _keep(i,w):
if w.lower() in {"not", "n't"}:
return True
return False
if len(self.tokenized) > 0:
deletable = [i for i, w in enumerate(self.tokenized) if (w in COMMON_REPLACES) and (not _keep(i,w))]
if not deletable:
if redir:
return self._mod_verb(redir=False)
return self.sentence
index = random.choice(deletable)
word = self.tokenized[index]
if not COMMON_REPLACES[word]:
return self.sentence
# Normalize probabilities
plist = list(COMMON_REPLACES[word].values())
plistsum = sum(plist)
plist = [x / plistsum for x in plist]
# Choose a word
repl = npchoice(list(COMMON_REPLACES[word].keys()), p=plist)
self.tokenized[index] = repl
return ' '.join(self.tokenized)
def perturb(self):
count = 1
orig_sent = self.sentence
for x in range(count):
perturb_probs = [.30,.30,.30,.10]
perturb_fun = npchoice([self._insert, self._mod_verb, self._replace, self._delete],p=perturb_probs)
self.sentence = perturb_fun()
self.tokenize()
res_sentence = self.sentence
self.sentence = self.original_sentence
self.tokenize()
return res_sentence